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a b s t r a c t

Neuronal firing in the hippocampal formation relative to the phase of local field potentials (LFP) has a key
role in memory processing and spatial navigation. Firing can be in either tonic or burst mode. Although
bursting neurons are common in the hippocampal formation, the characteristics of their locking to LFP
phase are not completely understood. We investigated phase-locking properties of bursting neurons
using simulations generated by a dual compartmental model of a pyramidal neuron adapted to match the
bursting activity in the subiculum of a rat. The model was driven with stochastic input signals containing
a power spectral profile consistent with physiologically relevant frequencies observed in LFP. The single
spikes and spike bursts fired by the model were locked to a preferred phase of the predominant frequency
band where there was a peak in the power of the driving signal. Moreover, the preferred phase of locking
shifted with increasing burst size, providing evidence that LFP phase can be encoded by burst size. We also
provide initial support for the model results by analysing example data of spontaneous LFP and spiking
activity recorded from the subiculum of a single urethane-anaesthetised rat. Subicular neurons fired
single spikes, two-spike bursts and larger bursts that locked to a preferred phase of either dominant slow
oscillations or theta rhythms within the LFP, according to the model prediction. Both power-modulated
phase-locking and gradual shift in the preferred phase of locking as a function of burst size suggest that
neurons can use bursts to encode timing information contained in LFP phase into a spike-count code.

© 2015 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Local field potentials (LFP) are fluctuating extracellular electri-
cal signals that result from the sum of currents across all excitable
membranes within a local volume (Logothetis, 2003; Buzsaki et al.,
2012). A major contributor to the LFP is the combined synaptic
activity of neuronal populations (Einevoll et al., 2007; Pettersen
et al., 2008). Neuronal firing relative to the phase of ongoing LFP
oscillations in the hippocampal formation has been linked with spa-
tial navigation (O’Keefe and Recce, 1993; Skaggs et al., 1996) and
memory processing (Lisman and Idiart, 1995). Moreover, evidence
from the monkey sensory cortices suggests that more information
about stimuli can be transmitted if the LFP phase at which spikes
are fired is taken into account (Montemurro et al., 2008; Kayser
et al., 2009). The phase of LFP oscillations has been proposed to be
involved in keeping timing information for neural communication
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(Fell and Axmacher, 2011). Thus, locking of neuronal firing during
a preferred phase range can be a mechanism of transmitting infor-
mation for cognitive processing. Although pyramidal neurons in the
hippocampal formation are known to lock their firing to LFP phase,
the conditions of this phase-locking are not completely understood.

Two factors that may affect the locking properties of pyrami-
dal neurons are the frequency composition of the LFP and the
dynamics of individual neurons. The former is relevant to the hip-
pocampal formation since this area is characterised by well-defined
oscillatory states that correlate with cognitive function. Regarding
neuronal dynamics, pyramidal neurons can fire in either tonic or
bursting modes. The existence of bursting neurons in the hip-
pocampal formation has been long documented (Ranck, 1973).
Bursting activity is an important mechanism for neural commu-
nication because bursts consisting of different spike counts can
provide more basic symbols in the neural code (Kepecs and Lisman,
2003; Samengo et al., 2013). Modelling studies have provided some
evidence that bursting pyramidal neurons can lock to different
phases of the LFP depending on the burst spike-count (Samengo
and Montemurro, 2010), but this has not been tested in specific
models based on experimental data. We address this by studying
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phase-locking of bursting activity in the subiculum which is known
to contain intrinsically bursting neurons (Sharp and Green, 1994;
Gigg et al., 2000). The subiculum is the major output structure of the
hippocampus (for reviews on the subiculum see O’Mara et al., 2001;
Gigg, 2006). Similarly to the hippocampus, neurons in the subicu-
lum encode spatial information (Kim et al., 2012) as for example
the boundary vector cells which are neurons that fire when a rat
encounters boundaries in space (Lever et al., 2009).

