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Abstract

This study investigates the asymptotic properties of the least squares estimator (LSE)
of an AR(1) process when the AR parameter of the true data generating process (DGP)
has structural breaks which are generated by ergodic stationary processes. We further
examine the special case where the process has some unit root sub-processes. In general,
when there are structural breaks, (1) the rate of convergence to the limiting distribution
becomes much slower than when there is no structural break, (2) the persistence level
tends towards the largest sub-AR parameter, (3) the whole DGP appears to be a unit
root process when some of its sub-processes are unit roots, and (4) the conventional
DF test will be biased toward accepting the null of stationarity when the alternative
that there exist some unit root sub-processes with probably long durations is true. The
analysis is also extended to the case of an infinite number of structural breaks.

Keywords: AR(1), Unit Root, The Least Squares Estimator (LSE), Structural
Breaks, Asymptotic Property, The Dicky Fuller (DF) Test

JEL Classification: C12, C13



1 Introduction

Many studies in the structural break literature investigate the effects of structural breaks
in nonstationary processes such as trend stationary or unit root processes, and show that
structural breaks in level or trend could cause an I(1) process to be even more persistent
and thus impair the power of the conventional DF tests of unit root in distinguishing
unit root and stationarity (see e.g., Perron, 1989; Leybourne et al., 1998; Kim et al.,
2004; Hsu and Kuan, 2001). Despite a huge literature on the estimation and inference of
structural breaks (e.g., Bai et al., 1998; Bai and Perron, 1998; Chong, 2001; Perron and
Zhu, 2005), the asymptotic properties of stationary processes in the presence of multiple
structural breaks have not yet been proposed. In particular, the effects of structural
breaks in the persistence level of a process on its estimated persistence level have not
yet been fully investigated. The structural breaks in the AR coefficient (SBAR) is a quite
common phenomenon in many economic time series (e.g., Perron and Zhu (2005) show
that there are structural breaks in the slopes of the stochastic trends of the logarithmic
GDP time series for 10 different countries in the period between 1870 and 1986.)

Our study provides the asymptotic distributions of the least squares estimator (LSE)
of the AR parameter when the AR sub-processes follow stationary AR(1) processes
and/or unit root, highlighting an important topic in econometrics - unit root tests in
the presence of structural breaks in the AR parameter. For this purpose, we shall use
a simple zero mean AR(1) process as the main DGP. This DGP appears to be simple
and restrictive, but the results could be intuitively more appealing. The asymptotic
properties of the LSE of the AR parameter of a more generalised DGP are likely to

be quite complicated in the presence of multiple structural breaks. If they become too



complicated and thus simulations are required to investigate the asymptotic properties,
the asymptotic results are likely to be less attractive. This could be a reason why the
asymptotic properties of an ARMA process in the presence of multiple breaks have not
yet been investigated in the literature.

When a zero mean AR(1) process has multiple structural breaks in the AR parame-
ter, the LSE of the AR parameter obtained without considering the structural breaks
tends towards the largest sub-AR parameter (in absolute term). Thus a short but highly
persistent sub-process could make the entire process appear far more persistent. When
some probably short sub-processes are unit roots, the asymptotic behaviour of the LSE
of the AR parameter is dominated by these sub-unit root processes so that the entire
process appear to be a unit root. In addition, we show analytically that the DF test could
tend to accept the null of stationarity when the alternative that some sub-processes are
unit roots is true; and the acceptance frequency depends on the number of structural
breaks.

This paper is organized as follows. In the next section, we propose our DGP and the
assumptions we use to derive the asymptotic distributions. Then, in section 3, given
our DGP, we derive the asymptotic properties of the LSE of the AR parameter in the
presence of structural breaks in the AR parameter. Section 4 offers the results of Monte

Carlo simulations and the conclusions follow.

2 Data Generating Process and the Assumptions

In this study we examine the effects of structural breaks on the LSEs of AR(1) processes

in two cases: (1) the break does not incur nonstationarity, (2) the break incurs nonsta-



tionarity in some sub-processes. The effects could be investigated using more general
DGPs such as ARMA processes with seasonal dummies, but the asymptotic analysis
is quite complicated in this case. Hence, we shall focus on a simple zero mean AR(1)
process and reserve more complicated DGPs for future studies.

