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Abstract

This study provides the asymptotic distributions of the least squares estimator (LSE) of
an AR(1) process in the presence of structural breaks in the mean when the break sizes
and the break durations are assumed to be generated by ergodic stationary processes.
We further examine the special case where the process has a unit root. When there is a
finite number of structural breaks, (1) the rate of convergence to the limiting distribution
becomes much slower than when there is no structural break, (2) the persistence level
tends to increase depending on the break sizes and the break durations, and (3) there
exist multiple asymptotic results for the case of unit root. We propose a feasible unit
root test with a new limiting distribution that is more robust than the DF test in
detecting a unit root. The analysis is also extended to the case of an infinite number of
structural breaks.

Keywords: AR(1), Unit Root, Structural Breaks, Asymptotic Properties, The
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1 Introduction

The seminal study of Perron (1989) shows that unit roots are less likely to be rejected
when the data generating process is stationary about a broken linear trend. Subse-
quently a huge literature has evolved addressing the issue of unit root tests in the
presence of structural breaks (see, inter alia, Perron, 1990; Zivot and Andrews, 1992;
Bai, Lumsdaine, and Stock, 1998; Bai and Perron, 1998). Most of these studies investi-
gate the effects of structural breaks in nonstationary processes such as trend stationary
or unit root processes. They show that structural breaks could cause an I(1) process to
be even more persistent, and that stationarity is easily confused with unit root when
there are breaks.!

Despite the huge literature the asymptotic properties of the estimated coefficients of
stationary processes and unit root processes have not yet been proposed in the presence
of multiple structural breaks. Most analytical results in structural breaks assume one
or two breaks in a series. The effects of multiple breaks on a process can be investigated
using simulations, which becomes relatively easier with the recent computing develop-
ment in software and hardware. This could help us understand the effects of structural
breaks, but may not enhance our knowledge in this area.

Our study provides the asymptotic distributions of the LSE of the AR parameter
of stationary processes and unit root processes in the presence of multiple structural
breaks in mean, highlighting an important topic in econometrics - unit root tests in the
presence of structural breaks. The following two cases are also investigated; the number
of structural breaks is (1) fixed regardless of the sample size or (2) proportional to the
sample size.

For this purpose, we use a simple zero mean AR(1) process as the data generating
process (DGP). Although this DGP is simple and restrictive, we will show in this paper
that the asymptotic property of the LSE of the AR parameter of the zero mean AR
process are indeed complicated in the presence of multiple structural breaks. This could

be a reason why asymptotic properties of a process in the presence of multiple breaks



have not yet been proposed in the literature. The asymptotic results with more gener-
alised processes could be less intuitive and appealing, if they become too complicated
and thus simulations may be required to investigate the asymptotic properties.

The contribution of this paper is twofold. The first is to examine the asymptotic
properties of the LSE of an AR(1) process when there are structural breaks generated by
ergodic stationary processes. We show that the limiting distributions we derive for the
LSE of the AR parameter are neither the usual Gaussian distribution nor the asymptotic
distribution we obtain when the DGP has a unit root. The LSE without considering
the structural breaks is not asymptotically consistent with the true AR parameter. The
convergence rate becomes much slower than when there is no structural break and the
bias depends on the ratio of break size. Multiple asymptotic results are obtained when
the DGP has a unit root. Second, we propose a feasible structural break unit root test
which is independent of any nuisance parameter with a new limiting distribution. This
test is shown to be robust against the alternatives of stationarity with structural breaks
in the mean or a unit root without structural breaks for DGPs in our framework. Thus,
this test can reject the null of unit root in the presence of structural breaks when the
alternative of stationarity or unit root without structural breaks is true.

This paper is organized as follows. In the next section, we investigate the effects
of structural breaks in the mean. We first propose our DGP and underlying assump-
tions. Then, given our DGP, we derive the asymptotic properties of the LSE of the AR
parameter in the presence of structural breaks in the mean. Section 3 contains brief

concluding remarks.



2 The Asymptotics of the LSE of the AR parameter

in the Presence of Multiple Breaks

2.1 Data Generating Processes and Assumptions

The DGP reflects what we are interested in, i.e., the type of structural breaks and
processes. Following the work of Perron (1989) many studies investigate the effects of
structural breaks on various types of nonstationary processes. A simple DGP used by
Engle and Smith (1999), Diebold and Inoue (2001), and Granger and Hyung (2004) is

the occasional breaks in mean plus noise model:

2y = C: + &, (1)

* *
C = Cq + Itﬁt,

where &, ~ I1D(0,0?), ¢ ~ II1D(0,02), and I; is an indicator variable which equals 1
with probability (p) and is independent of ¢;. It follows that T'p is the expected number
of structural breaks in the sample.

Note that shocks in ¢; are accumulated over time whenever [, = 1, and thus by
definition, the process in (1) is non-stationary. To keep the process stationary p should
decrease with the sample size (T'). Diebold and Inoue (2001) and Granger and Hyung
(2004) show how long memory can be obtained by making p a hyperbolically decaying
function of T'. This type of DGP may be appropriate for level data, in particular when
¢; is allowed to have a positive mean so that z; tends to increase over time.

In this study, we choose a simple AR(1) process as the DGP and assume that the
mean has multiple structural breaks. By allowing the AR parameter to be one, we also
investigate the effects of structural breaks on unit root processes. More general DGPs
such as ARMA processes with seasonal dummies are desirable. However it is likely that
the asymptotic distribution of the LSE of the AR parameters becomes too complicated

and thus less intuitive. We shall focus on a simple AR(1) process in this study, and



leave the case of general DGPs for future studies.
The AR(1) process with structural breaks in mean (SBMs), is similar to (1) except
that ¢; does not follow a unit root process but moves around zero. Using the same

notation as in (1), we propose the following AR process with SBMs

2 = ¢+ Pz + &, (2)

a = (1—=1I)cq+ Le,

where ¢, is an ergodic martingale difference sequence (MDS) which satisfy E[{,|F—1] =
0, E[¢3|Fi_1] = 02, where F;_; is an information filtration generated by {co, 20, €0, &,

ey Ct—1, Zt—1, €¢—1, ft_l}, and
P
E[&1 g, 1> alant-1)| Fi-1] — 0, 3)

where the sequence |a,,| — |a*| < 1 as n — oo for some a € (0, 1]. If all the moments

of £, are finite and a = 1, then by the Markov and Holder inequalities,

ElIE L e, 15 1an -1 Fi-1] < an|"E[[§,]"] = o(1)

as n, r — o0o. Thus, (3) is obviously satisfied; ¢; in (2) is an ergodic stationary process
with the stationary distribution F(e) which has zero mean and variance o2.

The sequence of ergodic martingale differences includes the sequence of indepen-
dently and identically distributed random variables as a special case. However, the
results in our paper can be shown to hold under a fairly general assumption as used in
Phillips (1988), namely that {¢;, &,} is strong mixing, though we do not use the strong
mixing assumption for the innovation processes because our analytical results may not
be necessarily improved given the complicated nature of this assumption.

For a given sample size T', we assume that there are K different means in the sample,

i.e., T'p = K — 1. The process ¢; follows a renewal - reward process where renewal and



reward are assumed to be independent. The break size c¢; is a reward at renewal. The
break point series, T(1) + 1, T(1) + T(2) + 1, ..., Sp,' T(k) + 1 are realizations of a
renewal process where T'(k) is the number of observations in the k-th sub-AR process,
and S°8  T(k) = T. Let 1), denote the fraction of the sample such that T'(k) = [T'7],
where [o] is the largest integer that is less or equal to e. It is easy to show that
SETT) = [TSE, 7] = T since Y1, 7; = 1. Therefore, the true trajectory of the

mean process as defined in (2) is given as follows

k—1 k
Ck = Ct, <: ezi:ll[T”}H) , Vit € {Z[TTZ] +1, Z[TTZ]} . (4)

i=1 i=1

Note that as in Bai and Perron (1998) 74 needs to be asymptotically distinct. In order
to investigate the asymptotic behaviour of the LSE of the AR parameter in the presence

of structural breaks, we need the following assumptions.

