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_______________________________________________________________________________________ 
Abstract 

Sheep from a Merino selection experiment at the Tygerhoek research farm in the Southern Cape 
provided material for this study.  The selection lines involved included a line selected for clean fleece 
weight, a “Wet and Dry” line, a fine wool line and an unselected Control line.  Rectal faeces samples were 
obtained from individual animals at 13 to 16 months of age, after drenching was withheld for at least 10 
weeks.  Nematode eggs in these samples were counted. Fitting the appropriate fixed effects, the heritability 
of untransformed, cube root transformed and log transformed faecal nematode egg count (FEC) was obtained 
from single-trait analyses.  The effects of sex and birth year were involved in a significant interaction.  
Means for FEC were generally higher in ram progeny than in ewes, but the magnitude of the sex difference 
was not consistent.  Multiple lambs had a slightly lower mean for FEC than singles, while FEC was 
unaffected by dam age.  The heritability of FEC was estimated at between 0.14 for untransformed data and 
0.18 for log transformed FEC. Genetic correlations of log transformed FEC with two-tooth staple strength  
(-0.49) and coefficient of variation of fibre diameter (0.30) were favourable.  Clean fleece weight was 
unfavourably related to FEC on a genetic level (0.19).  Selection for resistance to parasitic nematodes after 
natural challenge should thus be feasible in the Merino lines studied. 
_______________________________________________________________________________________
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Introduction 
The usage of chemicals to control external and internal parasites of livestock is being challenged on a 

global scale.  Resistance of gastro-intestinal nematodes to the present generation drugs is commonly 
experienced (Bath, 2006), while indications are that no new drenches are in the process of being developed.  
Existing strategies for the control of these pathogens are thus challenged (Bath, 2006), and alternative 
strategies need to be formulated (Vatta et al., 2000).   

A possible avenue for dealing with the challenge of gastro-intestinal helminths is to select livestock 
for resistance and/or tolerance to infestation (Vatta et al., 2000).  Research in other countries demonstrated 
genetic variation in resistance of sheep to nematode infestations (Greeff et al., 1995; Morris et al., 1996; 
Greeff & Karlsson, 1999; Khusro et al., 2004), and successful breeding programs for resistance/tolerance 
have been reported (Woolaston & Piper, 1996; Greeff et al., 1999; Morris et al., 2005).  Farming with 
resistant strains of sheep will result in a reduced reliance on anthelmintics to control parasitic nematodes, and 
associated economic advantages (McEwan et al., 1995).  The economic output of a resistant Merino strain 
was markedly higher than that of a control strain when no drenching was administered (Greeff et al., 2006).  
The strains assessed were of equal genetic merit for production traits, and they grazed separate pastures 
where cross-contamination was impossible.  

South African research on genetic parameters for resistance to gastro-intestinal nematodes of sheep is 
limited to a few studies (Cloete et al., 2000; Bisset et al., 2001; Nieuwoudt et al., 2002; Snyman, 2007).  No 
studies on genetic correlations of faecal worm egg counts (FEC) with other traits of economic interest have 
been published, apart from a preliminary study on the Tygerhoek Merino flock (Cloete et al., 2000).  
International studies on these correlations are accordingly scarce, with fewer than five estimates for genetic 
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correlations of wool traits with FEC listed in the comprehensive review of Safari et al. (2005) on genetic 
parameters for sheep.  The need for further studies on this topic is evident from these comments.   

Against this background, the present study reports environmental factors impacting on FEC, estimates 
of the heritability of FEC before and after transformation as well as genetic correlations of FEC with live 
weight and wool traits.  Based on previously derived selection line differences for FEC (Cloete et al., 2000), 
breeding values for animals belonging to four single trait selection lines were also compared. 