Let us consider the following zero mean AR(1) process with structural breaks in the

AR parameter:

Y = OYe-1+ &

¢ = (1—=1)¢ 1 + Li(¢+ ), (1)

where [; is an indicator variable, i.e., I, = 1 with the probability of p. Therefore,
the AR parameter in (1) occasionally changes around ¢, and the frequency of changes
depends on p. When |¢| < 1, the process is a special case of the so-called random-
coefficient autoregressive process (RCAR) where I; = 1 V¢. The asymptotic properties
of RCAR process are not different from those of the standard AR(1) process in that
T'2(¢ — ¢) = O,(1) (see e.g., Nicholls and Quinn, 1982 or Tjostheim, 1986). However,
to our knowledge the asymptotic properties of the AR(1) process with an occasionally
changing AR parameter are not yet fully investigated.

We assume that &, is an ergodic martingale difference sequence (MDS) that satisfies
E¢,|Fi1] = 0, E[¢2|F,_1] = 02, where F,_; is an information filtration generated by

{co, 20, €0y Egy -vs Ct—1, Zt—1, €1, &1}, and

P
Bl 1 ¢, 1>alan|-1) [ Fi-1] — 0, (2)



where the sequence |a,,| — |a*| < 1 as n — oo for some a € (0, 1]. Supposing that all
the moments of &, are finite and a = 1, then by the Markov and Holder inequalities, we

have

ElI&]1 (1,15 on|-)| Fr—1] < || E[|E]"] = 0(1)

as n, r — o0. Thus, (2) is obviously satisfied. ¢ in (1) is an ergodic stationary
process independent of &, with the stationary distribution F,(e) which has zero mean
and variance o; the sample paths of ¢; satisfy |¢ + ¢ < 1 Vt.

Note that the sequence of ergodic martingale differences includes the sequence of
independent and identical distributed random variables as a special case. However, the
results in our paper can be shown to hold under a fairly general assumption as used in
Phillips (1988), namely that {¢;,&,} is strong mixing, though we do not use the strong
mixing assumption for the innovation processes because our analytical results may not
be necessarily improved given the complicated nature of this assumption.

We make a prior assumption that there are K different sub-processes with break
times [T'71] + 1, [T71) 4 [T72) + 1, ..., S5 [T7,] +1, ..., and S5 '[Tr,] + 1, where [T'7)]

is the size of sub-sample . Hence, the true trajectory of the process given in (1) is

k—1 k
¢y, = (¢ + &), where t;, € Z[Tﬂ‘] +1, Z[Tﬂ] (3)
i=1 1=1
and
€k = EZ?;II[TTi]+1 = 62?:711[1171']""2 - T EZLI[T”].

The following assumptions are useful for further analysis.

Assumption 1 For a given K € (0,00], the duration process Ty is an ergodic process
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independent of ¢, and &, . The sample paths of Ty, satisfy Tx = 1 — £<:—11 Tk, B(T3) =

02(K) and E(13) = A (K) > 0. 7} has the stationary distribution F,(e).

T

As in Bai and Perron (1998), 7, needs to be asymptotically distinct. Note that
0 < 7, < 1 Vk, and thus the non-central skewness of 7, is always positive. Since 7

generally decreases as K increases, 02(K) and \,(K) are decreasing functions of K.
Assumption 2 p = O(T™!) such that 7lim Tp=K — 1.

Assumption 2 is useful for investigating the asymptotic properties of a process with
a small number of structural breaks in large samples. Many studies such as Diebold and
Inoue (2001), Leipus and Surgailis (2003), and Granger and Hyung (2004) allow p — 0
to explain long memory with structural breaks in similar processes to equation (1). The
assumption says that T'(k) tends to increase with 7" so that the number of structural
breaks remains finite. However, as explained in Diebold and Inoue (2001) and Granger
and Hyung (2004), this sample size-dependent probability may not reflect reality. In

general, as T" increases K is also expected to increase as in the following assumption.

Assumption 3 K = O(T) such that Tlgrgo% =p.

The probability of breaks however is usually small and thus K may be still small
even if T" increases to a large number. Thus the asymptotic results with Assumption
3 in this study should be interpreted with care. Nevertheless the assumption is useful
for the investigation of the effects of structural breaks since it provides much simplified

asymptotic results.

Assumption 4 The changing points Yk (Tri+1 have finite first and second order mo-

ments, i.e., B (nyzl[TﬂHl) < oo and B ( < 0.

