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______________________________________________________________________________________ 

Abstract 
The DQA1 gene is a member of the highly polymorphic MHC class II locus that is responsible for the 

differences among individuals in immune response to infectious agents. In this study, the authors performed 
a comprehensive computational analysis of the functional and structural impact of non-synonymous or amino 
acid-changing single nucleotide polymorphisms (SNPs) (nsSNPs) that are deleterious to the DQA1 protein in 
Nigerian goats. A 310-bp fragment of exon 2 of the DQA1 gene was amplified and sequenced in 27 
unrelated animals that are representative of three major Nigerian goat breeds (nine each of West African 
Dwarf, Red Sokoto, and Sahel of both sexes) using genomic DNA. Forty-two nsSNPs were identified from 
the alignment of the deduced amino acid sequences. Based on the PANTHER, PROVEAN and PolyPhen-2 
algorithms, there was consensus in identifying the mutants I26D, E114V and V115F as being deleterious. 
Further, differences between the native and the mutant proteins in the subsequent molecular trajectory 
analysis (stabilizing and flexible residue composition, total grid energy, solvation energy, coulombic energy, 
solvent accessibility, and protein-protein interaction properties) revealed E114V and V115F to be highly 
deleterious. Combined mutational analysis comparing the amutant (I26D, E114V and V115F mutations 
collectively) with the native protein also showed changes that could affect protein function and structure. 
Further wet-lab confirmatory analysis in a pathological association study involving a larger population of 
goats is required at the DQA1 locus. This would lay a sound foundation for breeding disease-resistant 
individuals in the future. 
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Introduction 

Single nucleotide polymorphisms (SNPs) are a common form of genetic variation among individuals 
(Li et al., 2009). They are amenable to high-throughput automated genotyping, and therefore are a preferred 
choice as genetic markers in research on diseases and their corresponding drugs (Doss et al., 2008). Non-
synonymous SNPs (nsSNPs) alter the transcribed amino acid residues and result in functional diversity of 
the encoded proteins (Yates & Sternberg, 2013). One of the major purposes of genetics studies is to 
distinguish functionally neutral mutations from those that contribute to differences in phenotypes (Alshatwi et 
al., 2012). An abundance of diverse biological data from various sources constitutes a rich fund of 
knowledge, which has the power to advance our understanding of organisms. Computational methods allow 
the integration and effective use of these data to elucidate local and genome-wide functional connections 
between protein pairs, thus enabling functional inferences for uncharacterized proteins (Gray et al., 2012). 
Next generation sequencing techniques generate large volumes of data related to SNPs, but evaluation of 
biologically functional SNPs using in vitro studies is tedious, time consuming and expensive. However, the 
consequences of mutations and their effects on biological pathways can be predicted in silico (Patel et al., 
2015; Chandramohan et al., 2015; AbdulAzeez & Borgio, 2016). 

The major histocompatibility complex (MHC) is a large genomic region or gene family, which is found 
in most vertebrates and is highly polymorphic (Amills et al., 2005; IIhan et al., 2016). Molecules encoded by 
the MHC play an important role in the immune system and autoimmunity (Amills et al., 1998).  
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The DQA1 gene is a member of the MHC (Zhou & Hickford, 2004). Sequencing of the DQA1 

complementary DNA (cDNA) revealed a single 768 bp open reading frame consisting of four exons and 

encoding a 255 amino acid protein (Amills et al., 2005; Plasil et al., 2016). Among MHC genes, DRB and 
DQA are most polymorphic (Subramani et al., 2016). This extensive structural polymorphism is responsible 
for the differences among individuals in immune response to infectious agents (Vandre et al., 2014). Most of 
the functionally important polymorphisms in DQA1 are concentrated in exon 2, and this diversity is correlated 
with pathogen richness (Wegner et al., 2003). 

Although previous studies have examined the sequence variability of the MHC DQB1 and DRB genes 
(Yakubu et al., 2013; Yakubu et al., 2017), there is a dearth of information on nsSNPs of the MHC DQA1 
gene of Nigerian goats. Such information could help to unravel the possible genotypes that affect livestock 
diseases in future association studies. Therefore, the present investigation aimed at identifying and 
screening deleterious nsSNPs of the DQA1 gene of West African Dwarf, Red Sokoto and Sahel goats of 
Nigeria, which are likely to affect the structure and function of the transcribed protein. 

