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This article proposes the Bayesian approach to solve problems arising in animal breeding theory.  General
elements of Bayesian inferences, e.g. prior and posterior distributions, likelihood functions, and the solving of the
random effects in the case of the mixed linear model are discussed. Since the random effects are typically assumed
to be normally distributed in both the Bayesian and Classical models, a Bayesian procedure is provided which
allows these random effects to have a nonparametric Dirichlet process prior distribution.  In the case of the
Dirichlet process, the Gibbs sampler is introduced to overcome some computational difficulties in solving the
genetic parameters of the mixed linear model.  To illustrate the application of these techniques, data from the
Elsenburg Dormer sheep stud and data from a simulation experiment are utilized.

Keywords:  Mixed linear model, Gibbs sampler, random effect, breeding value, Dirichlet Process Prior, genetics.
 #Author to whom correspendence should be addressed; e-mail: pretoral@wwg3.uovs.ac.za

Introduction
Since the objective of this paper is to propose the Bayesian approach as a conceptual strategy to solve animal

breeding problems, it is appropriate to define “Bayesian inference” and “Bayesian estimation” from the outset.
Kendall & Buckland (1971) give the following definitions:

Bayesian inference:  A form of inference which regards parameters as being random variables possessed of prior
distributions reflecting the accumulated state of knowledge.

Bayes estimation:   The estimation of population parameters by the use of methods of inverse probability.

In animal breeding problems, it is usually assumed that the data follows a mixed linear model.  When the
values of the variance components are not known, the classical approach to the problem of predicting linear
combinations of fixed and random effects has been to estimate the variance components using restricted maximum
likelihood (REML), and to proceed thereafter as if these estimates were the true values.  However, the Bayesian
approach has several practical advantages over the classical (REML) approach.  Firstly, the estimates from the
Bayesian approach for a variance are always positive and an interval estimate such as a highest posterior density
region will not include negative values.  This is in contrast to the REML estimates.  Although REML estimates are
defined inside the appropriate parameter space, their asymptotic distributions can generate interval estimates that
include negative values (Gianola & Foulley, 1990).  This potentially embarrassing phenomenon is often overlooked
in discussion of likelihood-based methods.  Secondly, highest posterior density regions using the Bayesian
approach are never empty, whereas confidence intervals for the ratio of variances can be empty in the case of the
classical approach.  Finally, one can report the whole of the posterior probability distributions of the parameters in
the Bayesian approach (Van der Merwe & Botha, 1993; Wright et al., 2000).

Thus, whilst for the REML estimates the variance components are fixed at a single value, ignoring
uncertainty associated with estimating their values, the Bayesian approach incorporates this uncertainty by
averaging over plausible values of the variance components.  This is accomplished through the choice of
appropriate prior distributions.  Credibility intervals for the estimates can easily be obtained, and all the available
information about the random effects to be predicted is contained in the posterior distribution of these random
effects.  Critics of the Bayesian approach have most often cited the following point: “Bayesian methodology is
computer intensive.  In many situations integration in several dimensions is required to obtain the posterior
densities.”  This might have been a valid criticism in the past, but by using numerical integration techniques like
the Markov Chain Monte Carlo Methods, and more specific Gibbs Sampling, these computational difficulties can
be overcome.  The joint posterior of all the parameters can now easily be obtained by using the given prior
distributions and the likelihood, which generates the data.  Characteristics such as the mean, mode, median,
variance and phenotypic variance can be found from the marginal posterior distributions.  Harville (1990) and
Gianola & Foulley (1990) stated that “A more extensive use of Bayesian ideas by animal breeders is desirable and
is more feasible from a computational standpoint”.
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In this communication, we introduce a Sire model to illustrate how the Bayesian approach, using a Dirichlet
process prior for the random effects, and Gibbs sampling can be extended to variance component estimation in
breeding problems. Estimates of the posterior densities of variance components and functions thereof, such as
variance ratio and intraclass correlation are provided.  We also propose a Dirichlet process prior for the distribution
of the random effects (breeding values), and compare the estimated results with that of the classical results
(REML).

Materials and Methods
The Mixed Linear Model is a commonly used statistical tool in animal breeding.  As mentioned by

Duchateau, Janssen & Rowlands (1998): “The emphasis in breeding experiments is on the variance components
and on the prediction of particular random effects in the experiment.”  In the present study we fit a mixed linear
model to the data, and provide a non-parametric Bayesian approach to solve the genetic parameters of the model.