2
yzi;l[mm)
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Assumption 4 is equivalent to ‘yzle[Tn} +1‘ < 00 and y% < 0o almost sure.

YT+

This follows from the Borel-Cantelli lemma. Since

2

o o F ‘y k
iz [Tril+1
ZP{“ 2 ()yzle[mm 2 K)} <2 K2 < %0

K=1 K=1

then

P{ﬁ G [“‘ (‘yzi;ﬂmm = °°>}

n=1 K=n

> K)]} = P{wi (‘yzle[Tn]Jrl

= 0.

< 00 is almost sure (a.s.), and similarly we can prove that y% T <
i=14Ti

Thus, )nyZI[Tn]H
3 The Asymptotic Behaviour of the LSE of the AR

Parameter

Assume that our econometrician estimates the first order autocorrelation or the following

misspecified zero mean AR(1) process for the data generating process in (1):

Y = PY—1 + 10y, (4)

where 7, ~ (0,07). Our concern here is the effects of the changing ¢, (or ;) on the
asymptotic properties of ¢.

In this section, both stationarity and nonstationarity are analyzed. The stationarity



2

condition of the process in (1) can be easily proved to be ¢* + o2

< 1, which is not
different from that of the RCAR. However, this condition is not sufficient to warrant that
all sub-processes are stationary. As shown below, when one or more of sub-processes are
unit roots, the asymptotic distribution becomes quite different from that of the process

whose sub-processes are stationary; and the whole process will look like a unit root

process.

3.1 Stationary Case:

o +ep| <1VEk

We first investigate the case where all of the sub-AR processes are stationary.

Theorem 1 Under Assumptions 1, 2 and 4, the asymptotic conditional distribution of

the LSE of ¢ when the true DGP is (1) is given by

K )
w Zk:l €k 1;75% W12k:(1)

et YK TR
kT k k=1 Zk:l 1—¢? lk( )

—D, (5)

>

where ¢, = ¢ + €, and Wiy(1) is standard Brownian motion.

Proof. See the Appendix. m
By taking expectations, the limiting unconditional distribution of the bias in (5) is

given by

K

o-dlP) = [y [ POl [[aRER )

Ei{:l Tr=1 k=1

Under certain conditions, the LSE  can be represented in terms of Bessel processes

as follows.



Remark 1 Define R (t \/21 Tk1¢k W2(t) and Ry(t \/21 Tk

spectively. Suppose that the sample paths of ¢, is are always positive, i.e., 1 > ¢, > 0

1— ¢2 Wz( )
Vk. In view of Proposition 3.21 in Karatzas and Shreve (1991), Ry(t) and Ry(t) are
mixed Bessel processes which are the solutions to the following stochastic differential

equations:

Ri(t) = /0 5;1 (81) ds+ Bi(t), (6)
Ry(t) = 0 2};2_(81) ds + Bs(t), (7)

where By(t) and By(t) are mized Brownian motions that are defined as

B = Y [ gl o),

1 1(s 1 - ¢}
Kot 1
2 = T 5 2 s)d s).
Bit) = 3 [ gl g WO
Thus
. w, Ri(1)

=

8
{7 ’Ek}szl R%(l ( )

~—

When there is an infinite number of SBARs, the following proposition is obtained
by applying Loeve’s SLLN and Etemadi’s SLLN for non-negative random variables in

(Chow and Teicher, 1997).

Proposition 1 With Assumption 3, if limg o Z{( kia (%) < oo for some a €
k

(0,2], then

—Lmera ] 9)
E[f : 2]



Therefore, as K — 00, the bias does not depend on break durations but on the means of

Ek and o

T (o4er)? #}c)z respectively.

Proof. See the Appendix. =

It is clear that when there is no structural break in the AR parameter, i.e., ¢, = ¢,
or ¢ = 0 Vk, then p — ¢ —L5 0. In other words, ¢ is the consistent estimate of ¢ as in
the standard AR(1) process. However, since @ is a weighted average value of sub-AR

parameters, the limit of ¢ may not be consistent with ¢ in the presence of SBARs.

Theorem 1 shows that 172)2 serves as the weights on the k-th sub-AR parameter, ¢,
Yk

and thus the LSE of the AR parameter is a weighted average value of the sub-AR

parameters. The larger qﬁi is, ceteris paribus, the more weighted the sub-process is. A

Tk

small value of ¢, e.g., 0.1 > ¢, > —0.1, may not change its weight T
k

significantly.