 
Material and Methods 

Merino sheep from different selection lines on the Tygerhoek research farm in the Southern Cape area 
of South Africa provided material for the study.  The climate at the site is Mediterranean, with a total annual 
precipitation of 425 mm, of which ~ 60% is recorded from April to September.  The following selection lines 
were involved: 
• Fleece weight – This line was selected since 1970 for an increase in clean fleece weight with a check on 

fibre diameter (Cloete et al., 1998). 
• Wet and Dry – Ewes in this line have been culled since 1993 on failure to lamb or to rear at least one 

lamb per lambing opportunity.  During this period, rams were selected as was described by Cloete & 
Scholtz (1998).  This line was discontinued in 2002, and data are only available up to the 2002 drop. 

• Fine wool – This line was descended from a similar line maintained at Cradock (Olivier et al., 1999), of 
which ewes were introduced to Tygerhoek during 1997.  During the formation of this line, ewes were 
screened from their flocks of origin on the basis of a low fibre diameter and an above average live 
weight. 

• Control – no directed selection was applied to this line since 1970, although a measure of random genetic 
drift was measured in some traits (Cloete et al., 1998).  It is maintained as a control for the other lines. 

 
No directed selection for resistance to gastro-intestinal nematodes was applied in any of the lines.  

Progeny were maintained in single flocks (separated on sex) throughout the trial. Rectal faeces samples were 
obtained from individual animals at 13 to 16 months of age, after drenching was withheld for at least 10 
weeks.  Sampling took place during the years from 1995 to 2005.  The exception was the progeny group of 
2004, of which no samples were taken.  Sampling generally took place in the winter-spring months of July-
September.  The heritability of FEC after natural infection was shown to be highest during the period from 
June to September under Mediterranean conditions in Western Australia (Greeff et al., 1995).  Experience of 
the pathogen species present at the experimental site during this time of the year suggest that the animals 
were likely to be subjected to a mixed challenge by Ostertagia and Trychostrongylus spp.  The number of 
nematode eggs per sample was counted at the Western Cape Provincial Veterinary Laboratory, using the 
McMaster technique, with a sensitivity of 100 eggs per gram of wet faeces (Van Schalkwyk et al., 1994). 
During the same period FEC was recorded, two-tooth data were also recorded.  The traits under 
consideration included two-tooth live weight, clean fleece weight, fibre diameter, staple strength, coefficient 
of variation (CV) of fibre diameter and total fold score.  These recordings were made on 2127 to 3470 
individuals, born during the period from 1995 to 2005. 

Untransformed FEC data were skew and leptokurtic (Table 1).  These data were thus subjected to a 
cube root or log transformation.  Both these transformations are commonly used to normalise FEC data 
(Eady, 1995; Woolaston & Piper, 1996; Khusro et al., 2004; Morris et al., 2005).  The natural logarithm of 
FEC was computed, after 100 were added to FEC to account for zero counts.  Both transformations markedly 
improved the distribution of the data, as depicted in Table 1.  The ASREML program (Gilmour et al., 1999) 
was used for the analysis of the fixed effects, and also subsequently to estimate variance components in 
single-trait animal model analyses.  The first analysis involved fitting various combinations of fixed effects 
to obtain an operational model, including the effects of birth year (1995-2003; 2005), sex (male and female), 
age of dam (2 – 7 years) and birth type (singles and pooled multiples).  All two-factor interactions were 
considered initially, but only the birth year x sex interaction was significant and was retained. Effects found 
to be significant (P < 0.05) in these preliminary analyses were included in an operational model for 
subsequent analyses.  Random terms were added to the operational model, resulting in the following models 
for analyses (in matrix notation): 
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y = Xb + Z1a + e      (1) 
y = Xb + Z1a + Z2c + e    (2) 
y = Xb + Z1a + Z3m + e    (3) 
[Covariance (a,m)=0] 
y = Xb + Z1a + Z3m + Z2c + e   (4) 
[Covariance (a,m)=0] 
y = Xb + Z3a + Z3m + Z2c + e   (5) 
[Covariance (a,m)= Aσam] 

 
In these analyses, y was a vector of observations for untransformed FEC, cube root transformed FEC 

or log transformed FEC, and b, a, m and c vectors of fixed effects, direct genetic variances, maternal genetic 
variances and maternal permanent environmental variances respectively.  X, Z1, Z2 and Z3 were the 
corresponding incidence matrices relating the respective effects to y, while e was the vector of residuals.   
A was the numerator relationship matrix, and σam the covariance between direct genetic and maternal genetic 
effects. 