We used a neuron model and example in-vivo data from the
subiculum of a single rat to investigate how bursting neuronal
dynamics and LFP frequency components affect phase-locking. The
model predicted that bursting neurons locked their firing to a pre-
ferred phase of dominant rhythms irrespective of the frequency of
these rhythms and phase preference shifted with increasing spike
count. We show that subicular bursting neurons locked their firing
to a preferred phase of dominant slow oscillations or theta rhythms
within the LFP and the preferred phase of locking to dominant slow
oscillations changed depending on the spike count according to
model predictions. These results suggest a mechanism of encoding
timing information in burst spike-count.

2. Materials and methods

2.1. Bursting neuron model

A two-compartment (dendrites and soma) conductance-based
model of a bursting pyramidal neuron was used for all simula-
tions (Fig. 2A). This model is a reduction of a 19-compartment
(Traub et al., 1991) to a two-compartment model of a CA3 hip-
pocampal neuron (Pinsky and Rinzel, 1994) which was simplified
by Kepecs and Wang (2000) to include the minimal ionic conduc-
tances required to generate bursting. This model has been used
to investigate the properties of bursting in response to different
stimuli in previous studies (Kepecs et al., 2002; Kepecs and Lisman,
2003; Samengo and Montemurro, 2010). For the purpose of this
study, the model was fitted to match its responses to realistic burst
firing in the rat subiculum. To achieve this, we used the equations
and parameters as described in Samengo and Montemurro (2010)
and adjusted four parameters (gK, gNaP, gKS and Cm) so that the prob-
ability of firing bursts of size n, where n is the number of spikes in
a burst and n = 1 for single spikes, is similar to the firing probability
of subicular neurons (Figs. 1B, C and 2C, E, G, I).

An input current I(t) injected into the dendritic compartment
produced bursting activity in the somatic compartment according
to:

Cm
dVd

dt
= −IL − IKS − INaP − gc

Vd − Vs

1 − p
+ I(t) (1)

Cm
dVs

dt
= −IL − IK − INa − gc

Vs − Vd

p
(2)

The relative area between the two compartments was p = 0.15
and the coupling conductance was gc = 1 mS/cm2. The somatic com-
partment included a Na current: INa = gNam3∞h(Vs − ENa), where
m∞ = ˛m/(˛m + ˇm), ˛m = −0.1(Vs + 31)/(exp(−0.1(Vs + 31)) − 1),
ˇm = 4 exp(− (Vs + 56)/18), ˛h = 0.07 exp(− (Vs + 47)/20) and
ˇh = 1/exp(−0.1(Vs + 17)) + 1); and a K current: IK = gKn4(Vs − EK),
where ˛n = −0.01(Vs + 34)/(exp(−0.1(Vs + 34)) − 1) and
ˇn = 0.125 exp(− (Vs + 44)/80). The dendritic compartment
included a persistent Na current: INaP = gNaPr3∞(Vd − ENa),
where r∞ = 1/(exp(− (Vd + 57.7)/7.7) + 1); and a slow K cur-
rent: IKS = gKSq(Vd − EK), where q∞ = 1/(exp(− (Vd + 35)/6.5) + 1),
�q = �q0 /(exp(−(Vd + 55)/30) + exp((Vd + 55)/30)) and �q0 = 200.
The leak currents were described by IL = gL(V − EL), where V is
Vd or Vs. Each gating variable x followed the kinetics equa-
tion: dx/dt = �x(˛x(1 − x) − xˇx) = �x(x∞ − x)/�x. The maximum

Fig. 1. (A) Average power-frequency spectrum of LFP recordings in the rat subicu-
lum under urethane anaesthesia. During the 1-h recording, there were two spectral
peaks: a wide peak at 1–2 Hz and a sharper peak at about 4 Hz. (B and C) Average
probability of a bursting neuron in the subiculum of a urethane-anaesthetised rat fir-
ing an n-spike burst when slow oscillations (B) or theta rhythms (C) were dominant
in the LFP. The errorbars indicate standard deviation.

conductances (in mS/cm2) were gNa = 45, gK = 15, gL = 0.18,
gNaP = 0.08, gKS = 0.7 and the reversal potentials (in mV)
were ENa = 55, EK = −90, EL = −65. Membrane capacitance
was Cm = 0.6 �F/cm2. The temperature scaling factors were
�h = �n = 3.33 and �q = 1. The model was integrated with the 4th
order Runge–Kutta method with a time step of 0.01 ms.

