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Abstract: In the last few years, Low Power Wide Area Networks (LPWAN) technologies have1

been proposed for Machine-Type Communications (MTC). In this paper we evaluate wireless relay2

technologies that can improve LPWAN coverage for smart meter communication applications. We3

provide a realistic coverage analysis using a realistic correlated shadow fading map and path loss4

calculation for the environment. Our analysis shows significant reductions in the number of MTC5

devices in outage from by deploying either small cells or Device to Device (D2D) communications.6

In addition, we analysed the energy consumption of the MTC devices for different data packet7

sizes and Maximum Coupling Loss (MCL) values. Finally, we study how compression techniques8

can extend the battery lifetime of MTC devices.9

Keywords: Compression; Small-Cell; NB-IoT; Energy Consumption Modeling; Huffman; Lempel-10

Ziv-Welch; Latency; LPWAN.11

1. Introduction12

Until the last few years, cellular communication technologies have been designed13

to support traffic for human communications called Human Type Communication14

(HTC). It is worth saying that Machine-Type Communications (MTC) is distinct from15

HTC in terms of the data traffic pattern, required latency and deployment density [1].16

The main parameters to be considered in MTC communications for the underlying17

radio technologies are low data rate, scalability, wide area coverage and low power18

consumption. Considering such requirements, most of the well known short-range19

communications systems such as Wi-Fi, ZigBee and Bluetooth low energy will not be20

applicable for the metering infrastructure. At the same time, long-range wireless cellular21

technologies such as third-generation (3G) and fourth-generation (4G) cannot easily be22

used in this context because of high energy consumption, the high cost of equipment23

and because they have been designed for high-speed human-centric communications.24

Due to all these considerations, low power wide area technologies (LPWAN) will25

be the most suitable option for smart metering in the context of the smart grid [2]. As26

LPWAN communication technologies have been standardized in the last few years, they27

are very attractive for both smart grid and wider internet of things (IoT) applications.28

Different properties and aspects of emerging LPWAN technologies have been discussed29

in these references [3][4] in more detail. The third generation partnership project (3GPP)30

introduced its LPWAN solution, narrow-band IoT (NB-IoT), in its LTE Release 13 [5].31

The use of NB-IoT technology [2] has been studied recently for smart metering or32

smart grid applications. Some comparative studies regarding deployment cost, latency,33
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Figure 1. Small Cell Deployment Scenarios

range and other aspects have been summarized in [4]. Simple energy consumption34

and throughput modelling of NB-IoT in comparison with general packet radio service35

(GPRS) technologies has been discussed in [6]. Compared to other LPWAN technologies,36

using NB-IoT is advantageous due to the low-cost chipset, better building penetration37

and lower power consumption due to the simpler waveform. Due to these advantages38

will be the best option for static IoT devices such as smart meters. In [7], a prototype39

system including NB-IoT devices, an IoT cloud platform, and an application server40

has been tested. Other important aspects of NB-IoT which needs to be addressed41

are the capacity and coverage which are discussed in [8]. Finally, in [9], the authors42

conducted NB-IoT network performance analysis in a real-world indoor environment.43

The small cell concept has been defined as low power access points that operate in44

licensed spectrum to improve cellular coverage and capacity and can be deployed in45

homes and enterprises[3]. Small cells can enhance MTC device coverage and provide a46

backhaul link over an internet connection to the core network.47

This paper significantly extends the initial research work in [3]. We have improved48

our simple evaluation in that paper by using more realistic model for small cell propaga-49

tion by using a more precise path loss models and using a realistic correlated shadow50

fading map. Besides, we also study device-to-device (D2D) communications to improve51

MTC device range. Further, the energy consumption of the MTC devices using NB-IoT52

technology has been analyzed precisely, and compression techniques have been pro-53

posed to increase the lifetime of the battery. The remainder of this paper is structured as54

follows. Section 2 discusses system modelling and the communications scenario. Section55

3 discusses simulation results for the impact of deploying small cells or D2D methods to56

improve coverage area for MTC devices. In addition, Energy consumption analysis is57

also given that considers the benefits of compression techniques. Section 4, discusses58

results from test-bed for implementation of compression algorithms and impact of these59

algorithms on improving latency using wireless cellular technologies. Finally, Section 560

presents the paper conclusions.61

2. System Modelling62

NB-IoT has been designed specifically for IoT applications by 3GPP by modify-63

ing the basic functionalities of LTE. However, NB-IoT requires 20 dB more maximum64

coupling loss (MCL) for serving end node devices. Several LTE protocols have been65

modified to achieve this gain, such as new signalling and control channels for NB-IoT.66