It was assumed that: 
 
V(a) = Aσ2

a; V(m) = Aσ2
m; V(c) = Iσ²c; V(e) = Iσ2

e, 
 
With I being identity matrixes; σ2

a, σ2
m, σ2

c and σ2
e the direct genetic variance, maternal genetic 

variance and the maternal permanent environmental variance and environmental (residual) variance, 
respectively. These analyses yielded estimates of genetic and permanent environmental variances.  Ratios for 
direct additive genetic and maternal permanent environmental variances were computed from these 
estimates. These variances were expressed relative to the total phenotypic variance.  Likelihood Ratio tests 
(LRT) were performed to assess the significance of the contribution of each random term to improvements in 
the model for analysis. The LRT is based on testing twice the increase in Log-likelihood resulting from 
adding a random term to the model of analysis as a Chi2 statistic. Alternatively, for two models with the 
same number of random terms, and assuming identical fixed effect modelling, the model with the higher 
value for the Log-likelihood fits the data better. All analyses included the full pedigree file of animals from 
1969 to 2005, consisting of 10850 individuals, the progeny of 949 sires and 3603 dams.  Subsequently, two-
trait animal models were fitted to calculate all relevant direct and maternal correlations of log transformed 
FEC with two-tooth live weight and wool traits.  The wool traits under consideration were clean fleece 
weight, fibre diameter, staple strength, CV of fibre diameter and total fold score.  Details of the single-trait 
and two-trait analyses on these two-tooth traits were omitted as it was recently reported by Matebesi et al. 
(2007), and the present analysis did not add any new information on the (co)variances among them.   

Direct breeding values for log transformed FEC were obtained from the single-trait analysis with the 
best log likelihood, and averaged for the respective selection lines within birth years.  Genetic trends derived 
in this way were inspected for differences between lines, using standard errors of the means to inspect line 
differences within birth years for significance.  These breeding values were obtained from an analysis where 
selection line and its interactions with other traits were excluded from the operational model. 

 
Results  

Descriptive statistics for untransformed FEC indicated extreme variation and a non-normal 
distribution (Table 1).  The properties of the data were markedly improved by the transformations applied, 
which validate the usage of these transformations.  The log transformation improved the extreme variance in 
particular, resulting in a coefficient of variation of below 20%. 

The type of transformation that was applied resulted in minimal changes in conclusions derived from 
the data as pertaining to the fixed effects analysed.  Only the results obtained from the analysis involving log 
transformed FEC will thus be presented. Fixed effects that influenced the data significantly were sex, birth 
year the sex x birth year interaction (all P < 0.01) as well as birth type (P < 0.05).  The effect of selection line 
approached significance (P = 0.06), while FEC was independent of dam age.  In general, ewes excreted 
fewer worm eggs in their faeces than rams (Figure 1).  However, the magnitude of the difference between 
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Table 1 Descriptive statistics for the faecal worm egg counts (FEC in eggs per gram wet faeces) of 3560 
Merino two-tooth sheep from the Tygerhoek Merino flock during the period from 1995 to 2005 

 

Trait Mean 
± s.d. Range CV 

(%) Skewness Kurtosis 
      
FEC 799  

± 1204 
0 – 13700 151 3.451 19.051 

Cube root of FEC 6.93  
± 4.67 

0 – 23.85 67 0.081 -0.464 

Log of (FEC + 100) 6.15  
± 1.15 

4.61 – 9.53 19 0.199 -0.917 

 
 
rams and ewes differed between years, resulting in the observed interaction.  During the earliest (1995 and 
1996) and the most recent production years (2003 and 2005) the differences in FEC between ewes and rams 
were particularly large.   