2.2. Input to the model

LFP are broadband signals containing power spectral peaks
within frequency bands which are usually associated with different
behavioural states. The input to the model was a time-varying sig-
nal which simulated physiologically relevant rhythms present in
LFP. To obtain this input, a signal containing one peak at a selected
frequency in the power-frequency spectrum was added to a back-
ground coloured-noise signal. The background signal simulated
low-power oscillations and temporal correlations present in LFP.
To generate the background signal, a white-noise process was con-
volved with an exponential kernel and then high-pass filtered with
a 3rd order Butterworth filter with a cut-off frequency of 1 Hz to
remove low frequency components. To create the signal with a peak
in power at a given frequency, a white-noise process was narrow-
band filtered with a Kaiser filter (width of band was 1 Hz) so that the
signal contained only a sharp peak centred at either 1, 4, 8 or 12 Hz
in the power-frequency spectrum. The background coloured-noise
and frequency peak signals were scaled to have standard devia-
tion of 0.02 and 0.03, respectively, and then added together. The
resulting signal was scaled again to have mean � = 0 and standard
deviation � = 1.2 for the 1 Hz peak and � = 0.8 for the remaining
three peaks. This difference in standard deviations was required to
reflect that slow oscillations have higher amplitude compared to
higher frequency rhythms. Assuming that the LFP can be simulated
by the sum of synaptic inputs to neurons (Mazzoni et al., 2008),
the input was injected as current into the dendritic compartment
of the model (Eq. 1).
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Fig. 2. (A) Diagram of the two-compartment model of a bursting pyramidal neu-
ron showing the ionic currents. The input signal Iinput is injected into the dendritic
compartment and bursting activity is recorded from the somatic compartment. (B,
D, F and H) Power-frequency spectra of input signals to the model. The input signal
consists of background coloured noise and a power spectral peak at either 1 Hz (B),
4 Hz (D), 8 Hz (F) or 12 Hz (H). (C, E, G and I) Probability of the model firing an n-spike
burst when the input signal comprised the frequencies depicted in the plots at the
left.

2.3. In vivo electrophysiology

All experimental procedures were carried out in accordance
with the Animals (Scientific Procedures) Act UK 1986. Ethical
approval was provided by the University of Manchester Ethical
Review Panel. In vivo electrophysiological recordings of LFP and
spiking activity were obtained from an adult male Sprague Daw-
ley rat (Charles River, UK: 332 g, group-housed in a pathogen-free
environment with food and water available ad libitum, maintained
on a 12-h light:dark cycle).

Initial anaesthesia was induced via i.p. injection of urethane
(30%, w/v in 0.9% saline, 1.8 g/kg) and top-up doses of urethane
(between 0.1 and 0.15 ml) were administrated at approximately

30-min intervals until areflexia was achieved. Body temperature
was kept at 37 ◦C using a homeothermic heating pad. The rat was
head-fixed in a stereotaxic frame and a 2-mm diameter craniotomy
was carried out according to the Paxinos and Watson (2007) rat
brain atlas for the subiculum (Bregma: −8.0 mm, ML: 3.5 mm). The
dura was excised and a 4 × 8 multi-electrode array (A4×8-5-50-
200-413, NeuroNexusTech, USA) was inserted at a 30 ◦ compound
angle from the vertical axis to match the main dendritic axis of
the subiculum. The electrode array was composed of four shanks,
each containing eight 413-�m2 electrodes with 50 �m vertical
and 200 �m horizontal spacing between electrodes/shanks, respec-
tively. The array was attached to an electrode board and headstage
(Plexon, USA) with fixed gain of 20× and an AC preamplifier provid-
ing a total gain of 2000× (Recorder64, Plexon, USA). The positions
of the electrodes were verified from Nissl-stained brain sections
(Fig. S1) by detecting small electrolytic lesions produced by apply-
ing a 30 �A current for 5 s (Townsend et al., 2002) at the end of the
experiment.

