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Abstract 

A model including fixed and random linear regressions is described for analyzing body weights at 
different ages. In this study, (co)variance components, heritabilities for quail weekly weights and genetic 
correlations among these weights were estimated using a random regression model by DFREML under 
DXMRR option. Data of 1046 pedigreed quail were used. Individual live weights were obtained weekly 
from hatching to six weeks of age. Records for the same bird were taken as repeated measurements and 
single measurement error variance ( )2

eσ  was assumed to be constant for all ages. Orthogonal polynomial 
regressions (on the Legendre scale) of sixth order were sufficient to model the additive genetic ( )2

aσ , 
phenotypic ( )2

pσ  and permanent environmental ( )2
peσ  (co)variances. Heritability estimates for ages were 

moderate, ranging from 0.007-0.61 and estimated measurement error variance was 9.60 g2. Correlations were 
found positive among weights. Genetic correlations were higher than phenotypic and permanent 
environmental correlations. The correlations between adjacent periods are more closely correlated than 
between remote periods. 
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Introduction 

Genetic evaluation of animals has been based on several traits depending on the species such as milk 
characteristics, body weight, feed intake and longevity. A trait that changes with age as a trajectory can be 
represented as a function of time. The trajectories are referred to as ‘infinite-dimensional’ characters 
(Kirkpatrick et al., 1994). Because each character takes on a value at each of an infinite number of ages, the 
value at each age can be considered as a distinct trait. 

Animal and plant breeders are concerned with growth trajectories because of the potential to increase 
the economic value of domesticated species by altering growth patterns through artificial selection 
(Kirkpatrick et al., 1990). 

There are an extensive number of growth models available, such as Brody, von Bertalanffy, Gompertz, 
Richards and Logistic, describing weight-age relationships for growing animals (Koops, 1986). However, 
when weight is regressed on time using data across animals, not only would the resulting growth curve be 
more inaccurate, but also the resulting parameters might be very biased if differences between animals and 
their environments were not take into account. This problem has generally been dealt with by estimating 
fixed and random effects independently but not within a linear mixed model framework (Meyer, 2000). 

Random regression models are alternative procedures for the analysis of repeated measurements. 
These models use a fixed regression to describe the average shape of a lactation or growth curve, and a 
random regression for each animal to account for deviations from the fixed regression. This allows the 
repeated records collected on an animal to be directly incorporated into genetic evaluations and, since an 
animal model is fitted, results in the predicted lactation or growth curve being heritable. Random regression 
models have also been used to describe food intake and weight gain in pigs and growth and mature weight of 
beef cows (Lewis & Brotherstone, 2002). 

Covariance functions are other suitable methodologies to describe genetic and phenotypic variations 
for infinite-dimensional characters (Meyer, 1998a). Additive genetic covariance function can be 
approximated using orthogonal functions such as Legendre polynomials (Kirkpatrick et al., 1990) or other 
defined co-variables as random regressions on time (Olori et al., 1999). 

The major motivation for using orthogonal functions to estimate additive genetic covariance function 
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is that the coefficient matrix can be used to analyze the patterns of inheritance. In particular, the coefficient 
matrix can be used to calculate the eigenfunctions and eigenvalues of the additive genetic covariance 
function (Kirkpatrick et al., 1990) which is useful to describe the patterns of variation (Kirkpatrick et al., 
1994). 

Using classical analysis, regression coefficients are generally treated as fixed to account for overall 
trends or trends within some fixed classes. However random regression coefficients can be fitted for each 
individual to allow for individual variation in the shape of the trajectory (Meyer, 1998b). Therefore, random 
regression models describe the genetic deviations from the fixed regressions, which allow each animal to 
have a different shape of growth curve on a genetic level. 

The objectives of this study were to estimate coefficients of the covariance function and (co)variance 
components and heritabilities for weights taken each week and genetic correlations among these weights by 
random regression model.  

 
Materials and Methods 

A total of 1046 pedigreed half-sib and full-sib progeny from the random mating of 42 sires and 140 
dams was used. One dam was placed into each cage and four dams were used for each sire. For more 
detailed information about material and other management systems applied, see Akbaş & Yaylak (2000). 
Individual live weights were obtained weekly from hatching to 6 weeks of age using a digital scale capable 
of discriminating 0.1 g increments.  

Variance components for weights were estimated by average information and derivative-free REML 
algorithms using a random regression animal model with the DXMRR option of the DFREML package 
(Meyer, 1997). Goodness of fit of the different orders of models was tested by chi-square ( ) test 
(Kirkpatrick et al., 1990). 