Assumption 1 For a given K € (0,00], the duration process Ty, is an ergodic process
independent of €, and &,. The sample paths of Ty, satisfy Tx =1— kK:_ll T, B(73) =

02(K) and E(73) = A (K) > 0. 74 has the stationary distribution F,(e).
Note that 7, > 0 Vk, and thus the non-central skewness of 7, is always positive.

2

Since 7 generally decreases as K increases, o=

of K.

(K) and \.(K) are decreasing functions

Assumption 2 p = O(T™!) such that 7lim Tp=K —1.

Assumption 2 is useful for investigating the asymptotic properties of a process with
a small number of structural breaks in large samples. Many studies such as Diebold and
Inoue (2001), Leipus and Surgailis (2003), and Granger and Hyung (2004) allow p — 0
to explain long memory with structural breaks in similar processes to equation (1). The
assumption says that T'(k) tends to increase with 7" so that the number of structural

breaks remains finite. However, as explained in Diebold and Inoue (2001) and Granger



and Hyung (2004), this sample size-dependent probability may not reflect reality. In

general as T increases K is also expected to increase as in the following assumption.

Assumption 3 K = O(T) such that Tlgrgo% =p.

We note however that the probability of breaks is usually small and thus K may be
still small even if T" increases to a large number, and thus the asymptotic results with
Assumption 3 in this study should be interpreted with care. Nevertheless the assumption
is useful for the investigation of the effects of structural breaks since it provides much

simplified asymptotic results.

Assumption 4 The changing points Ik 7y 4 have finite first and second order mo-

ments, i.e., B (ZZ§:1[TT1Z}+1> < oo and E (,22 > < 00.

K [Tr)+1

Assumption 4 is equivalent to

ZZL[TTZ-]H) < 0o and 22 et < oo almost sure.

This follows from the Borel-Cantelli lemma. Since

> > E‘ SF T+t

ZP{W (‘Zzi;l[TnHl = K)} Z K2 < 00,

K=1 K=1
then

{ﬂ U o (el ZK)]} = Pl (] 2 20)}
n=1 K=n
= 0.

Thus, |25 (7, +1’ < oo is almost sure (a.s.), and similarly we can prove that ZZZ Tt
00 a.s.

The effect of structural breaks in the mean of an AR(1) process on the persistence
level can be investigated when the structural breaks are disregarded. The misspecified

zero mean AR(1) process is given by

2t = P21 + Mt (5)

6



where 1, ~ II D(O,U%). Our concern here is the effects of changes in ¢; around zero
on the LSE of ¢ (¢). In our study, these effects are investigated for both a stationary

autoregressive process (|¢| < 1) and a unit root process (¢ = 1).

2.2 Stationary Case

Here the AR parameter of the true DGP is assumed to be less than one, i.e., |¢| < 1.

Theorem 1 Under Assumptions 2 and 4, the asymptotic conditional distribution of the

LSE of ¢ of the misspecified model in (5) for the true DGP in (2) is given by

= = = A, (6)

>
|
Sl

{Tk sCk }i;l

where

and Wi (1) is standard Brownian motion and 2 denotes convergence in distribution

(or weak convergence). The LHS of (6) is the bias conditional on a sample path of

(Tk, €)-

Proof. See the Appendix. =

The rate of convergence decreases due to SBMs in a surprising way. When there are
SBMs in a stationary AR(1) process, ¢ — ¢ = Op(1) and ¢ — ¢ = 0,(T"*) Va > 0
whereas ¢ — ¢ = 0,(T~'/?) when there is no SBM in the AR(1) process. This property
is also different from that of the unit root case where the limiting distribution of (p —1)
is asymmetric but converges at rate of T—!. The support of the limiting distribution of

© — ¢ is the entire real line since B is always positive whilst A can take any value of



the entire real line. Therefore, in the presence of SBMs ¢ — ¢ does not converge to zero
whereas it is not the case when there is no SBM.

The LSE is not consistent with the true AR parameter and is positively biased in
mean. As opposed to the usual case where the limiting distribution of vT'(p — ¢)
is symmetric around zero, the limiting distribution of ® — ¢ is asymmetric around a
positive value since the denominator in (6) contains a x?(1) random variable and the
numerator includes a positive component By taking expectations the unconditional

distribution of the bias can be obtained;

K

(90 ¢|P = K P(AHT/W Ck}k 1 H Ck dF Tk)
(0,1) RE
Zk 1 TR=1 k=1

where £(X|P) denotes the distribution of X when X is defined on the probability space
with the probability distribution P; IP is the conditional distribution of A.

The limiting conditional distribution depends on the parameters cx, 75 and o, which
are break size, break duration and the volatility of the error term in the AR process,
respectively. When ¢ is large and negative the value of A is influenced by Brownian

motion relatively more than the break size ¢ because of the different weights on these

components, e.g., W and 5 respectively. Therefore break sizes are weighted more

¢2
for a large positive ¢ and the asymmetric patterns in A between positive and negative
values of ¢ are expected.

The result in Theorem 1 is obtained with the assumption that the number of struc-

tural breaks (/) does not increase in proportion to the sample size (1"). We now adopt

Assumption 3 to obtain the limits of » — ¢ when T' — co and K — oc.

Proposition 1 Let us suppose that

K (0%
Z C—’; < +0o for some a € (0,2]. (7)



Then under Assumptions 1, 3, and 4,

. P V
¢_¢:> vV 1 207 (8)
o T Te

where V = o%/0?. When V > E;igz, the bias decreases.

Proof. See the Appendix. m

Proposition 1 confirms what has been observed in many previous studies mainly
by simulations; the LSE tends to be more persistent than ¢ suggests. For example
Granger and Hyung (2004) show that persistence level increases with the magnitude of
breaks. Our results show that it is the relative break size to error term that increases
the bias. When the volatilities of break size and error term increase simultaneously
with the same ratio, the bias does not change. These results can explain why it is
hard to find persistence in asset returns even if there exist structural breaks. This is
because asset returns are highly volatile relative to the magnitude of structural breaks

(see Getmansky, Lo, and Makarov, 2003 for example).

(1—¢)?
(14¢)2"

that as ¢ — 1, 8 +2§ — 0 and thus, ceteris paribus, we have V' >

positively biased in the presence of SBMs, the bias decreases as ¢ — 1 and eventually

gl Jigz — oo and thus the bias increases.

However, the magnitude of the bias depends on the value of V. For example for small

The bias decreases when V' > The right hand side of this 1nequahty shows

1 T ¢ Although @ is

becomes zero. On the other hand as ¢ — —1,

D— @ =L 0 as ¢ — —1, while ¢ — ¢ =2, 1.8 when ¢ = —0.8 for large V. In general
the bias in ¢ lies between 0 and 2.

When ¢ = 0, the DGP is a mean plus noise process whose mean occasionally changes.