 
Materials and Methods 

A 310-bp fragment of exon 2 of the MHC Class II DQA1 gene was amplified in 27 unrelated animals 
from three major Nigerian goat breeds (nine each of West African Dwarf (WAD), Red Sokoto (RS) and Sahel 
(SH)] using genomic DNA. Primers were designed using data from Amills et al. (2005). Primer sequences 
were DQA/FW, 5´GAAGCCCACAATGTTTGATAGTCA-3´ and DQA/REV, 5´- 
GGGGAAGAACAACAAAGAGAGGCAG-3´. Primer-BLAST of NCBI (National Center for Biotechnology 
Information) was employed. The organism used was Capra hircus (taxid: 9925). The length of the forward 
primer was 24 bp with Tm (melting temperature) and GC (guanine-cytosine) values of 59.54 

o
C and 41.67%, 

respectively, while the corresponding length, Tm, and GC contents for the reverse primer were 25 bp, 63.73 
o
C and 52.00%. Primer dilution was done by adding 302.6 µL of 1 x TE buffer to DQA1 FW and 109 µL of 1 x 

TE buffer to DQA1 REV. Polymerase chain reaction (PCR) amplifications were carried out in a C1000
TM 

thermal cycler (Bio-Rad, USA) in a total reaction volume of 20 µL containing about 20 ng DNA, 10 pmol of 
each primer in 10 µL Syd Lab PCR Premix (Syd Labs, Inc., Malden, USA) containing Taq DNA polymerase, 
dNTPs, MgCl2, reaction buffer, PCR stabilizer and enhancer at optimal concentrations. The thermal profile 
for amplifying the DQA1 exon 2 involved 35 cycles of initial denaturation at 94 °C for 4 min, denaturation at 
94 °C for 30 s, annealing at 62 °C for 30 s, extension at 72 °C for 30 s, and elongation at 72 °C for 10 min. 
Every other protocol, including sequencing of the gene, is as described in Yakubu (2015). The ethical 
guidelines of the International Council for Laboratory Animal Science and Cornell University, Ithaca, NY, 
USA, were followed strictly. For nsSNP (missense variant) identification, sequence alignment, translations, 
and comparisons were carried out with the ClustalW option of MEGA 5 (Tamura et al., 2011), using the 
Capra_hircus_DQA1_AY464652.1 complete coding sequence (CDS) from the GenBank as the reference. 

Functional effects of nsSNPs were predicted in silico using the PANTHER, PROVEAN, and PolyPhen-
2 algorithms. PANTHER (Thomas et al., 2003) estimates the likelihood of a particular non-synonymous 
amino acid change having a functional impact on the protein. The web-based tool PROVEAN predicts the 
effects of an amino acid substitution or indel on the biological function of a protein, based on sequence 
clustering and alignment-based scoring. Variants with scores less than -2.5 were considered deleterious 
(Choi & Chan, 2015). PolyPhen-2 predicts the potential impact of an amino acid substitution on the function 
and structure of a protein (Adzhubei et al., 2010; Adzhubei et al., 2013). Where there was consensus by the 
three algorithms on the deleterious effect of a nsSNP, further confirmatory analyses were carried out. 
Additionally, a combined mutational analysis was conducted, incorporating all of the deleterious nsSNPs 
simultaneously (the term ‘amutant’ was coined to refer collectively to the nsSNPs) to reduce the possibility of 
false positives and exploit the effect of correlated mutations because these may enhance or diminish the 
functional properties of a protein. 

Effects of nsSNP on protein stability were assessed with I-Mutant2.0 (Capriotti et al., 2005) and 
MuStab (Teng et al., 2010). I-Mutant2.0 predicts whether a single site mutation stabilizes or destabilizes the 
protein in 80% of the cases in which the three-dimensional structure is known and 77% of the cases in which 
only the protein sequence is available. MuStab, on the other hand, encodes the input sequence with the 
optimal feature subset, and then calls the svm_classify program of SVM-Light software package to classify 
the protein stability changes after the amino acid substitution (Teng et al., 2010). 