2χ

Single measurement error variance was assumed to be constant for all ages. The following animal 
model was used: 

ijijijij eraFy +++=      (1) 

ijy : Body weight of ith quail at week j 
F : Fixed effects  

ija : Random additive genetic effect 

ijr : Random permanent environmental effect 

ije : Random measurement error 
The random regression model form of equation (1) can be rewritten as: 
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F : represents the fixed effects of sex (assumed to be similar for all ages) and age (modelled with 
polynomial fixed regressions of the same order as the random regression) 

imα : mth additive genetic random regression coefficients for animal i 

imγ : mth permanent environmental random regression coefficients for animal i 

Ak : Order of fit for additive genetic random regression coefficients 

Rk : Order of fit for permanent environmental random regression coefficients 

ijt : jth age for animal i 

)( ijm tφ : mth Legendre polynomial evaluated for  ijt

ije : Measurement error 
The covariance between first and second records of individual i can be written as: 
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)( 2,1 ii yyCov  :Covariance between body weights at ages t1 and t2

),( ilimCov αα  :Covariance between mth and lth additive genetic random regression coefficients for animal i 
),( ilimCov γγ  :Covariance between mth and lth permanent environmental random regression coefficients for 

animal i 
 Measurement errors are assumed to be i.i.d. with variance ( )2

eσ , so =),( 21 ii eeCov ( )2
eσ  for i= j 

and 0 otherwise. The three eigenvalues of the estimated additive genetic and permanent environmental 
covariance function were derived and the three eigenfunctions of these covariance functions were plotted. 
 
Results and Discussion 

Log likelihood values and changes in Log likelihoods with constant mean square error are given in 
Table 1. Log likelihood values and changes were increased with increasing order of model. The changes in 
log likelihood from the linear to the quintic model have been found to be significant. 

Since changes in likelihood value among models from simple linear to quintic model were significant 
(Table 1), orthogonal polynomial regression of order 6 has been chosen as sufficient model to fit additive 
genetic and permanent environmental (co)variances with the fixed regression in this study. The major change 
in likelihood (%12) was obtained in quadratic fit after simple linear model. The changes in likelihood from 
quadratic to quintic models were only % 1 – 4 but the changes were significant between models. It is also 
known that parameters can be estimated more accurately with full fit of parameters.  
 
Table 1 Log likelihood values and changes in Log likelihoods with constant mean square error 
 
Regression 
model 

Number of 
parameters 

Log 
likelihood 

Changes in Log 
likelihood 

Changes in Log 
Likelihood % 

 
2χ  

Linear  (k=2) 7 -20382.51 - - - 
Quadratic (k=3) 13 -18207.45 2175.06* 12.0 12.59 
Cubic (k=4) 21 -18018.93 188.52* 1.0 15.51 
Quartic (k=5) 31 -17742.92 276.01* 1.5 18.31 
Quintic (k=6) 43 -17118.37 624.55* 3.6 21.03 
*Significant change (P < 0.05) 
 

In this study measurement error variance was assumed constant through growth trajectory and found 
9.60 g2 for 6 order of fit. Alternatively, measurement error variance can be assumed to be different in every 
week of growth period. The log likelihood increases with different orders of fit and assumptions about the 
measurement error variance structure. Assuming a constant measurement error structure, however, reduces 
computational requirements and convergence problems due to the large number of parameters to be 
estimated in individual analyses. Also it leads to making model comparisons easier (Meyer, 2000). 

Estimates of coefficient matrices for additive genetic (A) and permanent environmental (R) covariance 
functions were as follows: 

Coefficient matrices of additive genetic covariance functions 
        95.15 123.43 -89.17 -195.13 44.81 121.32  1 
A(ti,tj)= 1 ti ti

2 ti
3 ti

4 ti
5  123.43 260.61 -155.52 -620.32 92.49 420.13  tj

        -89.17 -155.52 337.54 706.90 -233.74 -536.38  tj
2

        -195.13 -620.32 706.90 2408.62 -495.80 -1774.34  tj
3

        44.81 92.49 -233.74 -495.80 167.36 381.84  tj
4

        121.32 420.13 -536.38 -1774.34 381.84 1322.39  tj
5

 
Coefficient matrices of permanent environmental covariance functions 

        60.63 40.05 -48.61 29.45 24.19 -33.63  1 
R(ti,tj)= 1 ti ti

2 ti
3 ti

4 ti
5  40.05 133.12 -0.01 -258.87 2.54 168.97  tj

        -48.61 -0.01 260.18 216.79 -226.38 -231.59  tj
2

        29.45 -258.87 216.79 1251.03 -244.62 -993.80  tj
3

        24.19 2.54 -226.38 -244.62 233.65 273.77  tj
4

        -33.63 168.97 -231.59 -993.80 273.77 835.90  tj
5
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Six eigenvalues of the estimated additive genetic covariance function for sixth order of polynomial fit 

are given in Table 2. In this table, proportion of each eigenvalue of the total eigenvalues was calculated for 
determining their importance.  
 