Further, LTE uses Frequency Division Duplexing (FDD) supporting full-duplex mode67
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while NB-IoT uses the same techniques in half-duplex type-B. This reduces the com-68

plexity of the MTC device, but it means that it cannot transmit (uplink) and receive69

(downlink) data simultaneously[5].70

Two important critical factors that need to be considered in designing wireless
communication systems are achievable data rate and signal coverage. By defining key
parameters, we can characterize the wireless communication channel. As a result, we can
calculate the received signal quality by using a propagation model for a given distance
from the transmitter. The 3GPP standard path loss model [10] has been used in this paper
to model cellular IoT devices. Maximum Coupling Loss (MCL) or the communication
link budget is used for simulation of downlink (DL) and uplink (UL) to identify the
coverage issues. Different parameters such as receiver sensitivity, shadowing, path loss,
etc. affect the attenuation between the eNodeB antenna ports and the MTC device,
dictating a limiting value for the MCL. The required MCL value is 164dB [5] for MTC
devices in NB-IoT cellular networks and can be defined as:

MCL(dB) = EIRP − LTotal + GRX (1)

Where GRX is the receiver antenna gain to fulfil the target signal threshold, EIRP is71

the effective isotropic radiated power which comprises the transmitter antenna gain plus72

transmitter power. Finally, LTotal includes effective noise power and all losses, including73

path loss.74

Our communications scenario is as can be seen in Figure 1. In this scenario we75

deployed small cells such as femto and pico cells in the area covered by main macro-cell76

base station to improve the coverage for cellular IoT end-users in outage. We define77

a user in an outage when the user cannot communicate data, and the MCL calculated78

using equation (1) is higher than that required for NB-IoT: so a user in outage has an79

MCL > 164 dB. Then we can calculate the received signal power to the UE device from80

the BS using path loss models presented in Equations. (2), (3) and (4). The study of81

cellular communications systems requires us to consider the main parameters such as82

multi path fading, path loss and shadow fading, which can attenuate the wireless signal83

between the base station and end-user devices.84

Path Loss: The large scale path loss model for the communication link between
Base-Station (BS) and user equipment (UE) according to Annex A of 3GPP standard [5]
for the deployment scenario of Cellular IoT is as follows:

LBS-UE = 120.9 + 37.6 log10(d)(dB) (2)

where: d is the separation distance (km) between the base station and the user equipment
and has been studied in [3]. In continue, we studied different standardized path loss
models in the international telecommunication union (ITU) and 3GPP documents to
find the most suitable path loss model, including the critical factors that affect signal
attenuation. Finally, we chose the path loss models shown in Equations (3) and (4)
respectively from the ITU [11], and 3GPP [12] as both of these models provide an
appropriate mathematical representation indoor pico-cell of radio propagation. The ITU
basic path loss model is:

Lpico = 20 log10 f + N log10 d + L f (n)− 28 (dB) (3)

where: d : is the separation distance (m) between the base station and the user equipment,
N is distance power loss coefficient, f is the frequency (MHz), n : is the number of floors
between base and portable and L f : is the floor penetration loss factor (dB). The values
of N and L f for different frequencies has been given in [11]. The microcell propagation
model has been obtained from 3GPP 36.814 standard [12], and it has the following form:

Lmicro = max(38.46 + 20 log10 R2 + 0.7d2D,indoor + Low, 15.3 + 37.6 log10 R2)(dB)
(4)
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Figure 2. Applying Shadow Fading Map to our simulation analysis

where d2D,indoor is the distance inside the house, R2 is the distance between receiver85

and transmitter, and finally Low is the penetration loss of one outdoor wall which is 1086

dB.87

In Figure 1 three possible propagation scenarios exist which are described as follows:88

1. The user Equipment (UE) such as a smart meter is inside the same house as a small89

cell (Femto cell or Pico cell) Base Station (BS);90

2. The UE is outside of the building;91

3. The UE is inside a different house which will add Low,1 and Low,2 to the path loss92

model for the wall attenuation in buildings one and two respectively.93

The distances of UEs from different BSs is calculated on based on the scenario in Figure94