Multiple lambs had slightly lower means for log transformed FEC’s than singles (6.11 ± 0.04 vs. 6.19 
± 0.04, respectively; P < 0.05).  Respective geometric means obtained by back transformation amounted to 
354 for multiples compared to 388 for singles.  Least squares means for log transformed FEC ranged from 
6.09 ± 0.08 for the progeny of 7-year-old dams to 6.20 ± 0.05 for the progeny of 4-year-old dams (P > 0.10).  
Since detailed attention is given to the averaged breeding values of animals in the respective selection lines, 
no results for the phenotypic selection line differences will be presented here.   
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Figure 1 Least squares means depicting the interaction between birth year and sex for FEC in two-tooth 
animals from the Tygerhoek flock.  Vertical bars about the means depict appropriate standard errors.  
(FEC - faecal worm egg count)   

 
 
The single-trait animal model fitting the data best included direct additive effects as the only 

significant random source of variation in the case of untransformed FEC (Table 2).  The “best” model for 
both cube root and log transformed FEC included direct additive and dam permanent environmental effects 
as random.  

Heritability estimates derived from the variance components amounted between 0.14 for 
untransformed data to 0.18 for log transformed data, the estimate for cube root transformed data being 
intermediate (Table 3).  Although the derived h² estimates did not differ from each other (when the s.e.’s 
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provided were considered), there is some evidence that the transformation of the data to ensure a better 
distribution resulted in a slightly higher estimate of the direct additive variation.  Maternal variance 
components were of smaller magnitude for the transformed data sets, and accounted for ~ 5% of the overall 
phenotypic variation.   

 
 

Table 2 Log Likelihood ratios for the respective random effects models fitted to the FEC data of two-tooth 
animals from the Tygerhoek flock.  The model of choice is depicted in bold figures 

 

Effects FEC Cube root of FEC Log of (FEC + 100) 
    

Fixed effects only -6454.38 -6327.83 -1377.53 

Fixed + h² -6427.58 -6282.64 -1329.13 

Fixed + h² + c² -6427.31 -6279.04 -1325.76 

Fixed + h² + m² -6426.14 -6280.80 -1327.58 

Fixed + h² + m² + c² -6426.14 -6279.02 -1325.75 

Fixed + h² + m² + ram + c² -6426.26 -6277.33 -1324.49 

FEC - faecal worm egg count 
 
 

Table 3 Variance components and ratios (± s.e.) for FEC data of two-tooth animals from the Tygerhoek 
Merino flock  

 

Component or ratio FEC Cube root of FEC Log of (FEC + 100) 
    
Variance components:    

Direct additive 163228 2.1641 0.14208 

Maternal PE  -  0.65573 0.03754 

Residual 964399 9.93791 0.59589 

Variance ratios:    

h² 0.144 ± 0.029 0.170 ± 0.032 0.183 ± 0.033 

c² - 0.051 ± 0.019 0.048 ± 0.019 
    
FEC - faecal worm egg count 
 
 
Pearson’s correlations among the predicted breeding values derived from the respective data sets were 

computed.  The correlation of untransformed FEC data with cube root transformed data amounted to 0.869.  
The corresponding correlation was 0.870 for the analysis involving log transformed FEC data.  Breeding 
values derived from cube root transformed FEC data were highly correlated to log transformed FEC, the 
applicable correlation being 0.991.  