Theorem 2 With Assumptions 2 and 4, the asymptotic conditional distribution of the
LSE of ¢ in the misspecified model in (5) for the true DGP in (2) when ¢ =0 is given
by

& XN Zli(:l ThCh 9)
{Thocr e, Zle TiCi + 02

9



Again under Assumptions 8 and 4 we have

Q= —. (10)

Proof. See the Appendix. m

Although there are some similarities between Theorems 1 and 2, the asymptotic
result in (9) cannot be obtained from Theorem 1 by simply putting ¢ = 0. The con-
vergence in (9) and (10) is “almost sure” which is stronger than the convergence in
probability in (8). Again ¢ is asymmetric because of ¢Z. Equation (10) shows that the
asymptotic positive bias increases with V. When break sizes are relatively large so that

V(= 0%/0?) increases, ¢ increases even if the DGP is mean plus noise process. However
Sk TREE
Zé{zl chi +02

sure. Therefore contrary to the arguments of Campos et al. (1996), a stationary process

the process does not become a nonstationary process since 0 < < 1 almost

with structural breaks in the mean is not necessarily a unit root though the persistence
level of this process increases, and the DF test is biased toward accepting a stationary

process with breaks in mean.

2.3 Non-stationary Case

In this section the true DGP is assumed to follow a unit root process (i.e., ¢ = 1) with

structural breaks in mean;

2= 1 —=IL)ci 1+ Liey + 21 + &, (11)

The DGP is similar to ‘model (B)’ of Perron (1989) and those used by Leybourne et al.
(1998) and Kim et al (2000). Leybourne et al. (1998) and Kim et al. (2000) show that
the unit root null hypothesis is spuriously rejected when the true break in the series is
relatively early or soon after the assumed break. This is partially because the DF test

always converges under the null of a unit root whether or not the break occurs; and

10



this makes it difficult to distinguish between a unit root with SBMs and a unit root
without SBMs (see Leybourne et al., 1998). Hence, when the durations of breaks are
considerable so that the influence of breaks in the limiting distribution is significant, the
DF test can reject the null of unit root more often than in the conventional case. Our
analysis extends their research in the presence of multiple breaks.

Again, the misspecified AR model in (5) is estimated and the limiting distributions
of the LSE of the AR parameter for z; are derived.

Theorem 3 When the DGP follows (11), under Assumptions 2 and 4 the LSE of ¢ for

the misspecified model in (5) has the following limiting conditional distributions:

Case 1: @ —1=0,(1), or (12)
K Thk
N w O_E _1Ck SdW2k<S)
Case 2: T32(p —4(T)) - — k leK fOC%(Tk)S =B,or (13)
TksCk S p—1 kel 3
K c2(11)?
C 2 T(; 1 w Zk:l |: k(Qk) o C%—I(Tk*1)2:| C 1
ase . (90 - ) (rrer} K {( Ci(;k)s - ( )

K T (k) T(k)
Zk:l{ZT(k,1)+2 Zt2k71+ck ZT(k71)+2 Ztk—l}
K T(k)
Ek:l{z%(kfl)_FET(kfl)Jﬂ Z?k—l}

Proof. See the Appendix for proof. m

where y(T) = and limp__ o y(T) = 1.

By taking expectations, the limiting unconditional distributions of the biases as

defined in (13) and (14) are given by

£ —aP) = [ g [ BBl ) [[aR e 0. 05)

Zk 17'lc 1 k=1

L(T(G—1)P) —> /01 /RKIP’ Cl{re o)) [ dF.(cr)dF-(my)

Zk 1TR=1 k=1

respectively.
When the DGP follows a unit root process with SBMs, we have three different

limiting distributions. As in Kim et al. (2004), the limiting distributions display a wide

11



range of different characteristics, and the asymptotic properties of ¢ — 1 are achieved
by using various normalizing terms. When ¢ — 1 is normalized by 1 (the first case), @
is the consistent estimate of the unit root. However, ®» converges to unit much slower
than that in the standard unit root process. The second case shows that the LSE is
biased; the convergence rate is very fast, i.e., 7-%/2. The third case shows that the
convergence rate is T~!, the rate of the conventional DF test. Case 3 shows that the
order of structural breaks matters when there are multiple breaks in the series. This
is consistent with Leybourne et al. (1998) and Kim et al. (2000) who show that the
rejection of the unit root null hypothesis depends on where the true break in the series
lies.

It is well-known that without structural breaks in the DGP, the conventional DF unit
root test based on the statistics T(g —1) is consistent for the null hypothesis H, : ¢ = 1
against the alternative H; : ¢ < 1 since the test is convergent under the null whilst
divergent under the alternative at a rate proportional to 7'/2. Thus, the DF test has
power against the alternative hypothesis. However, when there are SBMs, the DF test
could diverge under the null hypothesis at a rate proportional to 72 in view of Case
2. This implies that under the null and the alternative the DF test could diverge. As a
result, the DF test is not robust to SBMs as conjectured in Leybourne et al. (1998).

An immediate question is whether we can distinguish unit root or stationary process
without SBMs from unit root with SBMs. This hypothesis can effectively be written as
Hy:{¢p=1landc, # ¢;Vk+#j}and H : {p =1and ¢, =0V k}|J{¢ < 1}?, and
the test for the null against the alternative can be constructed based on 7%2(3 — (7))
in which 7, ¢ and K can be estimated consistently by the method of Bai and Perron
(1998). Since it is straightforward to verify that the test is convergent under the null
and divergent under the alternative, the test is consistent, and consequently it has power
against the alternative H;.

Therefore using the consistency of the test based on 7%/2(3 —~(T)), we could resolve

the spurious rejection of the DF test in the presence of SBMs by using the following two

12



stage procedure: First, use the test based on T%2(%—~(T)) to test the unit root. Second,
if the test based on T%2(3% — +(T')) rejects the null then the set of remaining alternatives
is {¢ < 1} U{¢ = 1 and ¢, = 0 V k} which are then tested by the conventional DF
test. Furthermore, as the limiting unconditional distribution in (15) does not depend
on any nuisance parameter except for the number of regimes (K), thus the null is an
intersection hypothesis, i.e., Hy : ) §§£{¢ = 1 for a given number of breaks K}. The
test rejects the null if 7%/2(p — ~(T')) is too small, thus the rejection region of the test is

A2 = (1)) <R} = it {T°"(p (1)) bR
l{(;g {Tmck}i.(:l I{(;g {Tk-#k-}kK:l

where R is a critical value. Therefore, the test is efficient with the limiting distribution

K [Tl
P | inf | Bl{7s, e}, T =1 dF.(c})dF,(T43),
[ ﬁ%<|{M},§_l > ) [ R (eu)iriiry
where ||I'|| is the size of the set I'. The critical values of the test can be tabulated

by rather complicated simulations. For this reason, we leave further details for future

study.
Proposition 2 With Assumptions 1, 3, and 4, as K — oo the second case of Theorem
3 1s

T*P(p —(T)) = 0.

For the third case we have

e

<0, (16)

2

where o2

(00) and A-(00) are defined in Assumption 1.

Proof. See the Appendix for proof. m
The first result is straightforward. Equation (16) confirms the results of Leybourne

13



at el. (1998) in the presence of multiple breaks. If there are structural breaks in mean
in unit root process, rejections of the unit root do not necessarily imply that the true
process is stationary. The negative bias is a function of noncentral variance and skewness
of the duration variable 7.

Equation (16) suggests that break size becomes less important as K increases. This

point can be seen clearly when the break durations are presumably the same.

Remark 1 If 7, = & Vk such that 02(K) = 75 and A-(K) = &5, then

1 _
e = %5

. p. 3
¢_1:>_§pa

where p is the probability of breaks.

The result indicates that the asymptotic behaviour of » does not depend on break
sizes but on break probability. As the number of breaks increases with the number
of observations, break size and the order of breaks do not appear in the asymptotic

properties.

3 Simulations

The asymptotic results in theorems and propositions are not easy to interpret even
with this simple AR(1) process. We need to better understand how fast the asymptotic
conditional distributions could be achieved, and how the sample least squares (LS)
estimates behave for different values of ¢, different break sizes, and different numbers of
breaks. To answer these questions we simulate the asymptotic conditional distributions
and the compare the results with the sample LS estimates we obtain by estimating (5).