1 for each building (20 m) and street (10 m) and the number of walls applied in the path95

loss model. In this scenario we have assumed that femto cells (range of <30m) are only96

installed inside building but for pico cells (range of <100m) we have possibility to install97

them both inside and outside.98

Shadow Fading: The final step to complete the small cell deployment in our model
is to consider a realistic model for shadow fading [13]. In [3] we have considered shadow
fading with a simple log-normal shadowing value but here we replaced that model with
the method in [13] which generates a correlated shadow fading map. In the proposed
model, correlated shadow fading can be described simply with normalised correlation
function:

r(x) = e−αx, x ≥ 0 (5)

where x is the distance and e−α is the correlation coefficient between two UE locations99

spaced by 1 metre using the suggested value of α = 1/20. Using this value of α means100

that the shadow fading correlation reduces to a value of 0.5 when the UEs are spaced101

by a distance x of approximately 14 metres. . In our simulation we therefore assumed102

the shadow fading is unchanged over a distance of 10m and therefore we construct103

our map with square micro-cells with length of 10 m. Figure 2 shows one realization104

of a Monte Carlo simulation with a shadow fading map integrated into the simulation105

scenario shown in Figure 1. To generate the correlated fading map in Figure 2, we used106

two-dimensional space using four neighbours (each neighbour and square of 10m) to107

create correlation matrices as explained in the Appendix of [13]. In Figure 2 we have108

a large square map around a macro cell base station at the center of map with length109

and width of 6 kilometres. Based on the interpretation of the map, the value of shadow110

fading attenuation can be calculated between the macro cell base station and each UE111

and then used in the simulation of the coverage analysis.112

Our Monte Carlo simulation steps can be summarized as follows:113
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• A shadow fading map is created using the algorithm in the Appendix of [13]. The114

BS is located at the centre of the map with randomly spread UE devices around the115

map as can be seen in Figure 2.116

• Then the physical BS/UE locations in Figure 1 are mapped to the shadow fading117

values shown in Figure 2. This process allows the simulation to identify where the118

UE has been located and if any walls are present in the BS-UE link that need to be119

accounted for in the path loss calculation.120

• According to the geometry of the UE and BS and the path loss model, we measured121

the received signal power level in the location of the UE devices.122

• Finally, we calculate the percentage of UE devices in outage. Then we implement123

the D2D communication scenario or add small cells randomly to the map. Again,124

we calculate the received signal level from nearby UE devices for the D2D com-125

munication scenario or the small cell assisted scenario. Using Table 2, the MCL126

is computed for the D2D/small cell wireless links to identify the improvement of127

outage for UE devices.128

NB-IoT Energy Consumption Modelling Based on 3GPP Standards :129

As shown in Table 1 [14], the total energy consumption can be broken down into four130

main blocks for an IoT device to operate: ECommunication required energy to communicate131

the data, which is typically 60% of the total; ECollection for collecting (6-20% of the total)132

and EProcessing (15-30%) for processing collected data. Furthermore, a small portion of133

the energy (1-6%), which we can call Esystem, is consumed to wake up the machines134

periodically or run a real-time operating system. Summing all of these energy terms135

together expresses the total consumed energy of the devices EDevice as can be seen in the136

following expression:137

EDevice = ECommunication + ECollection + EProcessing + ESystem (6)

138

In order for the IoT device to perform the tasks, it needs to wake up each time and139

complete collection, processing, and communication of data in a particular time that we140

can call TRecording. Also, Tmessaging can be defined as the required time that IoT devices141

need to communicate the processed message.142

Table 1. Communication Power consumption for NB-IoT model and devices (ECommunication)

NB-IoT 3GPP Model[5] Actual Devices [19]

Standby 0.015mW 0.013-0.035mW

Sleep 3mW 21-23mW

Transmit 480mW 716-840mW

Receive 75mW 213-240mW

The data processing and communications operations for the smart metering appli-143

cation can be split into three steps:144

• Energy consumption measurement of each circuit in the building;145

• Applying compression techniques to the collected data to reduce the size of data146

using smart meter hardware147

• Updating the Energy Data Center (EDC) information by transmitting the com-148

pressed data or detecting an unusual situation to activate an alarm, by creating a149

data packet of duration Message Tmessaging.150

Network Power Consumption Modeling:151
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Figure 3. Protocol flow for the uplink of NB-IoT showing an example of possible energy consump-
tion

Essential requirements such as lifetime, available energy, and reduced cost need to152

be considered in modelling IoT applications’ energy consumption. To the best of our153

knowledge, for modelling network energy consumption, there are two main scenarios:154