The mixed linear model postulated that the observable random variable is a linear combination of fixed
effects and random effects plus a random residual.  For illustration purposes, we consider 879 weaning weights,
from the progeny of 17 sires, of the Dormer sheep stud at the Elsenburg College of Agriculture near Stellenbosch.
The season of birth, age of dam, sex of lambs and birth status effects were included as fixed effects in the model (p
= 17).  The q = 17 different sires were included as the random effects.  An appropriate mixed linear model for the
Dormer sheep stud is thus given by

iiiii uzXy εβ ++= (1.1)

where yi is ni x 1, the vector of weaning weights for the lambs (progeny) of the ith sire;  Xi: known incident matrix
of order ni x pi; zi: vector of ni elements 1; β: p x 1 vector of uniquely defined fixed effects; ui: the random effect of
the ith  sire and εi: ni x 1 vector of random residuals with εi ~ N(0;σε

2
 

inI ).  It is standard in implementation of the

model to assume that the random residuals and random effects are normally distributed.  From (1.1) it follows that
the conditional distribution that generates the data (likelihood function) is

( )22 ,~,,| εε σβσβ
iniiinii IuzXNuy + (1.2)

where 
inI represents a ni x ni identity matrix and Nn(µ ,Σ) denotes the n-dimensional multivariate normal

distribution with mean vector µ  and variance-covariance matrix Σ.  An integral part of Bayesian analysis is now
the assignment of a prior distribution to the unknown parameters in the model.  The information contained in the
prior distribution is combined with the information supplied by the data into the conditional posterior distribution
of the parameters, which is known as the posterior distribution.  All inferences about the model parameters are
based on the posterior distribution.

As in Kleinman & Ibrahim (1998), we will present a mixed linear model for which the random effects have a
nonparametric Dirichlet process prior distribution, i.e. ui ~ G where G ~ DP (M · Go). Such a model assumes that
the prior distribution G (base measure) itself is uncertain and drawn from a Dirichlet process.  The parameters of
the Dirichlet process are Go= N(0,σu

2) , a probability measure,  and M.  Although it may be hard to quantify, M is a
positive scalar that is related to how “clumpy” the data are (often called a precision parameter).  Clumpy data occur
when the different sires are concentrated into a few clusters (Pretorius & Van der Merwe, 2000a).   In practice it is
difficult to select appropriate values for this parameter.  Instead, it is suggested to place a prior distribution on this
parameter, and simulate it given the data.  West (1992) assumed that M ~ G(a,b) a gamma prior with a > 0 and
scale b > 0. We may also extend this idea to include a reference prior (uniform for log (M)) by letting a→ 0 and

b→ 0.  In the final sections of the paper we use the latter, which means that 0M  and  )( 1 >∝ −MMp .
However, a range of possible values is chosen for M and utilized in the analysis.

The foundation of Dirichlet process technology is discussed in Ferguson (1973), West et al. (1994) and
Walker et al. (1999), where the process and its usefulness as a prior distribution are discussed.  Useful applications
can also be found in Doss (1994),  MacEachern (1994), and Lui (1996).  Mixture of Dirichlet process priors (MDP)
can be of great importance in animal breeding experiments as shown in the rest of the paper.  Note that the complex
derivations of the posterior distributions are omitted because of the nature of the paper.  However, these derivations
can be found in the technical reports listed in the reference list.

The nonparametric Bayesian approach for sampling the random effects is to implement the Dirichlet process
prior on these effects.  It can be described as follows: The draw of the first random effect ui=1 is always from its full
conditional density
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The value of the next random effect, ui, can then either be set equal to one of the other random effects, uj ,  i ≠ j
with a certain probability,
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or could be drawn from (1.3) with probability
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Thus, each summand in the conditional posterior distribution of ui is separated into two elements.  The first
element is a mixing probability, and the second is a distribution to be mixed.  The values of the probabilities in
(1.4) and (1.5) change with each new draw of a random effect.