AR(1) series are generated for the sample sizes of =100, 200, 500, 1000, and 3000.
For the numbers of breaks, we set K —1=4, 9, 49, and 99 where K is the number of sub-
processes. The error term in the AR process follows standard normal, £, ~ N (0, 1), while

the sizes of structural breaks are drawn from three different normal distributions, i.e.,

14



e, ~ N(0,0.12), N(0,1), and N(0,10%), which have average break sizes (=o./o = V)
of 0.1, 1, and 10, relative to the AR error term. For the values of ¢, we take 1, 0.9, 0.5, 0,
and -0.5. Our main concern is AR processes with positive values of ¢, but we also include
-0.5 to see the effects of SBMs for negative values of ¢. For the asymptotic conditional
distributions we generate Brownian motions (Wj(1)) with 10000 i.i.d. standard normal
variates. We repeat the procedure 10000 times to obtain the sample LS estimates and
asymptotic conditional distributions.

Table 1 reports the results of » — ¢ at various percentage points for various numbers
of breaks, and break sizes, when the AR parameter is 0.5. When the numbers of breaks
are small and break sizes are small, i.e., K = 4 and o./0 = 1 or 0.1, our asymptotic
conditional distribution does not explain the sample distributions well. However except
these few cases the asymptotic conditional distributions in Theorems 1 and 2 explain the
sample distributions well. As expected as break size increases, the positive bias increases.
Sample distributions do not seem to approach the limiting distributions quickly. In some
cases 500 to 1000 observations are required to approximate the limiting distributions.

Panel A also shows the distributions of p — ¢ as K increases. As mentioned in
Assumption 3, we do not expect K is infinite in reality. The panel shows that ¥ — ¢
approaches %+1%¢ slowly as K increases from 4 to 99. In Panel B the effects of SBMs
for different values of ¢ are reported; p — ¢ is negatively related with the values of ¢.
As ¢ increases p — ¢ decreases, which confirms Proposition 1. The case of ¢ = —0.5 at
the bottom of Panel B shows that our analytical results also work well for negative ¢.

Figure 1 reports the Gaussian kernel densities of  — ¢ for various numbers of samples
and break sizes in the presence of SBMs when ¢=0.5 and K=9. For a large value of
o./o the mass of the densities move towards 0.5 with a larger negative skewness. AsT
increases the negative skewness decreases and thus the sample densities approach the
limiting distributions at the bottom of Figure 1.

We repeat a similar procedure for the unit root case in Theorem 3. Figure 2 shows

that the sample LS estimates of © are always negatively biased and thus the null unit root
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hypothesis will be rejected, which is consistent with the limiting conditional distribution
of case 3 of Theorem 3. We find that T%2(% — 1) in case 2 is symmetric around zero
and is not different from zero.® Although the limiting conditional distribution may show
non-trivial non-zero values of 7%/2(% — ~(T')) for smaller values of o./c, it approaches
zero as K increase as in Proposition 2. In addition, the limiting conditional distribution
in case 3 shows that T'(® — 1) is not trivial but » — 1 approaches a small negative
number as 7' increases. Thus though we have three different limiting distributions in
the presence of SBMs when the true process is unit root, the simulation results suggest

that it is case 3 that dominates the other two.

4 Conclusion

These results suggest several conclusions. First, by some asymptotic arguments and the
proposed conditional DGP approach we show that the LSE of the AR parameter has
an asymmetric limiting distribution when there are structural breaks in the mean of
a zero mean stationary AR(1) process. Structural breaks in mean lead to an increase
in persistence level that further depends on break sizes and break durations. On the
other hand, when the DGP follows a unit root with structural breaks in the mean,
three different limiting cases emerge. Monte Carlo simulations support our theoretical
findings.

Second, our results suggest that when there are SBMs, the conventional statistics we
use for inferences may not be appropriate. Because of slow convergence rates and biases
in the persistence level, the conventional Gaussian ¢ test and the DF test do not have
power for these processes. The analysis of time series such as forward discounts, equity
premium, or volatility becomes more difficult; and the differentiation between station-
arity and nonstationarity is ambiguous in the presence of structural breaks. Therefore,
we propose a new unit root test as a remedy to the problem of spurious rejection of unit

root by the DF test in the presence of SBMs as found in Leybourne et al. (1998).
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Notes

'Besides the relationship between structural breaks and persistence, a significant number of studies
focus on cointegration and long memory in the presence of structural breaks. Some recent studies on
these topics are Campos et al. (1996), Lobato and Savin (1998), Diebold and Inoue (2001) and Granger
and Hyung (2004). A vast literature has also developed around forecasting in the presence of structural
breaks. See the prominent work of Clements and Hendry (1996), and Pesaran and Timmermann (2005)
for a recent development in this area.

2Since we have assumed that the sample paths of the mean process with zero expectation vary
around zero, ¢ = 0 V k when there is no structural breaks in the mean.

3In the simulations we set v(T') equal to 1.
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Appendix

Liptser and Shiryayev (1989, page 582) show that if £ 1) — (& .7-"t(T) ) is a martingale

difference array, and the following conditions

(7]
P
> Bl IR = ¢,
t=1
Q T P
> E[lrder ol F] <50 for a e (0.1] and r € (0,1]

t=1

are satisfied, then
[T'7]

Zth = W(C;).

k=1

(17)

Using the above result, we derive the following lemma and corollary to prove theorems

and propositions in our study.

Lemma 1 Let & be a sequence of martingale differences with E[&,|F,—1] = 0 and

B[ Fi ] = 02 Let Sppm = S 006, ¥ 7€ (0,1]. If

(T7]

hm Z o7 =

where C'is a positive constant and g(T) is a positive finite function of T, then

Sir
lim 2

Jim o 2 wig(r),

where W(g(7)) is a Brownian motion with variance g(T).
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Proof. The proof follows by verifying the conditions of Liptser and Shiryayev’s result

above:

[T7] [T7]

Jim Y @B Fa] =0 lim Yy 6f = Cg(r)
t=1 t=1
(T'7]

[T'7]
T@m;¢5E [|£t|1(\5t|>¢;1a)|-ﬁfl} < lim max ¢§;E [|€t|1(\£tl>m)|ﬂf1 =0

T T—s000<t<T

in view of equation (3). m

The following corollary is a special case of Lemma 1.

Corollary 1 If ¢, = ¢' and |¢| < 1 then

1-¢?
: : (T7] 2t _ _¢?

Proof. The result follows since limp_o Y, ¢~ = 2 =
Proof of Theorem 1
Since

1 & 1 & W

DI S S

t=1 k=1 t)=T(k—1)+1

T(k)

T(k)—T(k-1) PRI

te=T(k—1)+1
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by the weak law of large number for covariance-stationary processes, the sample mean

of z; is asymptotically zero. Therefore the LSE of ¢ is

o Zt 1 Rtet— 1 (21)

Y=
Zt 1Zt1
Note
Zztztl—zztztl+ .+ Z AT R N o Z 2211,
t=T(k)+1
and
T T(1)
d o= Zztﬁ L+ Z gt t Z ztl,
t=1 t=T(k)+1 t=T(K

where T(k) = YF | [T'r;] with T'(0) = 0. We then obtain

& Zk 121‘,,c (k—1)+1 “tx ~t,—1
Zk 1 Ztk—T(k 1)+1 Zp 1
Zk 1 Ztk T(k—1)+1 (ck + dziy—1 + gtk)'ztk 1

Zk:l Ztk:T(k—l)H Ztrl

(22)

K T(k) K T (k) K (k)
Zk:l Ztk:T(k—1)+1 CrZt—1+ Zk:1 Ztk:T(k:—l)—i—l ¢Zt2k71 + Zk:l Ztk:T(k—l)H ftkz?fk—l