Tk
1—-¢2

Tk

1-¢2

However, when increases with qb,% and in particular qﬁz is very close to one,
becomes extremely large. Thus regardless of signs of ¢, the sub-process with the largest
¢}, is more weighted than the other sub-processes and thus ¢ tends towards the largest
Dp-

It is interesting to see the difference in the convergence rate between the AR(1)
process with SBARs and the RCAR process. Koul and Schick (1996) show that the
LSE of the AR parameter of a stationary RCAR process is T/? consistent. However
when the coefficient changes occasionally with a small probability, we find that the

LSE becomes O,(1) and the limiting distribution of ¢ — ¢ lies within certain ranges

(depending on the distribution of €y).



3.2 Nonstationary Case: |¢ 4+ c;| = 1 for at Least a k

We extend the analysis in the previous section to the special case where the set of sub-
AR parameters {¢, }5_ | contains at least one unit root. In other words, we allow both

stationary and non-stationary sub-processes.

Theorem 2 Under Assumptions 1, 2, 4 and when the set of sub-AR parameters con-

tains at least one unit root, the asymptotic conditional distribution of the LSE of ¢ for

the DGP as in (1) is given by

Case 1 : §—1=0y(1), (10)
W2 + X cimulfyF Wi(s)dWi(s) — W2 (T
Case 2 : T(p—1) A — Dok oo Wi (1) ZkEKUE'k 2 k( ) k() = Wiy (Tr)]
{T}cvek}i{:l ZkERUf W

where KV is the subset of K that contains unit roots, and K5 is the subset of K that

contains stationary sub-processes.

Proof. See the Appendix. =
By taking expectations, the asymptotic unconditional distribution of the bias as in

(10) is given by

K

L(T(p—1)|P) = / - / P(E] T ek} ) T dF2(er) P (7).

Zk 1TE=1 k=1

When some sub-AR processes are unit roots, the limit of the LSE of ¢ converges to
1 (Case 1) since the unit root processes dominate the stationary sub-processes. The

convergence happens irrespective of the number of unit roots or the time periods of unit
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roots as far as 7y, is asymptotically distinct. Therefore, even if the stationarity condition
is satisfied in this AR(1) process with SBARs, i.e., > +02 < 1, there is still a possibility
that at least one sub-process is unit root and thus the entire process may look like a
unit root.

The second result in Theorem 2 suggests that it is very likely that using the con-
ventional DF test to test for the null of a unit root in the presence of structural breaks
in the AR parameter could result in spurious rejection, a term used by Leybourne et
al. (1998). This is because when the number of structural breaks is sufficiently large,
the asymptotic conditional distribution in (10) is more likely to be skewed toward the
negative side of the real line as seen in Proposition 2 below. Thus, the null hypothesis
Hy : ¢ = 1 is rejected rather often; the DF test concludes that the whole process is
stationary, but most of its sub-processes with probably long durations are actually unit
roots. Furthermore, the test does not have power to differentiate between Hy : ¢ =1
(i.e., a unit root without SBARs) and Hj : {|¢,| < 1Vk € K5; ¢, = 1Vk € KV} (ie., a
unit root with SBARSs) since the rates of convergence are the same under the null and
the alternative.

Case 2 can be further analyzed with Assumption 3.

oy Z?:l[ﬁizp S U
Proposition 2 [f —— < 0o and K— 00 so that K — oo and K — oo. Under

Assumption 3, Case 2 in Theorem 2 becomes

R Z ~ ~ T_k J— Z ~ ~ T
~ P kEKS, KS—so00 T+¢, keKU KU —oo ' k=1
T@ =1 o0k, = :

(11)

o L
ZkeKU, KU—00 2

Proof. The proof follows from Etemadi’s SLLN for non-negative random variables. m

11



As the number of SBARs becomes large, T'(p — 1) becomes always negative. As the
durations of unit root sub-processes 7, Vk € KUY increase, the numerator (| KeRS | |RS|—oo 11—’;%
and ), RU |RU|—00 Tk—1) decreases while the denominator increases, and thus the neg-
ative value of T'(¢ — 1) approaches zero. This implies that the sub-unit root processes
begin to dominate the stationary sub-processes. On the contrary, as the durations of
stationary sub-processes 7 Vk € KS increase, ceteris paribus, T(p — 1) decreases, and
thus stationary sub-processes dominate the nonstationary sub-processes and the entire
process appears to be more stationary.