Spontaneous LFP (2 kHz sampling rate, low-pass filtered up
to 250 Hz) and spiking activity (40 kHz sampling rate, high-pass
filtered above 300 Hz) were recorded simultaneously from the elec-
trodes in subiculum for 1 h. Recordings were ground referenced to
the stereotaxic frame. Spikes were detected online by manually
setting a threshold for each electrode and stored as discrete shapes
(1.3 ms duration) for offline spike sorting.

2.4. Data analysis

2.4.1. Spike sorting
To identify spikes fired by individual neurons, the recordings of

spike shapes were analysed using Offline Sorter V2.8.8 (Plexon Inc).
Different spike shape parameters were clustered until units were
distinguished from the ‘noise’ cluster and manually separated. The
separation quality was assessed by visually inspecting the inter-
spike interval (ISI) histogram for each unit to ensure there were no
spikes within the 1 ms refractory period. Multiple detections of the
same unit on adjacent electrodes were identified by plotting cross-
correlograms of each unit versus every other unit and only the unit
with the largest waveforms was kept for each duplicate.

2.4.2. Spectral analysis and data segmentation
Spectral analysis was done using the Welch’s periodogram

method with 50% overlapping Hamming windows of length 112.5 s
or 450 s for the input signal to the model or LFP signals, respec-
tively. The 1-h LFP signals contained two spectral peaks: at slow
oscillations and theta rhythms (Fig. 1A). To segment the LFP sig-
nals into epochs containing only one dominant rhythm, the power
distribution over the frequency ranges 0.5–2.5 Hz for slow oscilla-
tions and 2.5–5.0 Hz for theta rhythms was estimated at every time
point from the Fourier time-frequency decomposition over Ham-
ming windows of 2.048 s with 50% overlap. The power over these
frequency ranges was integrated to compute how much power as
a percentage of the total was in each band. The dominant rhythm
at a given time point was defined as the one which had at least 10%
higher power than the other. That is, the fraction of total power
within the dominant band was at least 0.1 greater than the fraction
within any other frequency band. The 10% margin was sufficient to
identify epochs of LFP with dominant rhythms in our data recorded
under urethane anaesthesia as shown in the power spectra of the
segmented data in Fig. S2.

2.4.3. Spike segregation into bursts
The spike times recorded for each unit were separated into

two datasets depending on whether spikes were fired when slow
oscillations or theta rhythms were dominant. Units were classi-
fied as bursting if in the ISI histograms and autocorrelograms of
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spike times there was a sharp peak within 2–8 ms and this peak
was larger than any other peak within 50 ms. To segregate spikes
fired by subicular neurons into bursts, an ISI threshold of 8 ms was
chosen because this time point was after the ISI histogram peak
which indicated the time interval between spikes within bursts.
A spike was considered as part of a burst if the spike occurred
within 8 ms from the previous spike in the burst. If the interval
between two spikes was greater than 8 ms, the spikes were con-
sidered as separate events. For segregating burst spikes fired by
the model, an ISI threshold of 10 ms was used because the sharp
peak in the ISI histograms and autocorrelograms occurred within
2–10 ms.

2.4.4. Filtering and phase extraction
Both the LFP recordings from the rat subiculum and the input

signals to the model were downsampled to 500 Hz. Filtering was
carried out with a finite impulse response (FIR) digital filter
with Kaiser window (sharp transition bandwidth: 1.0 Hz, stopband
attenuation: 60 dB, passband ripple: 0.01 dB). The signals were fil-
tered in narrow bands of 1 Hz with 25% overlap, apart from the first
band which ranged from 0.1 Hz to 1 Hz. The centres of the narrow
bands were at 0.55 Hz, 0.75 Hz and then increased in steps of 0.25 Hz
up to 10.25 Hz or 14.25 Hz. Phase was extracted as the argument of
the Hilbert transform of the filtered signals. A phase value of 0◦ cor-
responded to the peak of an oscillation. For all phase analyses, we
used the phase of the filtered signals at the time of spike or burst
onset.