Zszl th;(i)T(kfl)+l %
ZkK:I Ck Zz;(i)T(lcfl)Jﬂ Zyp—1+ Zszl CkZT (k—1)
+ Zf 1 fo’“) T(k—1)+2 i 2t -1t Zf 1§k 1)+12T (k1)
> ohe 1ZT(k T(k—1)+2 2, - L+ IZT(k: 1)

:¢+

with {; = 0 and 2y = 0. Note that z;, _; can be rewritten as

trp—2

4 ¢7T(k71)71 ¢tk*1§T(k_1)+1 —+ Z ¢ é}k —j+T(k-1) | » (23)

=T (k—1)+1

Ck;

l—=¢

Ztkfl =

- T(k—1) j .
where Zpg—1)41 = 2r(k-1)+1 — ﬁ and Z] (T f—1)—1 gb]gtk.fjJrT(k;fl) = 0. We now derive

asymptotic properties of each individual elements in equation (22).
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1. Let A} defined as follows;

T (k)
AT = Z gtkztkfl
te=T(k—1)+2
T (k) c tp—2
. i1y i ,
= Z N 1_¢+¢ T ol 1ZT(k71)+1+ Z ¢]€tkfj+T(k71)
tp=T(k—1)+2 J=T(k—1)+1

e The first component of Aj: Note that since §,, is an ergodic MDS we have

T(k) T(k)-T(k—1)—1
TN g =T Y e (24)
te=T(k—1)42 tp=1

T(k)-T(k—1)—1

ST N g,

=1
[T7k]—1

= T72 )" ASy,,

tr=1

where Sy, = Z;’; 1 §; and A is the difference operator. Since
_ w.
T 1/282[T7k] — O_WQk(Tk) (25)

by Donsker’s IP (see Theorem 14.1 of Billingsley (1999)), we have the follow-

ing limit
C ®) CrLO
- ’ W Ck
T 1/2T¢ Z So = T2 ¢W2k<7-k)a (26)
to=T (k—1)+2

. Tr.]1—1 . . .
where 7, = limp__ o [ T:’;] and Wy, is a Brownian motion.
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e The second component of Aj: With a similar argument above we have

T(k) T(k)—T(k—1)—1
¢~ T Z £, 00 = Z O T (h1) 41
tk:T(k—l)—i-Q trp=1
T(k)—T(k—1)—1
d
= Z ¢tk£tk
tr=1
[TT1r]—-1
- Z ¢tk§tk
tp=1
= SiTry-1,

¢"&,, . Using Corollary 1 we have

[T7g]—-1
(27)

th=1

where Sl[TTk]—l =
Sl[Ts}—l % a\/EWM(l),

where C = - and Wi, is the Brownian motion. Therefore we obtain
(28)

T(k)
e W
2y T ETY E £ 0" = 2000 VCWii(1),
T(k—1)+2

where z,, denote the initial changing point of the process z; by Assumption

4.
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e The third component of Aj: We have

T(k}) tp—2

TRTED NG Y P e

te=T(k—1)+2  j=T(k—1)+1

T(k)-T(k—1)—1 te—1
=T Z §tp T (k—1)+1 Z &, (29)
tp=1 j=1

T(k)-T(k—1)—1  t,—1
d A
LN g, N e,
te=1 j=1
T(k)—T(k—1)—1
= T2 Z ASa, S1t,—1

tr=1

U ASy 7

= S sl—1-
S [T S s

tr=1 T

Since Sy, and Sy, are independent, an application of equation (27) and the
continuous mapping theorem yields the following limit:

T(k}) trp—2 2
172 —T(k—1)— ; w oV C
T 1/2¢ T(k—1)—1 Z £, Z ¢J€tk—j+T(k—1) — 5

ty=T(k—1)42  j=T(k—1)+1

Wlk(l)ng(Tk)

e Therefore the asymptotic property of A; is

T (k)

K
T4, = Tﬁl/ZZ Z b, 2t —1

k=1 t,=T(k—1)+2
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2. Using Equation (23), we have

T'(k) c T(k)
> e = T ¢<[Tm]—1>+¢—T<k—1>—1zm_1>+1 > gt
tp=T(k—1)+2 T(k—1)+2
tp—2

o D Z Z & E e (e-1)-

te=T(k—1)42 j=T(k—1)+1

Note that
T(k) (Try]—1
T T gy Z ¢t =T Z o = 0y(1).
T(k—1)+2 =1
In addition
te—2 T(k)—T(k—1)—1 t;—1
71¢7T(k71)71 Z Z ¢j€tkfj+T(k71) = Tl Z quftrﬂ'
=T (k—1)+2 j=T(k—1)+ te=1 7=l
[T7i]—1
L1 to~t Z Sttp—1
th=1

[TTh]-1 sl

fry qﬁ*l Z /;k Sl[Ts]—ldS

tr=1 T

% a\/ETka(l)

)
in view of Corollary 1. Therefore we obtain
T(k)
C
D L serh: T’“"gfwlk(l) +op(1),  (31)

tr=T(k—1)+2
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and

K
T4, = T’Ich Z Ztp—1

3. Since
T(k—1)—1
Ck—1 —T(k—2)— 1)~ 4
ZT(k—l) — - ¢+¢ T(k—2)—1 ¢T(k l)ZT(k_2)+1 + Z ¢]£T(k‘—1)—|—T(k}—2)—j—|—1 ,
J=T(k—2)+1
(32)
we have
K
T7P4;5 = T2 Crpnmzre—
k=1
- c
- k-1 )= T(k—2)—1 =
= T2 &runn (ﬂ + " DT E=2) 12T(k-2)+1>
k=1
K T(k—1)—1
+T 2 T2 ZfT(szl)Jrl Z O Er b1y 4T (k—2)—j+1
k=1 J=T(k—2)+1
= 0,(1), (33)
using equation (28) and similar arguments above.
4. From equation (32), we have
T(k—1)—1 T(k—1)—T(k—2)—1
g T2 Z P Erhoryrrh-2)—jr1 = O Z & Ere—1)—j+1
J=T(k—2)+1 J=1

T(k—1)—T(k—2)—1

(]

¢j§j
—1
A 0\/61/‘;1191 (1)

<
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in view of Corollary 1. In addition the limit of the second component in (32) is

Ck—1 T(k—1)—T(k— Ck—1
ﬂ+¢ (b=D)=T(b-2)=1p o) = ﬂ+0p(1),

Therefore we have

K
ZCkZT(k—l)
=1
K
_ (1
Ch—1 ZCW\/@WM 1( )—l—op(l).

%%
=

-6 & 5

5. Let A5 = Zle Zz;(i%“(k—l) +2 szfl. Using similar asymptotic arguments, we also

obtain

6. Finally we have

K
Z Z%“(k—l) (35)
k=1

%Z 22 IUIZWk “f ST W) + 0,(1)36)

1

Therefore, we arrive at the following expression:

W Op(T7H2) + 37, T1kc¢lf + 3 Cmm/_W (1)

SO_QS — TRCE CLTLOT T 0'2 ) (37)
Op(T71) + Y4 1z T2 > e 1k—kl\/7 WD)+ L TEEWE)
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Proof of Proposition 1

From equation (7) and Assumption 3, an application of Loeve’s SLLN yields

Zchka(l) = ZT}JV(@) g O, (38)

since Zszl Tr = 1 where 71, € (0,1) and 74 and ¢, are independent. Therefore

K o2 2 &
k
DT AW = T E > W) (39)
k=1 k=1
ws O
— 39
l—9¢
since
K K
S W) S S =1
k=1 k=1
Furthermore,
K K
Klim chi = lim Zmei — 0?, (40)
= =
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since the random component ¢; moves around zero with volatility 2. Therefore equa-

tions (38), (39), (40), and (7) together with Assumptions 3 give

lim S, {2 4 enelly (1))