There is some plausible intuition behind this above mixture scheme.  If the breeding value, ui of sire i has a
relatively large residual using sire j’s breeding value, then uj is relatively less likely to be chosen as the breeding
value of sire i.  Conversely, if the breeding value of sire i has a relatively small residual using sire j’s breeding
value, then the random effect uj is relatively more likely to be chosen as the breeding value of sire i.  On the other
hand, the greater the residual for sire i, the greater the probability p (in 1.5) that sire i will get a new value from
h(·,·) in (1.3).  This scheme results in what MacEachern (1994) calls a “cluster structure” among the different sires.
This cluster structure partitions the q different sires into k groups, where 0 < k < q.  Thus, all the sires in a specific
cluster will have identical breeding values and sires in different clusters will have different breeding values.  This
may sound farfetched, but since the Gibbs sampler is repeated several times, the algorithm leads to reduced
variation and hence faster convergence of the estimated random effects to their true values. The average of the
simulated values for each breeding value is then computed, thus every sire will have its own unique breeding value.

In a Bayesian sense, a fixed effect is a random variable on which prior knowledge is diffuse or vague.  Thus,
a constant prior will often be used for these effects (Gianola & Fermnando, 1986).  In the model mentioned in the
previous section and for our data set, “flat” or uniform priors distributions are assigned to the fixed effects, β and
the model variance, σε

2, as to represents this lack of prior knowledge.  Therefore

p(β ,σε
2) = p(β ) p (σε

2 ) ∝ constant (1.7)

and for the sire variance,

p ( σu
2 ) ∝  constant           (1.8)

The fully conditional posterior density for each of the above unknowns is obtained by regarding all other
parameters in the joint posterior as known.  The required conditional posterior for β  is
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an Inverse Gamma distribution, where
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Finally, for the sire variance σu
2 we have

                                                                                                        

0,'
2

1
exp

1
),,,|( 21

2

2

2
22 >








−








= −

u

u

q

u

uu uuKyup σ
σσ

σβσ ε A (1.11)

also an Inverse Gamma distribution, where
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and A the numerator relationship matrix with elements reflecting the genetic relationship among the sires.

From (1.3) - (1.5) it is clear that this relationship matrix is not taken into account when the random effects
are estimated.  Indeed, when considering A in the estimation process, it means that some of the sires are considered
to be more equal than others because they are related.  The Dirichlet process on the other hand chooses the random
effects in such a way that the sires will be grouped into clusters or groups.  Thus, taking the aforementioned into
account, surely one can argue that the Dirichlet process fulfills, in a certain sense, the same role as the relationship
matrix, and by omitting it, cannot be seen as a serious limitation (Kleinman & Ibrahim, 1998).

All the necessary posterior distributions are now known for the model parameters, thus the Gibbs sampler
can be implemented. The Gibbs sampler is a technique for generating random variables from a marginal
distribution indirectly, without having to calculate the density.  Suppose we are given a joint density f(x,y) and are
interested in obtaining characteristics of the marginal density

∫= dyyxfxf ),()(                                                                (1.12)

such as the mean or variance.  Perhaps the most natural and straightforward approach would be to calculate f(x)
analytically or even numerically, and then use this result to obtain the desired characteristics.  However, there are
some, perhaps many, cases where the marginal distributions cannot be found.  Rather than compute or approximate
the marginal distribution directly, the Gibbs sampler allows us to effectively simulate a random sample

X1;X2;…;Xn  ~  f(x)

without requiring f(x).  By simulating a large enough sample, the mean and variance or any other characteristic of
f(x) can be calculated to the desired degree of accuracy.  The Gibbs sampler is therefore a method of generating a
sample from the marginal distribution by sampling from the full conditional distributions f(x/y)  and f(y/x) which
are usually known linear statistical models.  The ultimate value of the Gibbs sampler lies in its simplicity and
practical potential.  For further reading, refer to articles by Geman & Geman (1984),  Gelfand & Smith (1990),
Casella & George (1992) and Wang et al. (1993).
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We start to construct a stochastic process that has the desired posterior distribution as its stationary
distribution and then simulate the process.  We begin with a set of starting values for the model parameters, β (0), u
(0), σε

2 (0), σu
2 (0), and the successively generate values from the conditional posterior distribution of each of the

parameters, conditioning on the most recently generated values of the other parameters of each step.