Structural models for the native protein and mutant proteins I26D, E114V, V115F, and amutant were 
generated with Phyre2 (Kelley et al., 2015). This suite of tools aligns an input target with pre-existing 
templates to generate a series of predicted models. Structural similarity of alternative protein models was 
quantified by template modelling (Tm) scores and root mean square deviation (RMSD) in Angstroms (Å) 
using Tm-Align. A Tm-score <0.2 is equivalent to a random structure from the PDB (Protein Data Bank) and 
a Tm-score of 0.5 or greater indicates that the proteins have a high probability of being in the same 
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SCOP/CATH (structural classification of proteins/class architecture topology homology) fold (Zhang & 
Skolnick, 2005). An RMSD ≥2.0 has a negative effect on the stability and function of the protein (Han et al., 
2006). Total energy after energy minimization was calculated for the native and each altered model using the 
Groningen Molecular Simulation (GROMOS) computer program package implementation of DeepView v 4.1 
(Guex & Peitsch, 1997). 

The proposed protein structures were validated with ERRAT and ProSA (Sippl, 1995; Wiederstein & 
Sippl, 2007). ERRAT is a program for verifying protein structures determined by crystallography (Colovos & 
Yeates, 1993). Error values are plotted as a function of the position of a sliding 9-residue window. The error 
function is based on the statistics of non-bonded atom-atom interactions in the reported structure compared 
with a database of reliable high-resolution structures. ProSA returns a z-score that indicates overall model 
quality based on the Cα positions in 3-D space. 

Stabilizing residues of the native and mutant DQA1 proteins of Nigerian goats were identified with 
SRide (Gromiha et al., 2004). The option selected was the PSSM-based encoding from the PDB file. The 
analysis was based on parameters such as surrounding hydrophobicity, long range order (LRO), stabilization 
centre and conservation score.    

Residue positions that could change the conformation of the DQA1 protein were predicted with 
FlexPred. The software uses solvent accessibility of a protein sequence to identify the positions and thus 
change kinetic energy and potentially cause pathogenic disorders (Kuznetsov, 2008; Kuznetsov & McDuffie, 
2008).  

The molecular dynamic simulation was performed to calculate the total energy difference in solvated 
condition using the Poisson-Boltzmann equation (PBE) solver online tool (Smith et al., 2012; Sarkar et al., 
2013). The simulation was performed by placing the protein under these conditions: i) interior dielectric 
constant: 4.00, ii) exterior dielectric constant: 80.00, iii) percentage fill: 80, grid scale: 2.00, iv) salt 
concentration: 0.10, v) probe radius: 1.40, and vi) boundary conditions: 2.00.  

Solvent accessibility of residues of alternative amino acid sequences of the DQA1 protein were 
predicted with Weighted Ensemble Solvent Accessibility (WESA) (Shan et al., 2001; Chen & Zhou, 2005). 
The software predicts a residue as being buried or exposed (defined as having a surface area greater than 
20% of the maximum area for that type of amino acid) with an expected accuracy of 80%. 

Potential protein-protein interaction effects were predicted with InterProSurf (Zhou & Shan, 2001; Negi 
et al., 2006; Negi & Braun, 2007; Negi et al., 2007) and consensus Protein-Protein Interaction Site Predictor 
(cons-PPISP) (Chen & Zhou, 2005). InterProSurf predicts interacting amino acid residues in proteins that are 
most likely to interact with other proteins, given the 3D structures of subunits of a protein complex. The 
prediction method is based on the solvent accessible surface area of residues in the isolated subunits, a 
propensity scale for interface residues and a clustering algorithm to identify surface regions with residues of 
high interface propensities. cons-PPISP is a consensus neural network method that is trained to predict 
whether a surface residue is in the interaction site. Given the structure of a protein, cons-PPISP will predict 
the residues that would probably form the binding site for another protein.  