. A T—00,K—0
T olérlr(l OOE -
—00, X — . K chk CLTKO Tk02 2
Tﬁolé,%ﬁoo k—l{(l ¢)? +2(1—¢)\/1—¢2Wk(1) =7 Wi (1 )}
V

= T (41)
1-¢ + 1+¢

= A—Oo >0,

where V = ¢2/0?, and A, and By, are obviously defined. It is straight forward to show

-2 -2
5 A\ 1 a Aoo o \% 1 \%4 1

0 00 $)>
8_¢<B_> <0WhenV> 1+¢;

The second case shows that we have

Proof of Theorem 2

Note that

% Zf:l th;(i)T(k—l)+1 Pty Pt -1
25:1 Zf;(i)T(k_l)H Zt2k71
25:1 Zz;(i)T(k—l)—s—l(Ctk + gtk)<ctrl + ftk—l)
Zszl Zz;(izf(k—l)—l—l(ctk—l + &1)?
Sica(excor + (T = 1) + 3k e X Oy €
o F S (1&g + ZZ;(E)T(IC*I)JF? &)+ Ztk:T(kfl)Jrl €08t (42)
S G+ AT - )+ S S a e
+2 Zk 1 (e 167 (k—1) T Ck ZT(k T(k—1)+2 &t—1)
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We have

T(k) T(k)—T(k—1)
Z gtkgtkfl = Z ftk+T(k71)€tk+T(k71)fl
T(k—1)+1 tr=1
T(k)—T(k—1)

D DR Rt

t=1

Since FE(&&, 1| Fi-1) = &1 E(&|Fi—1) = 0 thus £, is a sequence of martingale
differences. An application of SLLN for martingale difference sequences (White, 1984)

yields
1 [T7]
& 1 =50, thus (43)
TTk]
Z iy = 0, (44)

max| TTk}k ) =

e Since &, is an ergodic MDS, we have ZZ@T(kq)H & < g;’“l] £, We apply

SLLN for MDS to obtain

[T7k]

TT thk 22,0, thus,

te=1
[T7]

1 a.s
e T 2

e Since &, is an ergodic MDS, we obtain Z;EZZD 1 ka_l 2 Zgl’“l} ka. By applying

Etemadi’s SLLN for non-negative £5 random variables we get

[T'7g] 2

Z T R — (45)

250 T [l

max[{ T’Tk 1M
By dividing both the numerator and denominator of equation (42) by max[{r }X_]
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together with equations (43) to (45) we have

K 2
) s, I;kzl 7—2ka (46)
Y b1 ThCh + 02

Since ¢ is a sample path of the occasionally changing process ¢; generated by ¢;, an

application of SLLN for MDS yields

K
chi 2% 0% as K — 0. (47)
k=1
Therefore, we obtain
— f— .
7 o402 V41
Proof of Theorem 3
The LSE of ¢ is given by
K K T(k
ket AT 7T (1) + Dy tk(:zf(kq)n by -1
Y= K o K ~—T(F) 5 : (49)
Dk “rk-1) + D ket Ztk:T(k—l)-ﬂ Aip—1
Since
T(k) T(k) T(k) T(k)
Z 2ty Zty—1 = Ck Z Zt)—1 T Z Ztgk,1 + Z by Zte—15
t=T(k—1)+2 tp=T(k—1)+2 t=T(k—1)+2 tp=T(k—1)+2
we obtain

K K T(k
D k1 AT(=1)+12T(e—1) + Dy Ch Ztk(:)T(k—l)—i-Q Ftp—1
K T(k) K
+ Zk:l Ztk:T(k:fl)Jﬂ gtkztrl - Zk::l Z%(kfl)
K K ~~T(k)
Py Z%(k—l) +2 ZT(k—1)+2 Zp 1
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or

T(k)
Zk 1 {ZT k—1)+2 Ztk 171 Gk ZT(k 1)42 “ti—1

K T(k
} Zk=1 {ZT(k—l)HZT(k—l) + ZTEk)—l)—i—Q gtkztrl}

Zk 1{2Tk 1)+2Tk 1)+22tk 1}

K T(k)
2 k=1 {Z%(kq) + 2 (k1) 42 thk_l}
(51)

Let’s derive the limiting distributions of the terms in equation (50).

1. Using

te—1

Zt—1 = ZT(k—l)—l—l + (tk — T(k — 1) — 2)Ck + Z €j,

we define By as follows

T (k)

— E 2
Bl = Ztk71

T(k—1)+2

(k) F-1y41 T Gt

F=T(k—1)+2

R R O

— Z +2c,2r(e—1y41(te — T(k — 1) — 2) 4+ 22p4-1)+1 Z; }lk 142§ (52)

=T(k—1)+2

e First we have

T(k)

200t — Tk — 1) = 2) X% 110 &

T Y g = Fggn T (Tk)=T(k=1)—1) = 207k, (53)

tr=T(k—1)+2

e and
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T(k)—T(k—1)—2
22 = T Y g
tr=0
2k




e The third component becomes

2

T(k) te—1 T(k)—T(k—1)—1 /t;,—1 2
S SR U v B SR ) SER

t=T(k—1)+2 \ j=T(k—1)+2 tp=1

TTk} 1 tk+1 2

. / S2[Ts l
B T
tr=1 T
SN / W2( (55)
0
using Donsker’s IP and the fact that &, is an ergodic MDS.
e Using a similar method as in equation (54), we also have
T(k) T(k)—T(k—1)—2
ckzr—ty L2 Z (th—Tk—-1)—2) = gl Z Ly
te=T(k—1)+2 t=0
2
= ckzoo%, (56)
by the same argument as (54) and
T(k) tp—1 T(k)—T(k—1)—1t,—1
_ d _
T3 2141 Z Z §; = 2y T2 Z Zf
thT(k‘fl)+2‘j=T(k71)+2 tp=1
[T7)
= Zrg i / Sth 1 1
tk 1 T
s 20 Wk( )ds, (57)

0

by the same argument as (55).
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e Finally

T(k) t—1 T(k)~T(k—1)—1  t,—1
_ d e
TRy, W=Tk=D=2) > g =TS ) g
te=T(k—1)+2 j=T(k—1)+2 tp=1 Jj=1
B [TTzk]:l/ TS SQ[TS
B [ T
tr=1 T

:>O/ Sng( )d ,
0

by the same argument as (55)
e Therefore the asymptotic property of B; is

2 3
3B, 2% C’“(;’“) +0,(T7?) (58)

2. We next define B, and investigate the asymptotic property of Bs.

T(k)
B, = Z ftkztk,l
tp=T(k—1)+2
T(k) tp—1
— > by ey talte —TR=1)=2)+ > & (59)
te=T(k—1)+2 j=T(k—1)+2
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Similarly,

T73/2Ck

Finally

tp—1

éj = 7!
tp=1 J=1
T(k)-T(k—1)—1  #,—1
d e
ST Y G2l
tp=1 j=1
T(k)-T(k—1)—1
= 7! Z ASo, Sar, -1
tk 1

t+1
o S2[Ts S2 Ts]

- ST St

tp=1

%02/0 Wor(s)dWay(s).

T(k)~T(k—1)—1
Z it T(h—1)42 Z e h—1)+1

T(k) T(k) =T (k—1)—1
S g t—Tk-1)-2)  ET¢ Y e,
=T(k—1)+2 tp=1
ty+1
= ¢ Z /k 5] AS2[Ts]+1
tp=1
W T
== ack/ sdWay(s)
0
T(k) [Tri]—1
T2 Z §o,2T(-1)+1 = Zr(k-1)+11" =k Z §
tr=1

t=T(k—1)+2
W
— ZOOO-WQk<Tk).