Thus, the Gibbs sampler for p(β ,u ,σε
2 ,σu

2 | D)  is:

(0) Select starting values for   u (0), σε
2 (0), σu

2 (0). Set i = 0
(1) Sample β  (i+1)   from (1.9)
(2) Sample σε

2 (i+1) from (1.10)
(3.1) Sample  u1 

(i+1) according to the mixture scheme, (1.3) - (1.5)
(3.2) …

…
(3.q) Sample  uq 

(i+1) according to the mixture scheme, (1.3) - (1.5)
(4) Sample σu

2 (i+1) from (1.11)
(5) Set i=i+1 and return to step (1)

MATLAB software has been developed to generate the samples that enabled us to obtain the marginal
posterior densities for the model parameters, using the Gibbs sampler.  The full conditional posteriors are updated
after every iteration.  We run multiple chains (m=101 000) of the Gibbs sampler to obtain these draws from the
posterior distributions given the data.   The first 1 000 draws of each chain are discarded, and then every 10th draw
is saved.  By saving every 10th draw, the chain yielded a posterior sample of 1 000 approximately uncorrelated
draws.  All posterior analyses are based on these 1 000 draws, giving us a full Bayesian solution to all the mixed
linear model parameters.

Results and Discussion
The weaning weights of 879 lambs from the progeny of 17 sires of the Elsenburg Dormer sheep stud are

utilized in the study.  An experimental data set is then used to compare Bayesian and REML results of the genetic
parameters.  REML estimates (MTDFREML program, Boldman et al., 1995) were compared with estimates
obtained with the Dirichlet process (MDP). A range of values (M = 5, 50 and 500) was used for the precision
parameter of the Dirichlet process prior.  The variance components obtained are reported in Table 1.  The estimated

marginal posterior density of the sire variance, σu
2 is given in Figure 1, and variance ratio coefficient, 

2

2

εσ
σ uv = in

Figure 2.
A commonly derived statistic, the heritability (h2) of the trait, which is a function of the two variance

components is also calculated and reported in Table 1.  It describes the proportion of the total variation in the

environment of the study attributable to genetics. In this formula 
22

2
2 4

εσσ
σ
+

=
u

uh , σu
2 is multiplied by four in the

numerator to account for the fact that lambs from the same sire are half siblings and the sire accounts for half of the
inherited genetic component, and σu

2 + σε
2 is the phenotypic variance.  The higher the heritability, which lies

between zero and one, the higher the proportion of the total variation that can be assumed to be genetic in origin.

Table 1 Estimated values for the variance components, σu
2, σε

2 and h2 as obtained by the Gibbs sampler.

REML MDP, M = 5 MDP, M = 50 MDP, M = 500

σu
2 3.08 3.21 3.42 3.53

σε
2 21.11 21.62 21.31 21.24

h2 0.51 0.52 0.55 0.57

From the results in Table 1, it is clear that the Dirichlet process that we have presented is certainly valuable
in the case of variance estimation in animal breeding. With the MDP (M = 500) reported the highest proportion of
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total variation that can be assumed to be genetic (57.0%).  A 95% credibility interval for σu
2 in the case of MDP, M

= 500, is given by [2.2070 ; 4.4306], and for σε
2 by [20.5333 ; 21.9641].
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Apart from estimating heritability and sire variance components, an animal breeder might be interested in the
breeding value of specific sires since the objective of a breeding experiment is to determine which sires should be
retained for future selection.  As seen before, the Gibbs sampler can obtain such predictions.  In Table 2 the
estimated breeding values for the 17 sires are reported.  Also, note that the posterior modes of the estimated
posterior distributions are reported for M = 5.  The estimated REML values are also included in the table.

It is evident from this table that the estimates for larger values of M are quite close to the REML estimates.
One must still remember that some differences may be ascribed to the number of iterations used in the Gibbs
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sampler.  The question which immediately arises from the above, is “why are the posterior modes used for  M =
5?”  In answering this question, lets look at the estimated marginal posterior densities for different values of M, of
the breeding value of sire ID41019 with breeding value u3. These posterior densities are presented on Figures 3-5.

Table 2 The estimated breeding values of the 17 sires in the Dormer sheep stud.  REML estimates and their
standard errors (SE’s) are also reported.