1. Point to Point Communications (PPC) [15]155

2. Time Synchronized Networks (TSN) [16]156

We have used the PPC model for our simulations, considering parameters such as157

interference-free and a single hop communication scenario. Also, in our simulation, we158

have assumed the Medium Access Control (MAC) layer is ideal. This assumption means159

that co-channel interference and packet collisions can be neglected, so that any transmit-160

ted data packet can be assumed to reach the receiver correctly. The energy consumption161

in this scenario should be calculated separately for each MTC device.. According to162

Figure 3, the device should consume energy EDatapacket for the Kth transmitted data163

packet, including all energy consumed in Figure 3 in a time of TDatapacket(K). As a result,164

for transmitting all of the NDataPacket messages, the average power consumption can be165

expressed as:166

PNetwork = (1/NDataPacket)
NDataPacket

∑
K=0

EDatapacket

TDatapacket(K)
(7)

For different wireless communication technologies, as shown in equation (7),167

EDatapacket is a changing parameter. The two main terms of equation (7) that can impact168

total energy consumption are the radio power and transmission time. While the maxi-169

mum radio transmit power is limited, the transmission time varies by applying different170

modulation and coding techniques, changing the data transmission speed over time. In171

conclusion, energy consumption is affected by the main three parameters for each data172

transmission process as follows:173

1. The Packet Repetition Factor174

2. The Radio Power175

3. The Number of Retransmissions176

Power Consumption Modelling for Data Processing: The simulations have con-177

sidered a simple scenario, including different data processing algorithms using IoT178

device hardware which applies data compression techniques [17][18], to collect the179

data. Estimating the number of operations performed to do a specific task to calculate180

energy consumption is necessary to create a realistic simulation model. To estimate the181

consumed energy for all collected data, we need to calculate the number of operations182
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Figure 4. Device-to-Device communications to reduce the number of outage users

by the required number of clock cycles to perform that operation using a particular183

hardware and processing unit.184

Power Consumption Modelling of Data Acquisition: The power grid status185

in the smart grid can be estimated and observed by monitoring the collected data.186

Monitoring applications of power systems can be categorized into two main parts:187

1. Monitoring regularly the power system which can happen periodically with a fixed188

time interval in between;189

2. Monitoring power systems in an event-driven way, observing exceptional cases190

that happen randomly or due to alarms.191

Modeling of Energy Consumption For NB-IoT according to 3GPP Standards:192

Essential requirements such as lifetime, available energy, and reduced cost need193

to be considered in modelling IoT applications energy consumption. For example,194

the power consumption of NB-IoT devices for a battery with 5Wh capacity and certain195

traffic conditions has been predicted in [5]. The assumption of the analysis is that UE196

periodically transmits a single data packet of a given size. For example, the battery life197

of UE, communicating 200-bytes of uplink data per day on average with this MCL can198

last for up to 10 years [5].199

Our simulation using a Point to Point Communications (PPC) [15] model for a200

communication scenario with an Ideal MAC layer, an interference-free channel and a201

single hope data link. We worked on the 3GPP power consumption model, which is well202

understood by the research community and discussed in several papers. For example,203

in [19] the authors presented the first empirical NB-IoT power consumption model to204

measure the battery lifetime. According to this published paper, the power consumption205

in the first generation of NB-IoT devices is slightly higher than the 3GPP model. As a206

result, the authors measured a 10% shorter battery lifetime for this generation of NB-IoT207

hardware. We proposed D2D links and small cell deployment to improve the coverage208

for users in outage and increase the battery lifetime by reducing the required power to209

communicate to BS via a nearby device or small cell.210

In addition, data compression techniques including Lempel-Ziv-Welch (LZW) and211

Huffman have been evaluated in our simulations and practical implementation for their212

processing time and compression performance.213

1) Lempel-Ziv-Welch (LZW) : This compression method is an algorithm that taking214

advantage of symbol repetition to compress data [20]. It operates by creating a "dictio-215

nary" of symbols and associated codewords both for compression and decompression.216