2.4.5. Phase-locking estimation
Phase-locking was estimated using histograms because this

method captures both the strength of locking and the distribu-
tion of preferred phases. A waveform cycle from −180◦ to 180◦

was separated in either 125 bins of size 2.88◦ for the simulations
or 25 bins of size 14.4◦ for the experimental data. The difference
in the number of bins was because we used the model to simu-
late enough data to allow for finer binning than was allowed by
the finite number of events fired by subicular neurons during the
recording session. For the model, phase-locking histograms were
constructed by calculating the probability of a spike or burst being
fired within each phase bin of the narrowband-filtered input sig-
nal. For the experimental data, phase-locking of spikes and bursts
was calculated relative to the LFP recorded at the same elec-
trode where the spiking activity of the unit was recorded. Average
phase-locking histograms were obtained by averaging the prob-
abilities of firing spikes and bursts within each phase bin of the
narrowband-filtered LFP across bursting units in epochs when slow
oscillations or theta rhythms were dominant. To accommodate for
differences in phase preference of individual units (examples in
Figs. S3 and S4), the phase of 0◦ was set as the phase of mean
maximal locking of single spikes and phase-locking of spikes and
bursts fired by each unit was calculated relative to that phase. Mean
and standard deviation of the phase-locking distributions were
calculated using the circular statistics toolbox for Matlab (Berens,
2009).

3. Results

We investigated bursting activity in relation to LFP using
a computational approach. We first present the experimental
data which were used to match the firing statistics of the
neuron model. We then present results of extensive simula-
tions of the model where we explored the locking properties
of spikes and bursts of different spike count. Finally, we pro-
vide an example from subicular bursting neurons illustrating

that the patterns predicted by the model are also present in
vivo.

3.1. Bursting neurons in subiculum

In order to match the firing statistics of the neuron model to real-
istic burst firing in the subiculum, we analysed 1-h multi-electrode
recordings of simultaneous LFP and spikes from the subiculum of
a urethane-anaesthetised rat. The power spectrum of the LFP con-
tained a wide peak around 1–2 Hz and a sharp peak at about 4 Hz
(Fig. 1A). The first frequency peak is often referred to as slow oscil-
lations or delta rhythms and the latter as theta rhythms. These two
states under anaesthesia are analogous to non-REM and REM sleep,
respectively (Clement et al., 2008). Since different frequency bands
might correspond to different cognitive processes, we analysed
epochs of dominant slow oscillations and theta rhythms separately.
Out of a total of 26 units identified in the rat subiculum, we iden-
tified 13 bursting units firing at a rate of 1.96 ± 1.00 events/s in
epochs when slow oscillations were dominant in the LFP. Eleven
of these units were also bursting with a firing rate of 3.83 ± 2.68
events/s when theta rhythms were dominant. All bursting units
fired single spikes and bursts comprising two or more spikes at a
decreasing probability (Fig. 1B and C). Bursts consisting of three or
more spikes were rare so were grouped together for the following
analyses.

3.2. Bursting neuron model

To explore the phase-locking properties of bursting neurons,
we adapted a dual compartmental model of a bursting pyramidal
neuron (Fig. 2A). The model was driven with an input comprising
time-varying stochastic signals with a peak in the power-frequency
spectrum in order to simulate similar frequencies occurring in LFP
signals when there is only one dominant rhythm. The peaks were
centred at 1 Hz (Fig. 2B), 4 Hz (Fig. 2D), 8 Hz (Fig. 2F) and 12 Hz
(Fig. 2H). The peak at 1 Hz simulated dominant slow oscillations
which are characteristic during sleep and anaesthesia. The peak at
4 Hz and 8 Hz simulated dominant low and high theta rhythms,
respectively. Low theta rhythms are observed under urethane-
anaesthesia and high theta rhythms are prevalent during awake
exploratory behaviour. The peak at 12 Hz corresponded to domi-
nant alpha rhythms which are higher than the frequencies usually
found to be dominant in the LFP recorded from the rat hippocam-
pal formation in vivo. The model fired n-spike bursts (Fig. 2C, E,
G and I) in response to these four input signals with similar posi-
tively skewed probability distributions as the bursting units in the
rat subiculum (Fig. 1B and C).