Sire_ID REML SE’s for REML MDP, M = 5 MDP, M = 50 MDP, M = 500

41004 0.139 0.92 -0.535 0.567 0.661
41019 3.330 0.99 4.547 4.026 3.723
41037 0.578 1.06 2.377 1.224 1.241
43002 -1.181 1.18 -0.649 -1.019 -1.059

44042 -1.256 0.95 -1.267 -1.247 -1.247
44170 -0.170 1.18 -1.705 -1.336 -0.287
44174 -0.569 1.34 -0.746 -0.697 -0.532

45070 -0.963 0.93 -0.901 -0.475 -0.902
45135 -0.537 1.10 -0.890 -0.601 -0.244

46015 -1.709 0.96 -1.590 -1.282 -1.652
46037 -0.842 0.91 -0.785 -0.375 -0.779
48014 -0.853 0.97 -1.361 -0.853 -1.018
48052 -0.302 1.00 -0.781 -0.023 -0.287
48140 -1.256 1.10 -1.783 -0.749 -1.199
49046 0.406 1.41 2.336 0.277 0.561

49053 0.463 1.31 2.482 0.319 0.992

49134 0.795 1.34 2.807 1.070 1.232

U3
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0.06

0.08

0.10

-3 2 7 12 17 22 27 32

Figure 3 Estimated marginal posterior density of the breeding value for sire ID41019, with M = 5
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Figure 4 Estimated marginal posterior density of the breeding value for sire ID41019, with M = 50

U3

0.0

0.1

0.2

0.3

0.4

-1 1 3 5 7

Figure 5 Estimated marginal posterior density of the breeding value for sire ID41019, with M = 500.

It is clear from Figure 3 that the density of the breeding value u3, reflects a large departure from normality
when   M = 5. Moreover, this figure also reflects uncertainty about the underlying prior for u3.  The Dirichlet
process prior therefore becomes more parameter free resulting in this “strange” shape of the estimated marginal
posterior density.  There is also some uncertainty about the exact location of the mean and height in this density. As
M increases a moderate departure is noticed in Figure 4 (shape of the density tends to become more bell-shaped),
whereas no departure of normality is evident in Figure 5, i.e. when M = 500.  This is to be expected, as the random
effects are directly affected by the relaxation of the normal assumptions when M is reasonably small.  Thus it
would be more appropriate to find the posterior modes of these densities, rather to calculate the means.
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It is very important to note that the resulting breeding values are quite sensitive to the choice of this precision
parameter, M.  Much care should go into the selected values for M since different results may be obtained when the
choice of M is not appropriate.   For more discussion on the choice of M, see Escobar (1994).

Some of the estimated fixed effects are presented in Table 3.  It is clear from the values of these estimates
that the choice of the precision parameter M does not influence the fixed effects, nor is it affected by the relaxation
of the normal assumption when M is small.  These minor differences are attributable to the little mass of the
Dirichlet process on the fixed effects.

Table 3 Estimated values for selected fixed effects in the model.

MDP, M = 5 MDP, M = 50 MDP, M = 500 REML

β14 3.669 3.716 3.666 3.603

β15 9.601 9.512 9.502 9.527

β16 3.09 2.977 3.01 2.949

Much of the current research focused on the distributional properties of Bayesian models compared to
classical models.  At present one would suggest the results of these models should be compared by means of partial
F-tests, residual analysis, cross validation (data-splitting) or tests of overall model adequacy. However, model
validation involves an assessment of how the fitted models will perform in practice, i.e. how successful it will be
when applied to new or future data.  An experiment will thus be conducted where all the genetic parameters in the
mixed linear model are known, and the dependent variable will be built.  These parameters, using REML and
Bayesian methods (Dirichlet process) will then be estimated.
Again, consider the following mixed linear model iiiii uzXy εβ ++=

where εi ~ N(0;σv
2
 In) and for which the random effects have a nonparametric Dirichlet process prior

distribution, i.e. ui ~ G where G ~ DP(M · Go).  The parameters of the Dirichlet process are Go= N(0,σu
2) , a

probability measure, and M = 100.  The values for σε
2 = 4.88 and σu

2 = 0.7211.  The only fixed effect in the model
is sex (β1 = 0.705).  Thus, the male lambs weigh on average 0.705 kg more than female lambs.  A total of 200 sires
are added as random sire effects to the model.  For each sire, 10 male and 10 female weaning weights are generated
using the Dirichlet process.