The process of data size reduction in LZW is straightforward; it assigns a codeword for217

each string and using single codewords instead of repeated strings based on the primary218

dictionary, and adding new codewords to the existing dictionary with the unique ref-219
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erence number. Therefore, by compression of each new string, the LZW dictionary is220

updated with new codewords for incoming longer strings, and it replaces them with221

smaller codewords. By continuing to compress the data in this way, the LZW algorithm222

can compress data on the fly. LZW performs very well for compression of data sequences223

with repetitive substrings such as text and numeric files.224

2) Huffman (Huff): The basic principle of Huffman coding is to allocate bit patterns225

to characters according to their repetition frequency [21]. Therefore, two passes are226

required for compressing the file - one pass to find the rate of recurrence of each character227

and generate the Huffman tree and a second pass to actually compress the file. Huffman228

coding suffers from the fact that the decoder needs to have knowledge of the mapping229

of bit patterns to the characters. Sending this information with the codewords increases230

the overall bit rate. Conversely, if this information is unavailable, it will not be possible231

to decode the compressed data. In this practical implementation, for simplicity, we have232

implemented the Huffman compression technique. Still, in our other research work233

[17][19], to solve the problems associated with this technique, we have used an improved234

variant of Huffman coding called Adaptive Huffman (AH).235

3. Simulation Results236

In this section, simulation results from different communication scenarios and237

energy modelling approaches that have been discussed in the previous section will be238

described. Key simulation settings are shown in Table 2.239

Table 2. Simulation Key parameters

Parameters Values
NB-IoT Macro cell Radius 6 km
Path loss model Base Station-IoT
Device distance: d(km)

Equation 3 & 4

Log normal fading standard deviation from shadow fading map
Femto eNB EIRP 20 dBm
Pico eNB EIRP 35 dBm
Maximum Transmit Power of MTC device 23 dBm
Maximum Transmit Power of Main BS 46 dBm
Number of Small Cells Up to 200
Number of MTC Devices 300 and up to 1000 for the

D2D scenario
fc for NB-IoT 900 MHz

Table 3. Comparison of the number of outage users in NB-IoT and LTE (4G) technologies .

Communication Technology Percentage of Users in Outage

LTE 71

NB-IoT 28.6

In the first step, our simulation analyzed how D2D communications assists the240

outage users communicate to the BS or a small cell via other users located within241

the coverage area of the macro-cell BS for the scenario in Figure 1. There are two242

issues in this scenario, the first one is the security of data transmissions with multi-hop243

communications between MTC devices and the second one is the increased energy244

consumption. Regardless of the security issue which is not in the scope of this paper, we245

considered an energy efficient scenario where only one extra hop is allowed to extend246

the coverage to the users in outage. For the proposed model, the users in outage discover247

nearby MTC devices within the coverage area of the BS or small cells and measure the248

required energy to transmit the data packets to those devices. Then the network will249
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Figure 5. Simulation of macro cell in the presence of Femto cells with Path loss model - Eq. (2)

Table 4. Results from Equations (3) and (4) for Femto & Pico cells deployment and remaining
users in Outage in each scenario

No. of Small Cells 20 60 100 140 180 200
% Average Outage Users 28 28 28 28 28 28
Equation (3) Femto Cell 24.6 18.7 14.41 11.2 8.4 7.3
Equation (3) Pico Cell 23.7 18.4 14.1 10.7 8.4 7

Equation (4) Femto Cell 23.6 18.3 13.9 10.5 8.2 6.8
Equation (4) Pico Cell 23.4 17.7 13.2 9.8 7.5 6.1

choose the most energy efficient communication link to one of the nearby devices for250

data transmission.251

Table 3 shows the baseline coverage analysis for both LTE and NB-IoT devices. Table252

3 depicts that NB-IoT with an extra 20dB of permitted MCL can reduce the percentage253

of users in outage to half of that for devices using LTE communication technology in the254

same size macrocell. As can be seen in Figure 4, the total percentage of outage users for255

NB-IoT is around 30% without deploying small cells or D2D. By increasing the number256

of MTC devices within the macro cell coverage region, the proportion of outage users257

can be improved to 27% and to 10% with 100 and 1000 D2D enabled users, respectively.258

The result shows that D2D communication can also be considered an effective solution259

to improve coverage if the issues associated with energy consumption and security are260

resolved for MTC devices.261

In Figure 5, Figure 6 and Table 4, the results of the small cell communication scenario262

described in Figure 1 has been shown. Using the path loss models and shadow fading263

values for small cells, we simulated the coverage impact of pico cells and femto cells.264

First, we analysed the improvement of coverage for users in outage as can be seen in265

Figure 1 and Figure 2 for the path loss model shown in equations (2) and (3) .266

An interesting point is about how results differ from [3]. First of all, the number267

of outage users does not decrease significantly for a small number of 20 femto cells.268