 
Results 

Forty-two nsSNPs of the caprine DQA1 alleles were obtained from the alignment of the deduced 
amino acid sequences of Nigerian goats (Table 1). Of these, five, seven and thirteen were predicted to be 
deleterious by PANTHER, PROVEAN and PolyPhen2, respectively (Table 1). All three algorithms identified 
I26D, E114V and V115F as being harmful, indicating that these amino acid substitutions negatively affect the 
function of the DQA1 protein. Two of the three nsSNPs that were predicted to be collectively deleterious 
were found to decrease protein stability, with the amino acid substitution E114V being the exception. 
Although the stability of E114V increased, its reliability index of 1 and 24.64% prediction confidence were 
very low. In contrast the reliability indexes were 8 and 9, and the prediction confidence was 94% and 88% for 
I26D and V115F, respectively. 

There were 181 residues (71% of DQA1 sequence) modelled with 100.0% confidence by the single 
highest scoring template for native, I26D, E114V, V115F amino acid substitutions and the amutant protein, 
respectively (Figure 1). That is, the percentage identity between the DQA1 sequence of the native protein 
and the mutations (above) in Nigerian goats and the template used to generate the structures is high, 
conferring accuracy to the 3D structures. This means all the five DQA1 structures were correctly predicted. 
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Table 1 Functional effect of amino acid substitutions in the protein sequence coded by DQA1 gene of 
Nigerian goats predicted using PANTHER, PROVEAN and PolyPhen-2 
 

 PANTHER PROVEAN PolyPhen-2 

Substitution
1
 prediction

2
 subPSEC

a
 prediction

3
 score Prediction

4
 

 
score 

       

S21L N 0.088 N -1.049 B 0.180 

S21R N 0.097 N 0.528 P 0.606 

G22A N 0.135 N -1.603 D 0.997 

S23P N 0.234 N -1.647 P 0.471 

E24H D 0.501 N -0.680 D 0.999 

D25P N 0.208 N -0.292 P 0.663 

D25S N 0.179 N 0.878 P 0.661 

I26D D 0.641 D -3.581 D 1.000 

V27S N 0.155 N 0.596 P 0.583 

A32G N 0.099 N 0.651 B 0.001 

A33I N 0.107 N 0.034 B 0.001 

I36V N 0.079 N 0.267 B 0.000 

N37S N 0.180 N 0.134 B 0.013 

V38I N 0.117 N 0.254 B 0.000 

H40Q N 0.224 N 3.527 B 0.001 

S41T N 0.244 N 0.026 B 0.001 

H47Y N 0.216 N -1.092 B 0.000 

Y48F N 0.168 N 0.061 B 0.024 

K65R N 0.223 N -1.814 B 0.013 

V78T N 0.117 N 0.893 B 0.000 

V78A N 0.180 N 1.606 B 0.000 

G79S N 0.087 N 2.208 B 0.000 

M89I N 0.420 N 1.899 B 0.001 

S91T N 0.268 N 1.259 B 0.000 

G92A N 0.182 N 1.625 B 0.001 

G92I N 0.123 N 1.646 B 0.009 

G92V N 0.121 N 1.560 B 0.003 

Q94H N 0.174 N 1.130 B 0.000 

Q94R N 0.091 N -0.280 B 0.004 

T95N N 0.319 N 4.919 B 0.000 

I98V N 0.105 N -0.305 B 0.001 

M99L N 0.322 N 0.069 B 0.001 

S102R N 0.246 N 4.416 B 0.000 

K111S N 0.130 N -0.053 B 0.157 

E114V D 0.635 D -5.062 P 0.913 

V115F D 0.623 D -4.171 D 0.996 

T116A N 0.203 D -3.305 D 0.999 

V117I NA
5
  N -0.776 D 0.958 

F118L NA  D -2.619 B 0.424 

S119P N 0.130 N 2.180 B 0.002 

K120L N 0.480 D -4.724 D 0.992 

S121F D 0.762 D -3.524 B 0.186 
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1
 G: glycine; P: proline; A:  alanine; V: valine; L: leucine; I: isoleucine; M: methionine; F: phenylalanine; Y: tyrosine; H: 

histidine; K: lysine; R: arginine; Q: glutamine; N: asparagine; E: glutamic acid; D: aspartic acid; S: serine; T: threonine 
2
 D: deleterious, N: neutral 

3
 D: deleterious, N: neutral 

4
 B: benign, D: probably damaging, P: possibly damaging 

5
 NA: not aligned to reference sequence 

a
 SubPSEC: The probability that a given variant will cause a deleterious effect on protein function is estimated by 

Pdeleterious, such that a subPSEC score of -3 corresponds to a Pdeleterious score of 0.5. 