3.3. Spikes and bursts lock to phase of dominant rhythms

Is phase-locking of bursting neuronal firing to LFP rhythms an
intrinsic property of bursting neurons regardless of the frequency
of these rhythms or is locking restricted to specific frequency bands
irrespective of their power? To address this, we used the model to
simulate bursting activity in response to broadband signals with
spectral peaks at different frequencies resembling LFP containing
only one dominant rhythm. If neuronal activity is phase-modulated
by oscillations within specific frequencies, then neurons should
fire with a high probability at a preferred phase of these oscilla-
tions. Instead, if neuronal activity is independent of the phase of a
specific rhythm, then the firing probability should have a flat dis-
tribution relative to the phase of this rhythm. The single spikes
(n = 1), two-spike bursts (n = 2) and larger bursts (n ≥ 3) fired by the
model were locked to a preferred phase of the dominant rhythm
within the input signal (Fig. 3). In addition, there was weaker phase-
locking of spikes and bursts to the background frequency rhythms
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Fig. 3. Phase-locking histograms of single spikes (A, D, G and J), two-spike bursts (B, E, H and K) and larger bursts (C, F, I and L) fired by the model when the input signal
contained a frequency peak at 1 Hz (A–C), 4 Hz (D–F), 8 Hz (G–I) or 12 Hz (J–L). Phase of 0◦ corresponds to the peak of a waveform as calculated by the Hilbert transform. The
colourbar shows the probability of locking to the phase of filtered signal at overlapping steps of 1 Hz. The asterisk (*) in the colourbar indicates chance probability which is
equal to 1/125 or 0.008. (For interpretation of the references to colour in text, the reader is referred to the web version of the article.)

present within the input signal (shown as light blue colour in Fig. 3).
Notably, the probability of firing a spike or burst at a preferred phase
of the dominant frequency band within the input signal was con-
sistently greater than the probability of firing relative to the phase
of other rhythms. In particular, the probability of firing an n-spike
burst at the preferred phase of the dominant rhythm (red colours in
Fig. 3) was approximately two to four times greater than the firing
probability at a preferred phase of background rhythms (light blue
colours in Fig. 3).

In all simulations, there was a shift in phase-locking as a func-
tion of burst size n. When the input signal contained a peak at 1 Hz,
firing of single spikes relative to the dominant slow oscillations
was concentrated around a preferred phase of 13◦±41◦ (Fig. 3A).
Phase-locking of two-spike bursts and larger bursts advanced by
20◦ and 30◦ (preferred phases of 33◦±38◦ and 43◦±29◦, Fig. 3B
and C), respectively, relative to the preferred phase of single spikes.
When rhythms of 4 Hz were dominant, locking of single spikes rela-
tive to low theta rhythms was around a preferred phase of 11◦±30◦

(Fig. 3D). Two-spike bursts were preferentially fired more advance
in phase by 28◦ (preferred phase of 39◦±20◦, Fig. 3E) and larger
bursts were an additional 15◦ more advanced (preferred phase of
54◦±13◦, Fig. 3F). When the input contained a peak at 8 Hz or 12 Hz,
single spikes were locked at a preferred phase of −14◦±28◦ of high
theta rhythms (Fig. 3G) or −25◦±27◦ of alpha rhythms (Fig. 3J),
respectively. Locking of two-spike bursts was advanced by 36◦ and
39◦ (preferred phases of 22◦±19◦ and 14◦±18◦, Fig. 3H and K),
respectively, relative to the preferred phase of single spikes. Lock-
ing of larger bursts was further advanced by 19◦ and 23◦ (preferred
phases of 41◦±13◦ and 37◦±14◦, Fig. 3I and L), respectively, relative
to the preferred phase of two-spike bursts.