For given 75, when the stationary sub-AR process is negatively autocorrelated, i.e.,
—1 < ¢, <0, the value of 3, zs |75 o 715 becomes larger and T(p — 1) decreases
(towards stationarity). On the other hand as the sub-AR parameters ¢,, increase towards
1, ceteris paribus, T(p — 1) increases. This has an obvious implication that the entire
process look like a unit root process as the sub-AR parameters approach unit roots, thus
the spurious rejection of the DF test for unit root does not exist in this case. Finally
when the durations of the sub-unit root processes are small (i.e., the denominator in
(11) is small), T'(p — 1) could be a large negative number, thus the limiting distribution

has long left tail.

4 Simulations

In order to better understand the asymptotics of the LSE of the AR parameter, we
simulate the asymptotic distributions and the compare the results with the sample LS
estimates we obtain by estimating (4). The simulations are designed as follows. AR(1)

series are generated for the sample sizes of T' = 100, 200, 500, 1000, and 3000. For
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the numbers of breaks, we set K —1 = 4,9,49, and 99 where K is the number of
sub-processes. The error term in the AR process follows standard normal, £, ~ N(0, 1),
while the sizes of structural breaks in AR parameter are drawn from two different normal
distributions, i.e., ¢, ~ N(0,0.2%) and N(0,0.3%). For the values of ¢, we take 0.4, 0,
and -0.4. For the asymptotic distributions we generate Brownian motions (W (1)) with
10000 i.i.d. standard normal variates. We repeat the procedure 10000 times to obtain
the sample LS estimates and asymptotic distributions.

For the stationary case in Theorem 1, we truncate any ¢, > 1 to ¢, = 0.999. The
pattern in table 1 shows that the tendency of the LSE of ¢ towards the largest sub-AR
parameter increases as K increases. In addition the rate of convergence to the limiting
distribution is rather slow. Even with 1000 observations, the sample LS estimates of
© do not approach the limiting distributions in particular when o, and the number of
breaks are large. Again the asymptotic result in Proposition 1 requires much larger
number of breaks; the cases of K = 99 still show large deviations from the analytical
value in (9). Panel B reports that » — ¢ tends to increase for positive ¢ while it tends
to decrease for negative ¢. On the other hand, when ¢ = 0 and ¢,, (or &;) is symmetric,
we find that the effects of SBARs are symmetric.

Figure 1 shows the Gaussian kernel densities for the stationary case, i.e., [¢ + x| < 1
Vk when ¢ = 0.4. We find that there is a mass in the right tail of the limiting distribution.
This is in part due to the truncation we impose to make the process stationary (i.e.,
¢, < 0.999). However the mass in limiting distribution looks much larger than we
expect from the truncation. To investigate if the mass reflects the truncation, we allow

¢, to be larger than 1 (no truncation for ¢, > 1). The last column of figure 1 shows
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a larger mass between 0.4 and 0.6 without the truncation. These results suggest that
allowing the sub-AR processes to be nonstationary results in a higher tendency towards
persistence, and the truncation reduces the mass. The mass reflects the extremely
persistent sub-processes which dominate other less persistent sub-AR processes. This
dominance is more apparent when the break size of the AR parameter is larger.
Finally we carry out a similar procedure for the nonstationary case in Theorem 2.
When there is no sub-unit root process we make the largest sub-AR parameter be unit,
and any sub-AR parameter whose ¢, > 1 is truncated to 1. In addition, Theorem
2 requires [T7;] — oo as T — oo and thus sub-sample sizes should not be small
(asymptotic distinction in 7). Therefore we impose the restriction of 77, > 20 Vk in
our simulations. Figure 2 shows that as the sample sizes increase a large mass begins
to build up near 0, whose shape is very similar to those in Figure 1. This pattern is
apparent in the case of K — 1 = 9 rather than K — 1 = 49. However, the mass near
zero approaches the limiting distribution at the bottom of Figure 2 very slowly. The
last column of Figure 1 suggests that the mass around 0 could become large much faster
when there is no truncation on ¢,; when sub-AR processes with ¢, > 1 are allowed the

process more frequently looks like a unit root process.