It was hypothesised that the lower means for FEC in female animals may have resulted in these 
animals not being able to express their genetic superiority in terms of resistance to gastro-intestinal 
nematodes because of an inadequate natural challenge.  Separate analyses were therefore conducted within 
gender groups to test this hypothesis.  The overall mean for FEC in 1899 females was markedly lower than 
that of 1661 males.  Respective mean values (± s.d.) were 385 ± 748 vs. 1273 ± 1431 for untransformed data, 
4.83 ± 4.10 vs. 9.32 ± 4.10 for cube root transformed data and 5.62 ± 0.98 vs. 6.75 ± 1.08 for log transformed 
data.  Despite these marked gender differences in FEC, no difference was found in the derived h² estimates 
from the respective gender groups.  As a matter of fact, the h² estimate for log transformed FEC obtained 
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from females (0.226 ± 0.048) was slightly larger in absolute terms than the estimate of 0.203 ± 0.056 derived 
for males.  Part of the phenotypic variation was partitioned to a dam permanent environmental variance ratio 
of 0.081 ± 0.039 in rams, while no such effect was found in ewes.  However, owing to larger standard errors 
because of the smaller data sets, the gender difference in the derived h² estimates for rams and ewes did not 
approach significance (P < 0.10).     

No clear genetic trends in log transformed FEC were discernable over the interval for which data were 
available (Figure 2), and it is obvious that none of the lines were subjected to directed selection to reduce 
FEC.  Up to 2001, annual predicted breeding values for the line selected for clean fleece weight were 
generally higher than particularly the Wet and Dry line, with a few exceptions.  The Control line was 
intermediate in most instances.  The differences between lines were smaller since the year 2002, when only 
the Fleece weight selected line and the Control line were depicted.  Overall means for breeding values of log 
transformed FEC were 0.124 ± 0.007 for the line selected for clean fleece weight, 0.054 ± 0.006 for the 
Control line, -0.036 ± 0.007 for the Fine wool line and -0.045 ± 0.006 for the Wet and Dry line.  These 
comparisons are complicated by the fact that the Wet and Dry line and the Fine wool line were present for 
only part of the study period (1995 to 2002 for the Wet and Dry line and 1998 to 2005 for the Fine wool 
line).  However, the overall means suggested that the line selected for clean fleece weight was the most 
susceptible to internal parasites, with the Wet and Dry and Fine wool lines being the most resistant  
(P < 0.05).  The Control line was intermediate and significantly different from all the other lines (P < 0.05). 

Further analyses involving the genetic correlations of FEC with two-tooth live weight and wool traits 
were based on a log transformation of FEC.  A favourable (i.e. negative) genetic correlation of log 
transformed FEC with staple strength approached -0.50 (Table 4).  The negative correlation with live weight 
did not differ from zero, although it exceeded -0.10.  The favourable genetic correlation (positive in this case 
because low values are desired for both traits) of log transformed FEC with CV of fibre diameter amounted 
to 0.30. Clean fleece weight was unfavourably related to log transformed FEC, but the correlation was still 
low at ~ 0.20.  For practical purposes, fibre diameter and total fold score were unrelated to FEC on a genetic 
level, the absolute value of both correlations being lower than 0.03.       
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Figure 2 Averaged annual predicted breeding values for log transformed FEC according to selection line 
(FW+ – line selected for clean fleece weight; W&D – Wet and Dry line; Control – unselected control line).  
Vertical bars on graph represent standard errors.  (FEC - faecal worm egg count)   
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Table 4 Genetic, environmental and phenotypic correlations (± s.e.) of log transformed FEC with two-tooth 
live weight and wool traits 

 

Type of correlation 
Correlated trait 

Genetic Environmental Phenotypic 
    
Live weight (kg) -0.119 ± 0.098 -0.074 ± 0.034 -0.078 ± 0.018 

Clean fleece weight (kg) 0.190 ± 0.089 -0.025 ± 0.035 0.039 ± 0.018 

Fibre diameter (µm) -0.026 ± 0.082 -0.036 ± 0.048 -0.025 ± 0.019 

Staple strength (N/ktex) -0.493 ± 0.126 0.054 ± 0.038 -0.066 ± 0.023 

CV of fibre diameter (%) 0.298 ± 0.089 -0.030 ± 0.040 0.081 ± 0.020 

Total fold score (n) 0.003 ± 0.104 0.008 ± 0.032 0.006 ± 0.019 

FEC - faecal worm egg count 
 
 
Phenotypic and environmental correlations of log transformed FEC with two-tooth live weight were in 

the same direction as the genetic correlation, but of a somewhat smaller magnitude (Table 4).  Environmental 
correlations for the wool traits with log transformed FEC were not significant.  The favourable phenotypic 
correlations of log transformed FEC with live weight, staple strength and CV of fibre diameter were 
significant (P < 0.05), but below 0.10.    