3.4. Bursting neuronal firing is phase-locked to dominant LFP
rhythms

We tested the model predictions by studying how bursting
neurons in the rat subiculum fire spikes and bursts in relation
to the phase of LFP recorded at the same electrode where burst-
ing activity was recorded. Figs. S3, S4 and 4 show the probability
of firing single spikes (n = 1), two-spike bursts (n = 2) and larger
bursts (n > =3) at each phase of narrowband filtered LFP. Spikes
and bursts were fired at a preferred phase of the dominant rhythm
within the LFP signal. This preferred phase varied between indi-
vidual units as illustrated in the examples in Figs. S3 and S4. The
preferred phase of firing single spikes was set to 0◦ (Fig. 4A and
D) and the average phase-locking probabilities of n-spike bursts
are presented relative to that phase (Fig. 4B–C and 4E–F, respec-
tively). When slow oscillations were the dominant rhythms in
the LFP, the probability of firing an n-spike burst at the pre-
ferred phase of slow oscillations was 20–80% greater than the
chance probability (Fig. 4A–C). Similarly, when theta rhythms
were dominant, the probability of firing an n-spike burst at the
preferred phase of theta rhythms was 20–80% greater than the
chance probability (Fig. 4D–F). There was also some phase pref-
erence at frequencies outside the dominant band (yellow colours
in Fig. 4) but this was substantially weaker than the phase pref-
erence at dominant frequencies (red colours in Fig. 4). Moreover,
there was a shift in phase preference of bursts (n = 2 and n > =3)
compared to single spikes (n = 1) when slow oscillations were dom-
inant (Fig. 4A–C). This shift in phase preference was not observed
when n-spike bursts were fired during theta-dominant epochs
(Fig. 4D–F).



78 M. Constantinou et al. / BioSystems 136 (2015) 73–79

Fig. 4. Phase-locking histograms of single spikes (A and D), two-spike bursts (B and E) and larger bursts (C and F) fired by subicular neurons. (A–C) Average across 13 units
when slow oscillations were dominant in the LFP signals. (D–F) Average across 11 units when theta rhythms were dominant. The phase of maximal locking of single spikes
(n = 1) was set to 0◦ and locking of bursts (n = 2 and n ≥ 3) was plotted relative to that phase. The colourbar shows the probability of locking to the phase of filtered LFP at
overlapping steps of 1 Hz. The asterisk (*) in the colourbar indicates chance probability which is equal to 1/25 or 0.04. (For interpretation of the references to colour in text,
the reader is referred to the web version of the article.)

4. Discussion

We studied the phase-locking properties of bursting neurons
using a pyramidal neuron model as well as in-vivo recordings of LFP
and spiking activity from the rat subiculum. We simulated differ-
ent LFP states with physiologically relevant rhythms to determine
how phase-locking of bursting activity depends on frequency com-
position of LFP. The model predicted that n-spike bursts lock to
dominant oscillations in the input signal regardless of the frequency
of these oscillations. In particular, the same phase-locking patterns
were noticed in simulated states of dominant slow oscillations, low
and high theta rhythms, and also persisted when the input signal
contained a power spectral peak at 12 Hz which corresponds to
the lower boundary of beta rhythms in rodents or upper bound-
ary of alpha rhythms in primates. This suggests that internal cell
mechanisms allow bursting pyramidal neurons to lock their firing
to dominant LFP rhythms regardless of their specific frequency.

We observed two prominent rhythms within the LFP recorded
from the rat subiculum under urethane anaesthesia. These were
slow oscillations which are characteristic of slow-wave sleep or
non-REM sleep (Wolansky et al., 2006; Clement et al., 2008) and
theta rhythms which are present in the hippocampus during REM
sleep (Harris et al., 2002) as well as during exploratory behaviour
(O’Keefe and Recce, 1993; Skaggs et al., 1996), although under uret-
hane anaesthesia the theta peak at 4 Hz is lower than the theta
peak at 7 Hz during REM sleep (Clement et al., 2008). Since these
two rhythms correspond to different cognitive states, we analysed
bursting activity during epochs of each dominant rhythm sepa-
rately.