5 Conclusion

These results suggest several conclusions. First, the LSE of the AR parameter has an
asymmetric limiting distribution when there are structural breaks in the AR parameter
of a zero mean stationary AR(1) process. In the presence of structural breaks in the AR

parameter, the LSE of the AR parameter tends towards the largest sub-AR parameters.
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On the other hand, when there is at least one unit root process in sub-samples, the LSE
of the AR parameter tends towards the unit root even if the condition for stationarity
is satisfied. Hence, the unit root sub-processes could make the entire process look like
unit root.

Second, our results suggest that when there are structural breaks in processes, the
conventional statistics we use for inferences may not be appropriate. Because of slow
convergence rates and biases in the persistence level, the conventional Gaussian t tests

and the DF test of unit root are not very powerful for these types of processes.
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Appendix

For the proof we use Corollary 1 of Chu and Hwang (2005), which shows for |¢| < 1
— = W(1), (12)

(T'7]

9", V7 € (0,1] and &, is a sequence of martingale differences with

where S =

Bl&,|Fi-1] = 0 and E[&f|F 1] = 0*.

Proof of Theorem 1

The LSE of ¢ is given as follows:

» = 2%1 YtlYi—1
Dt Yi
Zf:l Z;EZ)—UJA Y Yt —1
Z{{ Z;EIZ)—l)-&-l ytz,rl
Z{( YT (k—1)+1Y7(k—1) T Z{{ Z?E?—l)w ¢kyt2k71 + Z{{ Z;Ez)—l)w Yt —181,

_ 13)
K K ~~T(k) (
D ket Y1) T 201 2ot (e 142 Y
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Applications of the result in (12) and the continuous mapping theorem together with

Assumption 4 yield the following limits:

T(k)
_ w021, Cy,
Y b= 3 — 2 EWE (1) + 0,(1). (14)
=T(k—1)42 k
T(k)
TN g, = o VOW (D) Wai(ri) +0,(1). (15)
thT(k71)+
, o2
Yrk-1) :> 5 WE(1) + 0,(1). (16)
k
T(k)
TN 2 e CVA(L) + 0,(1). (17)
=T(k—1)+2
In addition since
T(k—1)—T(k—2)—1
TTr_1]— — j
YT (k—1)+1YT(k—1) = YT (k—1)+1 Ec_lk 1 1yT(k—2)+1 + (bkil Z ¢£_1€T(k—1)+17j )
j=1
it is straightforward to obtain
w g
Y7 (k—1)+1YT(k—1) — yoo—lek(l) + Op(l)- (18)
\/ L —p
Therefore we have
SE L6+ e WA + 0,7 T amewi )

¢ = (19)

S el S WA

since ¢, = ¢ + €, and thus equation (5) follows.
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Proof of Proposition 1

As K — oo, using Etemadi’s SLLN for non-negative random variables we have

{Tk’¢k}kK:1

{Tlc,¢k}£<:1

00

a.s
=D
k=1

8

a.s
=

o

=1

i
PRI
- Pk

Tk

1-¢

(20)

TN

The result is then obtained by applying the SLLN for ergodic MDS under the assumption

that Zszl Tr = 1 and 7, and ¢, are independent.

Proof of Theorem 2

Let KU is the subset of K that contains unit root processes; ¢, = 1, k € KU, while K

does not contain unit root processes. Then the LSE of ¢ is given by

T(k T(k
Zkef(U (yT(k—lH-lyT(k—l) + ZTEk)—l)—i—Z yti.—l + ZTgk)—l)-s-Q ytkflgtk> +

T(k
D okeis <yT(k—1)+1yT(k—1) + ZTEk)—l)—ﬂ Qbkytifl +2

T(
T(k—1)+2

k)

ytk—lftk>

o=

18

T'(k) T'(k) '
> keRv (y%(k—l) + 2ty Y1 )+ Deis (y%(k:—l) + 2Tk 1)+2 thk*1>

(21)



The asymptotic properties of the terms involving & € K are the same as the results in

the proof of Theorem 1, i.e.,

T_I/QyT(k—1)+1yT(k—1) = op(l).
4l o3r
— w k
T Z yt2k*1 — 4 —Wh(1).
=T (k—1)+2 k
T(k) 9

o
T2y ytk—lftkgﬁwlk(l)mék@—k)'

t=T(k—1)+2 k
2

1—¢?

W

y%(kfl) = W2(1) + 0,(1).