Still, for both path loss models in Figure 2, around 25% of users will remain in outage.269

On the other hand, by increasing the number of femto cells to 200 femto cells, we can270

improve the coverage and the number of outage users will be reduced significantly when271

compared to the simple model in [3]. The results in Figure 5 and Table 4 show that only272

7.3% and 6.8% of users will remain in the outage for two path loss models, respectively.273

The results for deploying pico cells are different. In contrast to [3] which has less274

than 15% of users in outage for deploying only 20 pico-cells, the results in Figure 6 and275
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Figure 6. Simulation of macro cell in the presence of Pico cells with Path loss model - Eq. (2)

Table 4 do not show significant outage reduction with this number of pico-cells. This276

is regardless of their being inside the buildings or outside the building for a realistic277

shadow fading map. By deploying a large number of pico cells (200 pico cells), the278

percentage of outage users reduces to 7% and 6.1% of user devices in the macro-cell for279

the path loss models.280

Using equation (6), the energy consumption for data collection can be modelled281

using our simulator, based on how many samples have been collected by the acquisition282

hardware and the reporting requirements for the control centre. As an example in Figure283

7 we analysed the NB-IoT battery lifetime for transmitting short data packets of 50bytes284

and 200bytes versus the number of reporting intervals per day for different values of the285

maximum coupling loss (MCL) based on [5]. From the figure it can be seen that battery286

lifetime for NB-IoT user devices can be increased by the shortening the data packets and287

also by reducing the number of reporting times per day. For example, the lifetime of the288

battery for a single data transmission of 50bytes per day with an MCL of 164dB is 20289

years, while the lifetime of the battery will reduce to 15 years for one transmission per290

day of 200bytes with the same MCL. One way to shorten the data packets is by using291

lossless compression techniques described in [17]. Results for this approach making use292

of a realistic testbed system based on Raspberry Pi computers is described in the next293

section.294

Evaluation of the required energy consumption for data compression in real hard-295

ware is necessary to count the energy consumption of user devices which can significantly296

impact the battery lifetime of NB-IoT devices. Compression of NB-IoT data packets, in297

addition to increasing lifetime of the battery, can reduce the latency and increase reliabil-298

ity through using smaller data packets at a particular time. The energy consumption299

and compression of data is very important especially if the UE acts as a D2D node to300

extend the coverage of cellular-IoT BS to outage users. By compressing data packets and301

the reducing the reporting interval to once or twice per day we can successfully increase302

the battery lifetime of MTC devices.303

4. Test-bed Results304

In this section, we move on to discuss results from a smart grid experimental test-305

bed. This uses a Laptop PC as a network controller and low-cost Raspberry Pi computers306

to emulate client-side devices that can implement advanced smart grid applications,307

such as demand response. This system makes use of the UK internet network to emulate308

a practical smart grid system.309

Impact of compression on Cellular Communications Latency One of the most310

critical parameters in smart grid communications is latency. Besides coverage analysis311
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Figure 7. NB-IoT battery lifetime analysis for short data packets of 50bytes (B) and 200bytes (B)
for Different MCL

of NB-IoT technology, this new IoT technology’s latency characteristic is an essential312

factor in designing systems based on NB-IoT. As NB-IoT is not yet rolled out widely,313

we have tested the compression technique on the fourth generation (4G) and the third-314

generation (3G) of cellular communication technologies in reality. In this paper we have315

measured the one way latency experimentally, which is defined as the time required for316

a data packet to be communicated from the transmitter to the receiver, including data317

compression if used.318

It is worth mentioning that NB-IoT is based on the Long Term Evolution(LTE)319

technology used in the 4G cellular network. So, experiment related to 4G can provide a320

measure to evaluate the closely related technologies such as NB-IoT.321

Data transmission in an IoT network has been emulated by creating a short data322

packet size from 50 bytes to 10 kbytes which communicated from the client platform323

(Raspberry Pi 3B) to the server platform (Laptop PC) using 3G and 4G communication324

systems. Data sources in smart grid applications vary a lot, but for the purpose of325

demonstration the data used here was taken from the MIT Reference Energy Disag-326

gregation Data Set (REDD) [23]. This data set comprises a set of power consumption327

measurements from six houses, which is converted into energy consumption values328

recorded every 10 minutes - more details can be found in [17].329

The impact of compression techniques on latency has been studied using two330

lossless compression algorithms, Huffman coding and Lemple-Ziv Welch(LZW). The331

performance of data reduction of two algorithms has been compared by calculating the332

space-saving ratio for those compression techniques as shown in Eq (8) and Table 5.333

Space Saving Ratio = 1 − Compressed Data
Uncompressed Data

(8)

Table 5. Percentage of Space saving.