 
Discussion 

Marked variation is commonly reported for FEC data. Means for FEC in three contemporary groups 
ranged from 612 to 7010 (Eady, 1995).  Snyman (2007) reported individual FEC values ranging from 0 to 
87800 in the Klerefontein Afrino flock.  Khusro et al. (2004) reported respective means of 779 and 736 eggs 
per gram of faeces for yearling and hogget Merino sheep in the Australian National evaluation.  Individual 
FEC values ranged from 0 to >50000 in both age groups.  The transformations applied to the present data are 
commonly used in the literature.  In their documentation involving genetic parameters for sheep, Safari & 
Fogarty (2003) list 26 h² estimates for FEC, of which a cube root transformation has been applied in 12 
cases, and a log transformation in 14 cases.  Means in these studies ranged from 2.75 to 22.6 for cube root 
transformed FEC and from 6.88 to 7.49 for log transformed FEC.  In New Zealand Perendale sheep, log 
transformed FEC averaged 5.98 at 22 weeks of age and 6.20 at 30 weeks of age (Morris et al., 2005).  
Results from the present investigation are consistent with these literature reports. 

Results pertaining to the sex effect on FEC were variable in the study of Khusro et al. (2004).  In 
yearling animals, rams had a lower mean for FEC than ewes, while the opposite was true in hoggets.  The 
latter authors suggest that care should be taken in the interpretation of these results, as the experimental 
animals are always separated on gender.  The same reasoning applies to the present investigation, where 
gender effects differed between years.  In the study of Khusro et al. (2004) sex was completely confounded 
with contemporary group, and sex effects were removed by fitting contemporary group, much like the sex x 
year interaction constituted contemporary groups in this study.  The lower FEC of multiples compared to 
singles is supported by a corresponding birth type difference in the study of Khusro et al. (2004).  The latter 
study found no effects of dam age (fitted as a regression) on hogget FEC, as was also found in the present 
study.  

Genetic parameters for FEC were included in the comprehensive review of genetic parameters for 
sheep (Safari et al., 2005).  Earlier estimates included in this review will therefore not be cited, unless 
pertinent to this study. The present h² estimates of 0.14 to 0.18 (depending on the transformation) are 
somewhat lower than the averaged estimate of 0.27 derived from 16 literature sources (Safari et al., 2005).  
At least some of these estimates were derived from studies where artificial challenge was used, and where 
more control can be exercised upon the challenge delivered to the animals.  An h² of 0.15 was estimated for 
cube root transformed FEC in naturally challenged Merino sheep under Mediterranean conditions, under 
climatic conditions fairly similar to those experienced in the present study (Greeff et al., 1999).  Khusro  
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et al. (2004) reported an h² of 0.21 for cube root transformed yearling FEC, while hogget FEC exhibited 
substantially more genetic variation with an h² of 0.38.  These records were obtained from commercial 
properties, and limited information is available on the method of challenge.  Pollott et al. (2004) reported 
that the h² of FEC increased from 0.20 at weaning to 0.65 at 400 days of age, with an average of 0.28.  An 
industry data set of ~ 39000 records yielded an h² estimate of 0.24 for FEC, while the sire x environment 
interaction accounted for 3% of the phenotypic variation (Pollot & Greeff, 2004).  Estimates of h² of log 
transformed FEC amounted to 0.22 at 22 weeks of age and to 0.16 at 30 weeks of age in New Zealand 
Perendale sheep subjected to natural challenge (Morris et al., 2005).  The latter study reported divergence in 
FEC after selection from 1986 to 2002.  The h² of untransformed FEC in South African Afrino sheep 
subjected to artificial challenge with 4000 to 6000 infective Haemonchus contortus larvae was estimated at 
0.19 (Snyman, 2007).  The significant genetic variation (linked to high levels of phenotypic variation) and 
good correspondence with parameter estimates in the literature suggest that genetic progress in FEC in the 
Mediterranean parts of South Africa is more than likely.  Realised genetic gains were reported under similar 
conditions (Karlsson et al., 1995; Woolaston & Piper, 1996; Morris et al., 2005).  Selection for a reduced 
FEC is assumed to lead to benefits in parasite resistance with associated economic advantages in the local 
sheep flock, as was reported for Australian sheep flocks (Greeff et al., 2006).  