Thus,

Tk
T-%2B, N ack/ sdWay(s) + Op(T_1/2).
0
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3. Let us define

B3E

where

Thus

4. Let

By =

+22T(k—2)+1 Z fj + QCk_l([TTk_l] - 1) Z gjv

G=T(k—2)+2 =T (k—2)+2

T2 _(([T151] = 1) = ¢ _1(15-1)%,

T(k—1)
Til Z 5‘7 % U2W22k71(7—k—1)7

=T (k—2)+2

TﬁlZT(k—Q)-&-lefl([Tkal] — 1) = ZooCh-1Tk-1,

T(k-1)
— w
TP Y & = 2000 Wi (Thoa),
j=T(k—2)+2
T(k—1)
T73/2Ck_1([TTk_1] — 1) Z gj % Tk_lck_lo'Wk_l(Tk_l).
j=T(k—2)+2
—_ —_ W, —_
T2By =T "2 1) = Gy (Tia)” + Op(T72). (64)
T(k) T(k) T'(k)
Z Z—1 = Z ZT(I@—I)—}—I + Z (tk - T(k - 1) — 2)Ck
=T'(k—1)+2 tk:T(k71)+2 tpe=T(k—1)+2

t—1

+Z > &

tR=T(k—1)42 j=T(k—1)+2

2
RT(k—1)
T(k—1) 2
gy T ([(TTha] — 1), + Z |+ 22— 11 ([TTrea] — 1)
J=T(k—2)+2
T(k—1) T(k—1)

T(k)—T(k—1)—2 T(k)—T(k—1)—1 t;,—1

< 20—y 41 ([T Th-1] — 1) + i Z iy + Z

tr=0 te=1
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since &, is an ergodic MDS. We have

TﬁlZT(k—l)—&-l([Tkal] — 1) = 20074,
T(k)—T(k—1)—2 ()2
T 2¢ Z ty = M B in view of equation (56),
2
tr=0
T(k)—T(k—1)—1 t),—1 -
732 == O'k/ Wi(s)ds in view of equation (57).
> Yo

te=1 j=1

Therefore, we obtain

T(k) 272
T_QCkB4 = T_2Ck Z 2t —1 — % + OP(T_I/Q).
tp=T(k—1)+2

5. Finally since zpg—1) = 2r@g—2)41 + (T'(k = 1) =T(k —2) = 1)cp—1 + Z;‘.FZ(ICT_(;)_Q)H &

we have

Bs = 2r@-1)41270-1)
T(k—1)
= Zr(e-1)11 | 2r(-2)+1 + o1 (T(k=1) =T(k=2) - 1) + Z &l
J=T(k—2)+2
where
RT(k—1)+12T(k—2)+1 — (zoo)2>
T_IZT(k_1)+1Ck_1<T(]€ — 1) — T(k — 2) — 1) > Zo0Ck—1Tk—1,
T(k—1) T(k—1)—T(k—2)—1
_ d e W
T 1/2ZT(k—1)+1 Z fj =T 1/2ZT(k—1)+1 Z 5,- - ZooUWk(kal)‘
=T (k—2)+2 j=1
Therefore
T71B5 = T’lzT(k_l)HzT(k_l) — Z200Ck-1Tk—1 T Op(T71/2). (65)
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Summarising, we have

2 3
T-3B, — —C’f(;k) +0,(TY?) (66)
Tk
Twﬁﬁiga%/‘sﬂ%AQ+OgT”%. (67)
0
T?Bs =% & (14-1) + O,(T?). (68)
2 2
T2, By = @ +0,(T12). (69)
T'Bs SN Ch-1%5Th—1 + Op(T71/2) (70)

Equations (66) to (70) yield the following asymptotic properties of ¢:

e From Equation 49 we have:

p—1=0(1)
e On the other hand from equation (51) we have:

K T _
T3/2(¢_ 1) % O-Zk 1 Ck f[)lC SdW2k< )+OP<T 1),

S 12& %) + O,(T-1/2)

in view of

K T(k T(k
. > ke {ZT(k)fl 42 ZtZk—l + Ck ZT(k)fl)J& Ztrl}
lim = lim (7))

T—s00 T—o00
Zk l{sz: 1) +2Tk 1+2Ztk 1}

O 2}
BV} vl
| =
3 [eo|
Ed ol
&
w w
—

w

e Finally from equation (50) we have :

K c2(1g)? K —
T 1) W Zb P - B A (me) + 0T
PR o, (T
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Proof of Proposition 2

Assumptions 1 and 3 and an application of SLLN for ergodic MDS give:

K K
) 1 ) 1 -
i g 2 Gl = Jim 2 ) ek = Pladi] = oo

K
: 1 -
lim 174 kg_l ci(t)® = Blei7)] = 02\ (00).

K—00

Proposition 2 follows.
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Table 1 Percentage Points of the Distributions of p—¢ for Various Number of Breaks, Break Sizes,

and AR Parameters In the Presence of Structural Breaks in Mean
AR(1) series are generated for the sample sizes of T=100, 200, 500, 1000, and 3000. For the numbers of breaks, we use 4, 9,
49, and 99. The error term in the AR process follows standard normal, N(0,1), while the sizes of structural breaks are drawn
from three different normal distributions, i.e., N(0,0.12), N(0,1), and N(0,10?), which have average break sizes of 0.1, 1, and
10, relative to the AR error term. For the values of ¢, we take 1, 0.9, 0.5, 0, and -0.5. For the asymptotic distributions we
generate Brownian motions with 10000 i.i.d. standard normal variates. We repeat the procedure 10000 times to obtain the
sample LS estimates and asymptotic distributions.

A. The Effects of Structural Breaks in Mean for Various Number of Breaks, Break Sizes, and Number of Observations

AR | Number Total
4 Break [ Number of Percentage Points of the Distributions
Parame of . .
‘ Break Size | Observation
or | e s 1%  2.50% 5% _ 10% _ 50%  90%  95% 97.50%  99%
100 0.321 0374  0.407 0.434 0473 0488 0.491 0.492 0.494
10 200 0.403 0.432 0.449 0.463 0.485 0.493 0.495 0.496 0.496

500 0.434 0.456  0.468 0.479 0.492 0.496 0.497  0.498 0.498
1000 0.443 0464 0475 0.484 0.495 0.498 0498  0.498 0.499
Limit 0.439 0.455 0.465 0474 0498 0.522 0.532  0.542 0.556

0.5 4 100 -0.055 -0.002  0.043 0.099  0.292 0404 0422 0.435 0.447
1 200 -0.014  0.028  0.075 0.128 0.309 0413 0429 0.441 0.452
500 0.028 0.061  0.095 0.140  0.313 0416 0.433  0.445 0.456
1000 0.033 0.064 0.099 0.147 0314 0416 0.434 0.445 0.456
Limit -0.057 0.063  0.131 0.195 0.374 0.556 0.625 0.702  0.819

100 -0.224 -0.184 -0.155 -0.121 -0.001 0.104 0.131  0.152 0.177
0.1 200 -0.151 -0.123 -0.104 -0.079  0.004 0.081 0.101  0.118 0.135
500 -0.090 -0.073 -0.059 -0.043  0.009 0.059 0.073  0.085 0.098

1000 -0.058 -0.048 -0.038 -0.028 0.010 0.048 0.059 0.068  0.077
Limit -0.153  -0.111 -0.082 -0.055 0.015 0.085 0.111 0.142  0.184

100 0.135 0.164 0.186 0.211 0.290 0351 0366  0.377 0.389
10 200 0.333  0.347  0.357 0.368 0.404 0.430 0.437 0.442 0.448
500 0.435 0.441 0.445 0.449 0462 0.472 0475 0477 0.479
1000 0.467 0470 0472 0.474 0.481 0.486 0.487  0.488 0.489
Limit 0.485 0.487  0.489 0.491 0498 0.506 0.508  0.509 0.511