Platform/Data Size 50B 100B 500B 1KB 2KB 4KB 6KB 8KB 10KB

Huffman 55 65 77 79 80 80 80 80- 80
LZW -91 -46 -3 22 32 50 57 59 62

It is essential that keep in mind by applying a compression algorithm while re-334

ducing the data size, it will increase the processing time both for compression and335

decompression of the data packet size, as is depicted in Eq (9).336
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Total Latency = Compression Time + Transmission Latency + Decompression Time (9)

Table 6, showing the compression and decompression processing time in a client337

platform (Raspberry Pi 3B+) for the selected lossless compression techniques. This type338

of processor is representative of what may be used in an advanced client device imple-339

menting sophisticated smart grid functions such as demand response [24]. In simpler340

devices such as smart meters, it is more common to use lower power microcontroller341

devices, which would require a longer processing time. Nonetheless, the relative com-342

parison of the two methods would still be reasonable. The LZW and Huffman coding343

algorithm’s processing time is different on a hardware platform such as RPi as a client.344

Table 6 shows that the LZW compression time is much higher than the Huffman coding345

compression time and vice versa; the LZW decompression processing time is much less346

than that for the Huffman coding algorithm.347

We need to keep in mind that the performance of the compression algorithm would348

change according to the type of data as discussed in [22]. As seen in [22], the Huffman349

algorithm can achieve a high compression ratio regardless of the data type considered,350

such as temperature data, humidity data, ECG data, and text files. At the same time, the351

LZW has poor performance on numerical data types such as temperature, humidity and352

ECG data, while it can perform better on compressing text files. The data set we used in353

our work from [23] is an alphanumeric data type including date, time, circuit number354

and power consumption.. For a server platform using a strong PC, the compression and355

decompression algorithm differences are not too much for both compression techniques.356

From Table 6, it can be predicted that using the Huffman algorithm on client platforms357

with weak hardware can be much more efficient than LZW. Based on the evaluation358

results described above , a 60-80% reduction in data packet size can be achieved with359

the Huffman coding algorithm which requires less than 20 ms processing time for data360

packet sizes up to 2KBytes.361

In this research work, we have compared wireless last-mile communication tech-362

nologies as shown in Table 7, based on estimated latency and data rate values that can363

be found from the literature and previous research work [24][25]. According to the364

references [24] [26] [27] MCL (signal strength) can impact significantly on the value of365

the latency. The latency for two standard protocols — the transmission control protocol366

(TCP) and user datagram protocol (UDP) — have been simulated for a a smart grid IoT367

network in [28]. Our experimental results are for 3G and 4G links using a standard TCP368

implementation with Nagle’s algorithm activated. Results with and without compres-369

sion techniques with different data packet sizes are illustrated in Figures 8,9 and 10. Our370

prediction for NB-IoT is based on our experiments on 3G and 4G technologies.371

Table 6. Compression (ComT) and Decompression (DeComT) Time (ms).

Platform/Data Size 50B 100B 500B 1KB 2KB 4KB 6KB 8KB 10KB

RPi (LZW-DeComT) 2 2 6 9 13 16 14 17 20
RPi (LZW-ComT) 3 5 13 24 42 75 91 100 106

RPi (Huff-DeComT) 2 2 11 24 47 78 89 101 116
RPi (Huff-ComT) 1 1 2 5 12 23 34 40 39

This prediction has been proved from a practical experiment applying two compres-372

sion algorithms on different data packet sizes shown in Figure 8. This figure shows the373

median latency value and compares latency measurements for different data packet sizes374

using the TCP protocol with and without applying compression techniques. Figures375

8(a) and (b) show that using Huffman coding, especially for data packet sizes less than376

4kbytes, are much more efficient than using LZW on the client side.377



Version September 24, 2021 submitted to Journal Not Specified 13 of 16

(a)
5
0
B

1
0
0
B

5
0
0
B

1
K
B

2
K
B

4
K
B

6
K
B

8
K
B

1
0
K
B

800

1000

1200

1400

1600

1800

2000

2200

m
s

3G Huffman CTS

3G LZW CTS

3G CTS

(b)
5
0
B

1
0
0
B

5
0
0
B

1
K
B

2
K
B

4
K
B

6
K
B

8
K
B

1
0
K
B

0

100

200

300

400

500

m
s

4G Huffman CTS

4G LZW CTS

4G CTS

Figure 8. 3G (a) and 4G (b) median latency without and with Huffman and LZW compression
techniques (CTS stand for Client-to- Server (Uplink))