 
 
 

  
                        a                                            b                                                 c 

 
                           d                                      e 
Figure 1 Predicted 3D structures of native and mutant  DQA1 proteins of goats 
 
a: Native DQA1 protein 
b: DQA1 protein of Nigerian goats as a result of change from isoleucine to aspartic acid at position 26 (I26D) 
c: DQA1 protein of Nigerian goats as a result of change from glutamic acid to valine at position 114 (E114V)  
d: DQA1 protein of Nigerian goats as a result of change from valine to phenylalanine at position 115 (V115F) 
e: DQA1 protein of Nigerian goats as a result of combined I26D, E114V and V115F amino acid substitutions 
Colours indicate amino acid residues 
 
 
 

For all of the amino acid substitutions that were deleterious, including amutant, RMSD = 0.0 and TM = 
1.00. However, energy of minimization varied from one amino acid substitution to another. The values 
recorded for V115F and amutant (-7046.844 and -7048.283kJ/mol, respectively) were greater than for the 
native protein (-7208.369 kJ/mol) and I26D (-7208.369 kJ/mol) and E114V (-7209.886 kJ/mol).   

The native, I26D and E114V protein structures were of higher quality (61.6%) compared with V115F 
and amutant (55.8%), based on the ERRAT analyses. The overall structure quality also differed between the 
native and the mutant proteins using ProSA [Z score = -5.57 (native), -5.57 (I26D), -5.51 (E114V), -5.54 
(V115F) and -5.49 (amutant). 

Seven stabilizing residues were predicted for the native and mutant I26D, six residues for E114V, five 
for V115F, and eight for amutant (Table 2). Variation in flexibility was also observed in the native and the 
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variants.  Residues 110 and 155 were unique to the native protein. The amino acid substitution E114V has a 
unique flexible residue at position 244, while flexible residues at positions 121 and 125 were found only in 
V115F (Table 3). It was not possible to calculate flexible residues for the amutant. 

 
 
Table 2 Stabilizing residue variations between native and deleterious non-synonymous single nucleotide 

polymorphisms of DQA1 protein 

Variant Stabilizing residue 

         

Native THR49 - VAL117 CYS133 ASN137 SER172 CYS189 VAL191 

I26D THR49 - VAL117 CYS133 ASN137 SER172 CYS189 VAL191 

E114V THR49 - VAL117 CYS133 ASN137 - CYS189 VAL191 

V115F THR49 - VAL117 CYS133 - - CYS189 VAL191 

Amutant THR49 PRO113 VAL117 CYS133 ASN137 SER172 CYS189 VAL191 

         

THR: threonine, PRO: proline, VAL: valine, CYS: cysteine, ASN: asparagine, SER: serine 
 
 

Table 3 Flexible residue position variations between native and deleterious non-synonymous single 
nucleotide polymorphisms of DQA1 protein 

 

Substitution Flexible residue positions 

  

Native 110,111,123,124,151,153,155, 156,157,158,159,208,209,212,213,214,245,246,247,248,249,250,251 

I26D 110,111,123,124,151,156,157,158,159, 212,213,214,245,246,247,248,249,250,251 

E114V 111,151,153, 156,157,158,159,208,209,212,213,214,244, 245,246,247,248,249,250,251 

V115F 111,121,123,124,125,151,153,156,157,158,159,208,209,212,213,214,245,246,247,248,249,250,251 

  

 
 

The DelPhi results showed that the native and the mutants (with the exception of I26D) differed in their 
average total grid energy, solvation energy and coulombic energy (Table 4).  
 