Regarding the terms k € K U, applications of Donsker’s IP (see Theorem 14.1 of Billings-

ley (1999)) for MDS and the continuous mapping theorem yield

T_l/QyT(lcfl)JrlyT(kfl) = 0,(1).
T(k)

Y yt“:»a/ W2 (s)ds + O,(T12).
T(k—1)+2

T(k)

LS g, o / Wae(s)dWar(s) + Op(T/2).
T(k—1)+2

T ?JT k—1) = 5 Wi (Te1) + Op(T7H).

Hence we have
ZkeKU Jy" Wii(s)ds + O,(T71/?)

ZkeKU ka W2 (s)ds + Op(T_I/Q) B

‘6)
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An alternative expression of equation (21) is

Zkef(U (yT(k—l)HyT(k—l) k 1) + ZT k—1)+2 ytkflftk> +

T(k
Zkef(s <yT(k—1)+1yT(k—1) - y%(kfl) + (¢k - 1) ZT(k—l)—l—Z ytzk_l + ZTgk)—l)+2 ytk—lgtk>

eol= - 2 T(k) 2 - 2 T(k) 9
ZkGKU Y11 ™ ZT(k:—1)+2 Yo—1) + ZkeKS Y7k-1) + ZT(k—1)+2 Yi,—1
(22)
Scaling @ — 1 by T, the limiting distribution of (22) is given by
= Drers T WE(D) + ZkeKU f (5)dWi(s) = W2_y(Th-1) + Op(T7/2)

T(p—1 N
(‘P )|{m,ak},§:1 ZkeKU 0 ( )dS+OP(T—1/2)
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Table 1 Percentage Points of the Distributions of p—¢ for Various Number of Breaks, Break
Sizes, and AR Parameters In the Presence of Structural Breaks in AR Parameters

The sizes of structural breaks in AR parameter are drawn from two different normal distributions, i.e., N(0,0.22) and
N(0,0.32), while the error term in the AR process follows standard normal. For the values of ¢, we take 0.4, 0, and -0.4. For

the stationary case in Panel A, we truncate any ¢=1 to $=0.999.

A. The Effects of Structural Breaks in AR Parameters for Various Number of Breaks, Break Sizes, and Number of

Observations
Palr\al:net Nui)nfber Break | Total Number Percentage Points of the Distributions

Size |of Observations| 1%  2.50% 5% 10% 50%  90%  95% 97.50% 99%

er Breaks
100 -0.343 -0.287 -0.237 -0.184 0.008 0.195 0.255 0.319 0.389
200 -0.301 -0.247 -0.201 -0.149 0.013 0.185 0.241 0.297 0.368
0.2 500 -0.266 -0.211 -0.170 -0.127 0.019 0.183 0.245 0312 0.393
1000 -0.249 -0.200 -0.162 -0.123 0.015 0.177 0.233 0.297 0.395
Limit -0.323  -0.265 -0.216 -0.160 0.020 0.215 0.283 0.355 0.473
0.4 4 100 -0.438 -0.364 -0.296 -0.221 0.028 0.310 0.404 0.479 0.529
200 -0411 -0.328 -0.266 -0.193 0.033 0.327 0.432 0511 0.556
0.3 500 -0.386 -0.303 -0.238 -0.171 0.046 0.374 0.497 0.557 0.580
1000 -0.371 -0.297 -0.234 -0.165 0.048 0.394 0.523 0.575 0.591
Limit -0.492 -0.396 -0.320 -0.235 0.067 0.503 0.588 0.596 0.598
100 -0.257 -0.213 -0.172 -0.132 0.008 0.136 0.169 0.195 0.232
200 -0.175 -0.145 -0.118 -0.086 0.023 0.130 0.162 0.193 0.232
0.2 500 -0.116 -0.093 -0.072 -0.049 0.037 0.132 0.165 0.202 0.263
1000 -0.090 -0.070 -0.053 -0.032 0.044 0.135 0.175 0.221 0.308
Limit -0.116 -0.093 -0.068 -0.041 0.051 0.196 0.326 0.500 0.566
0.4 49 100 -0.276  -0.224 -0.182 -0.140 0.022 0.171 0.215 0.249 0.294
200 -0.191 -0.153 -0.122 -0.082 0.058 0.205 0.252 0.296 0.355
0.3 500 -0.135 -0.098 -0.068 -0.033 0.101 0.274 0335 0.385 0.440
1000 -0.099 -0.065 -0.038 -0.004 0.130 0.345 0.413 0463 0.507
Limit -0.123  -0.070 -0.024 0.030 0.394 0.581 0.588 0.592 0.594
200 -0.165 -0.138 -0.111 -0.083 0.013 0.106 0.131 0.154 0.180
0.2 500 -0.102 -0.081 -0.063 -0.042 0.031 0.108 0.132 0.156 0.189
1000 -0.072 -0.052 -0.038 -0.021 0.042 0.115 0.143 0.172 0.230
Limit -0.068 -0.048 -0.034 -0.014 0.057 0.221 0413 0.512 0.562
200 -0.177 -0.148 -0.117 -0.085 0.031 0.142 0.173 0.201 0.235
0.4 99 0.3 500 -0.099 -0.075 -0.049 -0.021 0.079 0.199 0.240 0.281 0.328
1000 -0.060 -0.038 -0.014 0.012 0.116 0.266 0.319 0.369 0.425
Limit -0.012  0.029 0.071 0.137 0487 0.578 0.584 0.588 0.592