0.5 49 100 -0.025 0.011  0.041 0.073 0.175 0257 0277 0294 0311
1 200 0.137 0.164 0.183 0206  0.273 0327 0340 0.351 0.363
500 0.233  0.252 0266  0.281 0.331 0371 0.380  0.388 0.396
1000 0.268 0.282 0294 0307 0351 0386 0395 0.402 0.409
Limit 0.268 0.288 0.304 0320 0375 0.429 0446 0459  0.477

100 -0.229 -0.190 -0.158 -0.121  -0.005 0.099 0.124  0.145 0.169
0.1 200 -0.151 -0.125 -0.103 -0.078  0.002 0.078 0.099 0.115 0.132
500 -0.084 -0.069 -0.056 -0.042 0.010 0.058 0.070  0.082 0.096

1000 -0.055 -0.045 -0.035 -0.024 0.012 0.047 0.056 0.064 0.074
Limit -0.026 -0.019 -0.013 -0.006 0.015 0.036 0.042  0.048 0.055

200 0.191 0.210 0.225 0.241 0.294 0339 0350 0.359 0.370
10 500 0.389  0.396  0.401 0.407 0425 0441 0445 0.448 0.452
1000 0.445 0.448 0.451 0.454 0463 0471 0472 0474 0475
Limit 0489 0490 0492  0.493 0.498 0.504 0.505 0.506  0.508

200 0.049 0.072  0.091 0.113 0.182 0241 0.256  0.270 0.283
0.5 99 1 500 0.215 0230 0.242 0.255 0.296 0332 0341  0.349 0.358
1000 0.269 0.280  0.290 0.301 0.335 0363 0370 0.376 0.383
Limit 0.304 0.316 0.324 0.336 0.375 0.414 0.425 0.434 0.446

200 -0.155 -0.127 -0.107 -0.081 0.001 0.073 0.091 0.109  0.130
0.1 500 -0.090 -0.074 -0.058 -0.043 0.008 0.055 0.067 0.079  0.091
1000 -0.055 -0.044 -0.034 -0.025 0.011 0.044 0.054 0.062 0.071
Limit -0.013  -0.009 -0.005 0.000 0.014 0.030 0.034 0.039  0.043




B. The Effects of Structural Breaks in Mean for Different AR Parameters

AR |Number Total Percentage Points of the Distributions
parame|  of Break | Number of
Size |Observation| 1%  2.50% 5% 10% 50% 90% 95% 97.50% 99%
ter | Breaks s

100 0.035 0.050 0.061 0.069 0.088 0.095 0.096 0.097 0.098
10 200 0.070 0.076 0.082 0.086 0.094 0.098 0.098 0.099 0.099
1000 0.094 0.096 0.097 0.097 0.099 0.100 0.100 0.100 0.100
Limit 0.097 0.098 0.098 0.099 0.100 0.101 0.102 0.102 0.103
0.9 9 100 -0.013 0.008 0.024 0.039 0.073 0.088 0.091 0.092 0.094
1 200 0.033 0.047 0.056 0.065 0.083 0.092 0.094 0.095 0.096
1000 0.065 0.073 0.078 0.082 0.092 0.096 0.097 0.097 0.098
Limit 0.069 0.074 0.078 0.082 0.095 0.107 0.111 0.115 0.121
100 -0.175 -0.138 -0.112 -0.085 -0.011 0.035 0.045 0.052 0.059
0.1 200 -0.095 -0.077 -0.062 -0.046 0.001 0.034 0.042 0.047 0.053
1000 -0.028 -0.022 -0.016 -0.009 0.011 0.029 0.034 0.038 0.042
Limit -0.028 -0.020 -0.012 -0.005 0.016 0.037 0.043 0.051 0.061
100 0.355 0.383 0400 0418 0.457 0478 0.482 0485 0.488
10 200 0.425 0439 0449 0458 0478 0488 0.490 0.492 0.493
1000 0.478 0.483 0486 0488 0.494 0497 0497 0497 0.498
Limit 0464 0471 0476 0482 0498 0.514 0.520 0.525 0.533
0.5 9 100 0.023 0.080 0.122 0.169 0.306 0.389 0.405 0417 0.429
1 200 0.090 0.129 0.165 0.206 0.327 0.402 0.417 0428 0.440
1000 0.134 0.171 0.203 0.238 0.343 0412 0427 0438 0.448
Limit 0.119 0.174 0211 0252 0375 0497 0.543 0.584 0.638
100 -0.223 -0.186 -0.155 -0.119 0.002 0.106 0.132 0.154 0.177
0.1 200 -0.147 -0.123 -0.100 -0.076 0.006 0.082 0.102 0.119 0.139
1000 -0.056 -0.045 -0.036 -0.025 0.012 0.048 0.058 0.066 0.076
Limit -0.081 -0.064 -0.048 -0.032 0.015 0.063 0.079 0.096 0.115
100 0.641 0.702 0.751 0.791 0.884 0.937 0.948 0955 0.965
10 200 0.786 0.828 0.854 0.879 0.935 0.964 0970 0974 0.978
1000 0910 0.928 0942 0953 0.976 0.987 0.989 0990 0.992
Limit 0.876 0900 0916 0935 0990 1.045 1.062 1.079 1.102
0 9 100 0.004 0.059 0.111 0.174 0.397 0.592 0.639 0.682 0.721
1 200 0.057 0.108 0.156 0209 0.412 0.607 0.657 0.695 0.735
1000 0.104 0.143 0.181 0.230 0.429 0.619 0.662 0.702 0.743
Limit -0.098 0.013 0.118 0214 0499 0.782 0.878 0.979 1.100
100 -0.218 -0.185 -0.156 -0.122 0.009 0.136 0.172 0.205 0.237
0.1 200 -0.156 -0.130 -0.107 -0.082 0.008 0.100 0.125 0.148 0.179
1000 -0.065 -0.054 -0.043 -0.031 0.009 0.050 0.061 0.072 0.085
Limit -0.111 -0.088 -0.068 -0.047 0.010 0.066 0.085 0.102 0.128
100 0.685 0.798 0.885 0976 1.189 1.323 1.350 1.372 1.394
10 200 0.936 1.035 1.101 1.160 1.308 1.392 1408 1.420 1.432
1000 1.188 1.246 1290 1.328 1.413 1453 1460 1465 1471
Limit 1.156  1.214 1264 1312 1458 1.597 1.643 1.691 1.753
-0.5 9 100 -0.036 0.004 0.042 0.091 0297 0.548 0.626 0.692 0.759
1 200 0.013 0.044 0.077 0.117 0304 0.536 0.613 0.668 0.752
1000 0.055 0.083 0.107 0.140 0.303 0.528 0.602 0.661 0.748
Limit -0.390 -0.248 -0.128 0.003 0.371 0.735 0.858 0971 1.114
100 -0.163 -0.136 -0.116 -0.089 0.015 0.135 0.171 0.203 0.241
0.1 200 -0.123  -0.104 -0.086 -0.066 0.009 0.093 0.117 0.141 0.169
1000 -0.055 -0.047 -0.039 -0.029 0.005 0.042 0.053 0.064 0.074
Limit -0.098 -0.076 -0.060 -0.043 0.006 0.055 0.072 0.087 0.108




Figure 1 Kernel Densities of o—¢ for Various Number of Samples
and Break Sizes In the Presence of Structural Breaks in Mean

When ¢ =05and K —1=9
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Figure 2 Kernel Densities of p—1 for Various Number of Samples

and Break Sizes In the Presence of Structural Breaks in Mean
When K —1=9
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