As predicted by the model, subicular neurons fired single spikes,
two-spike bursts and larger bursts which were locked at a preferred
phase range of the dominant rhythm within the LFP. The preferred
phase range of locking was wider for the subicular neurons than
the model. This was possibly a consequence of the lower signal-
to-noise in experimental data than the simulated data. Although,
some weaker phase preference to background rhythms was also
observed, locking to rhythms in the dominant frequency band was
at least two times stronger than to any other frequency. These
results suggest that the distribution of LFP power modulated the
strength of phase-locking of bursting neuronal firing. Modula-
tion of neuronal firing by theta rhythms, which have increased
power during behavioural tasks, is a known phenomenon in the

hippocampal formation. More specifically, theta phase precession
of neuronal firing in the hippocampus has been proposed to be a
mechanism to encode spatial position (O’Keefe and Recce, 1993;
Skaggs et al., 1996) and a buffer for working memories (Lisman
and Idiart, 1995). Theta phase precession has also been reported in
the subiculum (Kim et al., 2012). Furthermore, organising neuronal
firing by high-power slow oscillations during slow-wave sleep is
thought to be important for memory consolidation (Lee and Wilson,
2002; Wolansky et al., 2006; Rasch and Born, 2013).

The model also predicted a gradual shift in phase preference as
a function of burst size n supporting a burst spike-count code in
which single spikes and bursts of different sizes can provide more
symbols to encode timing information conveyed by LFP. A similar
shift in phase-locking of subicular bursting neurons was observed
during epochs when slow oscillations were dominant under anaes-
thesia providing evidence that this code occurs in vivo. We did not
observe a similar shift when theta rhythms were dominant but
this could be due to the anaesthesia affecting theta rhythms. Firing
bursts of spikes can have a number of roles as revealed by stud-
ies in various brain systems. Thalamic neurons can fire bursts in
response to salient stimuli (Guido and Weyand, 1995; Sherman,
2001; Swadlow and Gusev, 2001). Bursting in the hippocampus
improves the reliability of synaptic transmission (Lisman, 1997).
Bursts fired by electrosensory cells in the weakly electric fish
encode different stimuli to those encoded by tonic spikes (Oswald
et al., 2004). Firing bursts with different spike counts also provides
a graded signal that allows encoding of different stimuli (Kepecs
and Lisman, 2003; Samengo et al., 2013). Theoretical studies sug-
gest burst size can encode the slope (Kepecs et al., 2002) and phase
(Samengo and Montemurro, 2010) of input signals. In addition,
there is experimental evidence that burst size can encode orienta-
tion of visual stimuli in the primary visual cortex of awake monkeys
(Martinez-Conde et al., 2002) and intensity of auditory stimuli in
grasshopper auditory receptor neurons (Eyherabide et al., 2008,
2009). The outcome of our study expands understanding about the
role of bursting in the subiculum.

4.1. Conclusions

The model suggests phase-locking of n-spike bursts is modu-
lated by the power of the rhythms present in the LFP signal, so
that locking to dominant rhythms is stronger than to background
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rhythms. The analysis of experimental data showed that the output
of subicular bursting neurons preferentially locked to the phase of
slow oscillations and theta rhythms in two distinct states under
urethane anaesthesia. Since phase-locking to dominant rhythms
was observed regardless of the frequency of these rhythms, lock-
ing appears to be a dynamic property of bursting neurons but not
a property of the specific frequency at which the locking occurs.
This means that burst firing can potentially lock to the dominant
frequencies associated with a variety of behaviours. The outcome
of this work needs to be explored further in future studies as the
present analyses are based on data from one rat. Although we pre-
sented example data from the subiculum, the model is more general
so can also be applied to understand the properties of bursting
in other cortical and subcortical areas containing pyramidal neu-
rons. Similar phase-locking patterns of bursting neuronal firing
might occur in other regions of the brain during both sleep and
awake states. Therefore, our results suggest that bursting neurons
are likely to play a more significant role in the neural code than
previously assumed.
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