Table 2 Eigenvalues of coefficient matrix of the additive genetic covariance function for quadratic model 
(k=6) 
 

Eigenvalues Proportion of total (%) 
First Second Third Fourth Fifth Sixth First Second Third Fourth Fifth Sixth 

176.92 0.61 22.35 3.45 0.12 0.16E-06 86.95 0.29 10.98 1.70 5.89E-2 7.86E-8
 
 
The first, second, third, fourth, fifth and sixth eigenvalues of the coefficient matrix of the additive 

genetic covariance function were 176.92, 0.61, 22.35, 3.45, 0.12 and 0.16E-06, respectively. The eigenvalue 
is proportional to the amount of genetic variation in the population corresponding to that eigenfunction. The 
first eigenvalue of the coefficient matrix of the additive genetic covariance function accounted for about 87% 
of the sum of all eigenvalues for quintic model. From the large size of the first eigenvalue it can be 
concluded that selection will produce rapid changes if this kind of alteration in the mean growth trajectory is 
favoured. However this is not the case for second and the third eigenvalues since the second and third 
eigenvalues accounted for about 0.3% and 11% of the sum of all eigenvalues, respectively. In contrast to the 
first eigenvalues, therefore, they represent a negligible proportion of the variation in additive genetic 
variance. 

Eigenfunctions of additive genetic coefficient matrix of covariance function for the quintic model are 
plotted in Figure 1. The first eigenfunction was positive and not changing very much with increasing age 
while the second and third ones show some fluctuations.  
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Figure 1 Eigenfunctions of the additive genetic covariance matrix for the quintic model 

 
 
In this study, the first eigenfunction was positive and constant for all ages. However, opposite 

directional change were obtained in second and third eigenfunctions. These opposite directional changes are 
due to factors having contrasting effects on body weights at different ages. The eigenfunctions and 
eigenvalues contain information about understanding the potential of genetic improvement of growth 
trajectories. The eigenfunctions corresponding to genetic change show an increase or decrease in body 
weights at all ages. The first eigenfunction with large eigenvalue in this study describes that the populations 
have substantial genetic variation. Selection on first eigenfunction will increase body weights for all ages. 
This implies that selection for weight at any age will improve weights at all ages. Eigenfunctions with very 
small (or zero) eigenvalues, on the other hand, represent deformations for which there is little (or no) 
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additive genetic variation (Kirkpatrick et al., 1990) as happened in the 4th and later eigenfunctions. Selection 
for second and third eigenfunctions, on the other hand, may be limited because of small eigenvalues relative 
to the first eigenvalue. 

The heritability estimates for body weights at different ages are derived plotted in Figure 2. 
Heritability estimates were 0.007, 0.39, 0.45, 0.58, 0.61, 0.55 and 0.44 for weekly weights from hatching to 6 
week of age. The highest h2 (0.61) was obtained at 5 weeks of age. 

 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 

1 2 3 4 5 6 7
Age (weeks)

H
er

ita
bi

lit
y  

 
 

Figure 2 Estimates of heritability for body weight at different ages 
 
 
The heritability estimates yielded lower h2 at early ages and decreased slightly at later ages. This result 

may explain the changes of genetic variances for weights over ages. The changes of phenotypic and 
permanent environmental variances for weights over ages were increased by the increment of age. 
Phenotypic variance was increased more rapidly than genetic and permanent environmental variances. 
Permanent environmental variances increased considerably less over time than the genetic counterparts. The 
changes in genetic, phenotypic and permanent environmental variances for weights over ages are shown in 
Figure 3. 
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Figure 3 Estimates of additive genetic, phenotypic and permanent environmental variances  
for weight at different ages 

 
The additive genetic and phenotypic correlations among weights are given in Tables 3. 
In this study, all correlations among weights were found positive. The correlations between adjacent 

periods are more closely correlated than between remote periods. Moreover, genetic correlations were higher 
than phenotypic correlations. Within the same interval, genetic correlations slightly decreased with time. The 
genetic correlations obtained, were all positive and suggested that selection for weight at an early age will 
have a positive effect on weight at a later age. 
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Table 3 Heritability (diagonal), additive genetic (above) and phenotypic (below diagonal) correlations 
among weights 

 
 BW0 BW1 BW2 BW3 BW4 BW5 BW6
BW0 0.007 0.79 0.70 0.47 0.37 0.38 0.39 
BW1 0.05 0.39 0.86 0.87 0.82 0.63 0.66 
BW2 0.05 0.59 0.45 0.90 0.84 0.80 0.80 
BW3 0.04 0.63 0.82 0.58 0.97 0.75 0.78 
BW4 0.03 0.59 0.74 0.91 0.61 0.84 0.87 
BW5 0.03 0.46 0.69 0.72 0.83 0.55 0.99 
BW6 0.03 0.40 0.59 0.68 0.75 0.83 0.44 
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