 
Table 4 Energy calculation through molecular dynamic simulation of native and mutants 
 

Substitution Total grid energy (KT) Solvation energy (KT) Coulombic energy (KT) 

    

Native 49368.95 -44833.33 -20411.97 

I26D 49368.95 -44833.33 -20411.97 

E114V 49070.76 -44619.04 -20423.72 

V115F 49356.16 -44819.72 -20395.29 

Amutant 49057.93 -44605.43 -20407.01 

    

 
 

In terms of solvent accessibility, the mutant I26D was exposed, while variants E114 and V115F were 
found in a buried region of the protein (Table 5). 
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Table 5 Solvent accessibility prediction using Weighted Ensemble Solvent Accessibility 
 

Variant BS MLR DT NN SVM WE 

       

 
I26D 

1 (0.37) 1 (0.32) 1 (0.52) 1 (0.44) 1 (0.59) 1 (0.44) 

E114V 0 (0.03) 1 (0.22) 1 (0.64) 1 (0.76) 1 (0.83) 1 (0.64) 

V115F 0 (0.37) 0 (0.06) 0 (0.78) 0 (0.12) 0 (0.12) 0 (0.28) 

       

BS: Bayesian statistics; MLR: multiple linear regression; DT: decision tree; NN: neural network; SVM: support vector 
machine; WE: weighted ensemble 
1: exposed; 0: buried; (...) = confidence 

 
 

The protein-protein interaction patterns varied among the native and E114V, V115F, and amutant, 
respectively (Table 6). There were more buried residues in V115F and amutant (543) than in the native 
protein (539). 
 
 
Table 6 InterProSurf protein-protein interaction prediction 
 

Variant 
Probe 
radius 

POLAR 
area/energy 

APOLAR 
area/energy 

Total 
area/energy 

Number of 
surface atoms 

Number of buried 
atoms 

       

Native 1.40 4223.25 7154.16 11377.42 909 539 

I26D 1.40 4223.25 7154.16 11377.42 909 539 

E114V 1.40 4147.12 7202.31 11349.44 907 539 

V115F 1.40 4223.25 7154.16 11377.42 909 543 

Amutant 1.40 4147.12 7202.31 11349.44 907 543 

       

 
 

The cons-PPISP prediction of the residue contact was negative for E114V (neural network score: 
0.076) and buried for V115F (Neural network score: 0.00). There was no result for the mutant I26D. 

 
Discussion 

The use of polymorphisms within genes is fast gaining attention as a complement to the current 
methods of selection because of their association with traits of interest in animals, especially those that affect 
livestock diseases (Miyasaka et al., 2011; Yakubu, 2015).  However, the effects of nsSNPs in the DQA1 
gene in goats have not been predicted to date in silico. Amino acid substitutions in DQA1 may induce 
structural and functional damage. Normal protein function can be altered by deleterious nsSNPs, through 
geometric constraint changes (Gromiha & Ponnuswamy, 1995), hydrophobic changes (Rose & Wolfenden, 
1993), and disruption of salt bridges or hydrogen bonds (Shirley et al., 1992; Michels et al., 2011). These 
may have pathological phenotypic consequences (Kumar et al., 2012; Yates & Sternberg, 2014). The 
differences in prediction capabilities of the three algorithms used in the present study may be connected with 
their differing alignment procedures. The difference in the results of computational tools may be due to 
differences in features utilized by the methods and therefore dissimilar predictions might be expected (de 
Alencar & Lopes, 2010).  

A structural model of a protein is important in understanding biological processes at molecular level 
(Wiederstein & Sippl, 2007). The statistic RMSD is commonly used to evaluate the similarity of protein 
structures to their templates and to determine the accuracy of the alignment of the residues of two structures 
(Kufareva & Abagyan, 2012). In the present study, the structures of the native and mutant proteins, which 
were transcribed from the DQA1 gene, appeared similar, based on RMSD values. However, energy of 
minimization differed between the native protein and the mutants. It implies that the higher energy of 
minimization of V115F and amutant might impact the protein negatively because high energy configurations 
may lead to physical perturbation and instability. This difference was also observed in the overall structure 