Table 4 reports the estimated variance components used for the experimental data set.  A small difference
between the estimates and the actual values of these variance components are observed, indicating that the
Bayesian approach using the Gibbs sampler is certainly valuable and worthwhile in the context of animal breeding
and selection.

Table 4 Estimated variance components for the experimental data set using the Dirichlet process
and REML

MDP, M = 100 MDP, Sim M REML
σu

2 0.765 0.768 0.772
σε

2 4.932 4.935 4.929

Table 5 contains the estimated breeding values of the first 10 sires in the data set along with their rankings.
The second column (EXP) in the table is the actual breeding values of the sires.  The fourth and sixth columns
contain the results when a Dirichlet process is implemented in the Gibbs sampler.  For the fourth column, the
precision parameter M is set equal to the true value, i.e. 100.  The next step is to simulate this parameter from the
data (Pretorius & van der Merwe, 2000b).  The results are reported in the sixth column (MDP, Sim M*).
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Table 5 Estimated breeding values of 10 of the 200 sires in the experimental data set and posterior rankings.

Rank EXP Sire_ID MDP, M = 100 Sire_ID MDP, Sim M* Sire_ID REML Sire_ID
1 1.4702 9 1.413 9 1.4188 9 1.44597 9
2 1.3975 2 1.3183 2 1.3239 2 1.32166 2
3 0.381 5 0.913 10 0.8727 10 0.87709 10
4 0.2997 1 0.2711 5 0.256 5 0.26953 6
5 0.146 10 0.2381 6 0.2142 6 0.2679 5
6 -0.082 6 -0.0503 7 -0.1292 7 -0.02923 7
7 -0.2163 8 -0.1544 3 -0.2231 3 -0.15932 3
8 -0.2835 11 -0.2535 1 -0.2281 1 -0.16895 1
9 -0.3977 4 -0.2812 11 -0.3324 11 -0.26275 11
10 -0.4936 7 -0.4713 8 -0.4889 8 -0.44905 8

From the table we can show that the Dirichlet process in Bayesian inference regarding breeding experiments
is a very promising method.  According to the experimental data, it is known that sires 9,2,5,1 and 10 are ranked as
the five best sires in the model.  The Dirichlet process ranked sires 9,2,10,5 and 6 as the best animals.  This is an
80% success rate in the ranking procedure.  Sires 9,2,10,6 and 5 are also ranked as the best sires by the REML
analysis. In the next section dealing with the model adequacy, the SSE (sum square errors) is calculated and
reported in Table 6 below:

Table 6 The calculated sum square errors for the different models

REML MDP, M = 100 MDP, Sim M
SS

E
46.145 46.440 44.833

Note that ∑
=

−=
200

1

2  )(
i

ii  û uSSE where ui is the actual breeding value, and iû the estimated breeding value.

From the results in Table 6, it is believed that the Bayesian nonparametrics, using the Gibbs sampler, have as
much to offer as the REML analysis.  Since the posterior densities resulting from the Gibbs sampler can easily be
used to construct confidence intervals for the model parameters, the potential mathematical consequences of the
toolkit that is explored here in the world of the animal breeder is evident.

Conclusion
In this paper we have applied a general technique for Bayesian nonparametrics to an important class of

models, the mixed linear model for animal breeding experiments.  An easy method to calculate posterior densities
for the genetic parameters of this model has been presented.  The important contribution of this paper revolves
around the nonparametric prior distribution, the Dirichlet process prior, for the random effects in the case of the
mixed linear model, and to correctly model and interpret these estimated random effects.  It is also clear from the
example that the choice of the precision parameter M largely influences the posterior densities of these effects.  The
choice of M will determine whether the estimates from the Dirichlet process behave like the nonparametric Bayes
estimator or like the parametric empirical estimator.  Further work suggested by this paper includes allowing for the
simulation of M from the data as implemented in the experimental data set in the previous section.  In choosing a
prior distribution for M based on the number of clusters among the sires, one can propose a mixture of gamma
distributions for the posterior distribution of M.

As far as Bayesian approaches are concerned, the very real advantage of being able to input broad prior ideas
of the model parameters is noted, as well as the much richer and more tractable forms of inference that are been
made possible by the Gibbs sampler-based approach to computations of genetic parameters for animal breeding
problems.  It is suggested that future research should be concerned with the study of intraclass correlation in the
mixed linear model.
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