Cube root transformed FEC and log transformed FEC were affected by a dam permanent 
environmental variance ratio amounting to ~ 5% of the phenotypic variation.  Safari et al. (2005) did not 
report maternal variance ratios for FEC in their overview of genetic parameters for sheep.  However, Khusro 
et al. (2004) reported a maternal genetic effect of 0.06 for yearling FEC in their study, while no effect of the 
dam was evident for hogget FEC.  The estimate for yearling FEC was in good agreement with the results of 
the present study.  No attempt was made by Khusro et al. (2004) to partition the maternal variance in its 
genetic and permanent environmental components.   

The Pearson’s correlation between predicted breeding values for cube root transformed FEC and 
breeding values for log transformed FEC approached unity in the present study.  A similar conclusion was 
made by Eady (1995) who found correlations of between 0.97 and 1.00 between breeding values derived 
from analyses on FEC using the square root, cube root and log transformations.  Depending on the nature 
and distribution of the FEC data, both transformations may be applicable to South African data sets.     

Selection line means for log transformed breeding values for FEC suggest that the line selected for 
clean fleece weight was more susceptible to internal parasitism than the other lines, and particularly the Wet 
and Dry and Fine wool lines.  These means support phenotypic means reported previously by Cloete et al. 
(2000).  The literature is undecided with regard to the genetic association of clean fleece weight with FEC.  
Unfavourable correlated responses were reported in the New Zealand literature for non-Merino breeds 
(Williamson et al., 1994; Morris et al., 2000; 2005).  These results are supported by a fairly high 
unfavourable genetic correlation of 0.56 reported recently by Morris et al. (2005).  Results from the present 
study would support these results, although the genetic correlation between log transformed FEC and clean 
fleece weight reported in Table 4 was substantially lower at 0.19.  The latter correlation is in fair agreement 
with corresponding values of 0.15 and 0.13 reported by respectively Eady et al. (1998) and Morris et al. 
(2000).  Khusro et al. (2004) reported the genetic correlation of FEC with greasy fleece weight at 0.07 in 
both yearlings and hoggets.  The corresponding genetic correlations between FEC and clean fleece weight 
were 0.11 in yearlings and -0.01 in hoggets.  Another industry data set yielded an overall genetic correlation 
of 0.05 between FEC and greasy fleece weight (Pollot & Greeff, 2004).  In contrast, the overall genetic 
correlation between FEC and clean fleece weight derived from four literature sources by Safari et al. (2005) 
amounted to 0.  This low correlation is supported by no evidence of a correlated response in clean fleece 
weight to selection for a reduced FEC in the Rylington Merino flock (Greeff et al., 1999).  In fact, no 
unfavourable correlated responses in any other production trait to selection for a reduced FEC were found by 
Karlsson et al. (1995).  Even though some literature sources suggest an unfavourable genetic correlation 
between fleece weight and FEC in sheep, this relationship may not be sufficiently strong to preclude genetic 
progress in both traits in Merinos.     