B. The Effects of Structural Breaks in AR Parameters for Different AR Parameters

1otart

AR | Number Percentage Points of the Distributions
Parame of Break | Number of
Size [Observation| 1% 2.50% 5% 10% 50% 90% 95% 97.50% 99%
ter Breaks .

100 -0.303 -0.247 -0.205 -0.152 0.015 0.184 0.235 0.281 0.334
0.2 200 -0.241 -0.202 -0.167 -0.124 0.025 0.180 0.231 0.281 0.363
1000 -0.188 -0.149 -0.123 -0.090 0.031 0.174 0.225 0.295 0.403
Limit -0.259 -0.208 -0.166 -0.122 0.031 0.209 0.278 0368 0.528
0.4 9 100 -0.376 -0.304 -0.249 -0.182 0.044 0.292 0.374 0432 0497
0.3 200 -0.321 -0.261 -0.207 -0.150 0.059 0.323 0.413 0.480 0.536
1000 -0.262 -0.212 -0.164 -0.113 0.088 0.419 0.522 0.563 0.582
Limit -0.383 -0.292 -0.226 -0.154 0.108 0.570 0.591 0.595 0.598
100 -0.313 -0.260 -0.216 -0.170 0.001 0.172 0.223 0.267 0.312
0.2 200 -0.266 -0.218 -0.182 -0.143 -0.001 0.145 0.190 0.228 0.267
1000 -0.232 -0.187 -0.152 -0.114 0.001 0.119 0.153 0.188 0.228
Limit -0.310 -0.246 -0.201 -0.156 -0.002 0.152 0.200 0.247 0.312
0 9 100 -0.453 -0.372 -0.303 -0.234 -0.002 0.228 0.298 0.358 0.448
0.3 200 -0.434 -0.340 -0.273 -0.207 -0.001 0.213 0.284 0.349 0451
1000 -0.430 -0.329 -0.259 -0.191 -0.004 0.186 0.255 0.330 0.445
Limit -0.591 -0.425 -0.341 -0.250 0.001 0.254 0.335 0424 0.597
100 -0.351 -0.284 -0.236 -0.185 -0.016 0.154 0.203 0.244 0.302
0.2 200 -0.341 -0.281 -0.227 -0.175 -0.021 0.120 0.162 0.196 0.240
1000 -0.368 -0.277 -0.220 -0.168 -0.030 0.089 0.126 0.158 0.193
Limit -0.527 -0.363 -0.277 -0.206 -0.027 0.124 0.170 0.206 0.252
-0.4 9 100 -0.501 -0.442 -0.377 -0.300 -0.049 0.181 0.242 0.297 0.363
0.3 200 -0.527 -0476 -0.410 -0.323 -0.058 0.147 0.208 0.260 0.323
1000 -0.580 -0.562 -0.517 -0.415 -0.086 0.105 0.159 0.204 0.261
Limit -0.597 -0.595 -0.591 -0.568 -0.110 0.153 0.228 0.288 0.367




Figure 1 Kernel Densities of o—¢ for Various Number of Samples
and Break Sizes In the Presence of Structural Breaks in AR

Parameter When ¢ =04 and K —1=9
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Figure 2 Kernel Densities of p—1 for Various Number of Samples
and Break Sizes In the Presence of Structural Breaks in AR

Parameter When At Least One ¢, is Unit Root and 0. = 0.3
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The limiting kernel distributions are obtained only using largest 7000 estimates
to show the mass around 0 since their left tails are too long.
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