http://www.mybiosoftware.com/wesa-weighted-ensemble-solvent-accessibility.html
http://pipe.scs.fsu.edu/ppisp.html
http://www.sciencedirect.com/science/article/pii/S0022283615003824
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kufareva%20I%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Abagyan%20R%5Bauth%5D
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quality of V115F and amutant as revealed by ERRAT, where the model quality of the native protein was 
higher. The different energy profiles of the native and the mutants, as found in ProSA, indicate varying 
structural quality of the DQA1 protein of the present study. This is because the z-score of ProSA indicates 
overall model quality and measures the deviation of the total energy of a structure with respect to an energy 
distribution derived from random conformations (Sippl, 1995; Zhang & Skolnick, 1998). The more negative 
the z-score, the better the model quality (Saha et al., 2013). The energy separation between the native fold 
and the average of an ensemble of miss-folds also indicated that the conformational energy landscape of the 
E114V, V115F and amutant proteins differed from that of the native protein. The observed variation in the 
total grid energy, solvation energy, and coulombic energy of the native and the mutants could influence the 
structure and biological functions of the proteins. This is consistent with the submission of Smaoui et al. 
(2016) that mutations that increase the stability of the structure have the lowest energies, while mutations 
that destabilize the structure increase its energy. The varying composition of the stabilizing residues in the 
native and especially variants E114V, V115F and combined I26D, E114V, and V115F amino acid 
substitutions could influence the structure of the protein, thereby affecting its stability and function. Some of 
the flexible residues were found around the point of mutation in the present study. These variations may 
contribute to differences in folding of the protein at these positions. An inherent property of macromolecular 
structure is conformation flexibility (Ramesh et al., 2013). Changes in protein folding may be involved in 
various biological functions, such as signal transduction, catalysis, macromolecular recognition, locomotion, 
and many pathogenic disorders (Kuznetsov & McDuffie, 2008).  

Hydrophobic core residues are probable sites of deleterious mutations (Zhangab & Wanga, 2014; 
David & Sternberg, 2015; Sahoo et al., 2015). Replacing a hydrophobic residue with another hydrophobic 
residue, as observed in mutant V115F, may induce a volume change (Eriksson et al., 1992) and thereby 
decrease the stability of the protein. This was supported by the submission of Ohkuri & Yamagishi (2003) 
that residues with larger Van der Waals volume may introduce stress in the conformation of side chains at 
the subunit interface. The mutant E114V is a change from a polar/hydrophilic, H-bonding, acidic residue to a 
non-polar/hydrophobic residue. It is possible that this change could result in loss of hydrogen bonds and, 
consequently, disturb correct folding (Doss & NagaSundaram, 2012). Doss et al. (2008) reported that a 
change from exposed to buried state could be considered functionally significant in a mutant protein. 
Accordingly, change in amino acid may affect polar–polar interactions within the protein molecule itself, alter 
the energy of stabilization, and further destabilize the protein (Peng et al., 2005). The difference in charge 
between hydrophobic and acidic residues, as observed in the present study, would probably disturb the ionic 
interaction in the native protein. 

The prediction of residue solvent accessibility could assist in a better understanding of the relationship 
between structure and sequence (Alanazi et al., 2011). The cost of burying a hydroxyl group depends on 
solvent accessibility (Blaber et al., 1993). If the residue is exposed, the mutant is destabilized by <0.5 
kcal/mol. If the residue is fully buried, the mutant is destabilized by ~ 1- 3 kcal/mol (Blaber et al., 1993).  
Mutants E114V and V115F were predicted to be buried in this study, and therefore may disturb interactions 
with other molecules or other parts of the protein.  
 

Conclusion 
Identified structural and functional changes in the DQA1 protein supported predictions of the nsSNPs 

that resulted in I26D, E114V and V115F being deleterious. The combined mutational analysis carried out 
with them exposed the way in which amutant is different from other individual mutations compared with the 
native. The difference between results of the trajectory analysis and the RMSD values may be connected 
with the drawback of RMSD as a positional distance-based measure compared with measurements that are 
contact-based. Protein–protein interaction (PPI) properties of variants E114V and V115F and amutant 
differed from those of the native protein. Such PPI can be strengthened or weakened by nsSNPs, which may 

cause loss of salt bridges, steric clashes and later post‐translational modifications, among other effects. 
Changes in the interactions among proteins can lead to rewiring (i.e. acquisition or loss of co-complex 
memberships) of the PPI network and thus alter phenotype. These results could contribute to explaining 
susceptibility to disease in Nigerian goats, pending their confirmation in future wet lab and pathogenic 
population-based association studies.  
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