The genetic correlation of live weight with FEC was favourable (i.e. negative) but not significant.  
Corresponding genetic correlations (number of references) derived by Safari et al. (2005) from literature 
estimates were -0.03 for weaning weight (5), -0.24 for post-weaning weight (4) and -0.12 for mature weight 
(3).  It has to be conceded that the derived estimates were associated with wide confidence intervals, 
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including positive values in all instances.  Estimates obtained from the Australian National Merino 
Evaluation were -0.14 for yearling weight and -0.02 for hogget weight (Khusro et al., 2004).  Favourable 
genetic correlations of respectively -0.09 and -0.32 between FEC and live weight of Merinos were reported 
by Pollott & Greeff (2004) and by Pollott et al. (2004).  The genetic correlation obtained in the present study 
is consistent with these estimates pertaining to sign and magnitude.  Conversely, the genetic correlation of 
FEC with live weight in New Zealand Perendales was positive and fairly high at 0.36 (Morris et al., 2005).   

Fibre diameter appeared to be fairly independent of FEC on the genetic level.  Safari et al. (2005) used 
three literature values to derive an averaged value of 0.01, while Khusro et al. (2004) obtained estimates of 
-0.05 for both yearling and hogget FEC. The corresponding estimate derived by Pollott & Greeff (2004) 
amounted to -0.04.  All these estimates accorded with the value of -0.03 reported in the present study.  
Previous estimates for the genetic correlation of FEC with staple strength were variable, and generally lower 
than the present estimate of -0.49.  Literature values included positive (i.e. unfavourable) estimates of 0.15 
and 0.21 (Greeff & Karlsson, 1998) and 0.13 (Greeff & Karlsson, 1999).  At -0.20, the genetic correlation 
reported by Pollott & Greeff (2004) between FEC and staple strength were similar in sign but lower in 
magnitude compared to the present study.  However, a random regression approach yielded smaller 
estimates.  Pollott & Greef (2004) attributed the discrepancy between the point estimate and results yielded 
by the random regression approach to a relatively low number of animals with staple strength records.  Based 
on these differences between literature sources, further research on the genetic relationship of FEC with 
staple strength appears to be warranted.   

The genetic correlation of FEC with CV of fibre diameter was positive (i.e. favourable) in the present 
study.  Three comparable estimates reported by Greeff & Karlsson (1998; 1999) ranged from -0.05 to 0.10.  
Two of these estimates were in the same direction as the correlation reported in Table 4, but smaller in 
magnitude.  The genetic correlation of FEC with total fold score was negligible.  No comparable results were 
found in the literature.       

Phenotypic correlations derived from the literature for FEC with the other two-tooth traits were -0.08 
for post-weaning live weight, 0.00 for clean fleece weight, and -0.02 for fibre diameter (Safari et al., 2005).  
Phenotypic correlations of FEC with traits assessed in the Australian National Merino database were -0.02 
with yearling live weight, 0.02 with yearling clean fleece weight and 0.01 with yearling fibre diameter 
(Khusro et al., 2004).  Corresponding correlations at a hogget age were -0.06, 0.02 and -0.02.  These 
estimates were broadly consistent with those obtained in the present study.       

 
Conclusions 

Directed selection for the reduction of FEC seems feasible under natural challenge conditions in the 
Mediterranean parts of South Africa.  According to Morris et al. (2004), a sound strategy for selection 
against intestinal nematode infestation should include resistance to worm infestation (as reflected by a low 
FEC) as well as resilience, i.e. an ability to maintain production in the presence of a parasite burden.  The net 
effect of such a strategy would be a minimum contamination of the pasture being utilised, as well as minimal 
anthelminthic intervention.  Age at first drench was considered as a measure of resilience in the latter study.  
This trait had an h² of 0.14, and was shown to respond to selection.        

Selection for FEC is unlikely to result in marked unfavourable correlated responses in wool traits and 
live weight.  The exception to this rule is clean fleece weight which may respond unfavourably when 
selection is based on FEC.  However, with a genetic correlation of below 0.20 it seems as if genetic progress 
in both traits should be attainable, should it be desired.  Research on genetic parameters for FEC and other 
traits of economic importance should continue to ensure that internal nematode control is dealt with in a 
sustainable manner in South African sheep flocks.  
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