Table 7. Characteristics of 3GPP standardized wireless technologies used in the test-bed

NB-IoT 4G 3G
Typical Latency 300ms[27] [29]-few seconds [27][30] 50ms 100ms
Data Rate (bps) < 150 K 15-50M 1.5- 8M
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Figure 9. CDF plot for different data packet size both for 3G (a) and 4G (b) using Huffman
Compression

Figures 9 and 10 show the Cumulative Distribution Function (CDF) of collected378

latency measurement from the test-bed in details for both 3G and 4G cellular network379

using LZW and Huffman coding algorithms. The red line plotted in the figures represents380

a 90% confidence latency value for the obtained results.381

The 4G test TCP results in Figures 9 and 10, for both Huffman coding and LZW382

shows more predictable behaviour than the 3G results. It can be seen that Huffman383

coding generally provides a 10-20% lower latency than the LZW method and the uncoded384

case. Increasing the size of the data packet will increase the latency values. The very385

high latency results for 3G wireless technologies in Figures 9 and 10 mainly is because of386

higher data packet loss that in details has been presented in [24] for transmitted data387

without using compression techniques.388
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Figure 10. CDF plot for different data packet size both for 3G (a) and 4G (b) using LZW Compres-
sion

5. Conclusion389

In this research work, different research questions have been answered using simu-390

lation and experimental approaches to increase the efficiency of future IoT technologies.391

This includes methods to improve coverage and reduce the probability of communica-392

tions outage, increasing battery lifetime using compression techniques, and reducing393

latency. We proposed small cell deployment and D2D communications to improve cov-394

erage for UEs experiencing outage conditions and compression algorithms to improve395

communications efficiency. Thus, we could conclude the paper in two parts; simulation396

and empirical parts.397

In the simulation section, we have studied coverage using different path loss models,398

and realistic shadow fading maps to evaluate cellular coverage for NB-IoT data services.399

, a significant reduction in the proportion of outage users by deploying pico cells - from400

30% for no small cells to around 5-7% for 200 pico cells - has been shown as one of401

the main results of this paper. Furthermore, we used a realistic power consumption402

model to study how energy consumption can be reduced by compressing data packets403

or reducing the reporting interval when using NB-IoT. Also, we proposed the Huffman404

compression technique to reduce the data volume and increase the battery lifetime of405

IoT devices. Moreover, we have analyzed the performance of NB-IoT for different smart406

grid applications as an LPWAN communication technology in terms of coverage area,407

data packets and the active number of smart meters in a Macro-cell.408

Finally, in the experimental section, we have explored the characteristics of Huffman409

and LZW compression algorithms on 3G and 4G cellular communication technologies,410

and the impact of these compression algorithms on latency has been evaluated. It was411

found that Huffman coding generally performed better than LZW and could offer a412

modest reduction in communications latency of up to 10-20%. But for data packets close413

to the maximum transmit unit (MTU) in TCP, the Huffman performance will increase414

30-40%. This better performance is because communicating one MTU in TCP protocol415

can be transmitted in a single network-layer transaction.416

In future research, alternative compression methods need to be investigated, consid-417

ering the impact of packet loss and errors on communication systems. Also, the realistic418

energy consumption of devices using LPWAN technologies (especially NB-IoT) need419

to be investigated considering joint compression and retransmission mechanisms to420

provide a high probability of successful transmission in the proposed communication421

architecture.422



Version September 24, 2021 submitted to Journal Not Specified 15 of 16

6. Acknowledgment423

The authors gratefully acknowledge the funding from the UK Government Depart-424

ment for Business, Energy and Industrial Strategy (BEIS) Project Quickturn 1273/01/2017-425

ND114 for this work.426

The software used for the experiments reported in this paper is available on request427

from the authors via email.428

References1

1. H. Shariatmadari et al., “Machine-type communications: Current status and future perspec-2

tives toward 5G systems,” IEEE Commun. Mag.,vol. 53, no. 9, pp. 10–17, Sep. 2015.3

2. U. Raza et al., “Low power wide area networks: An overview,” IEEE Commun. Surveys4

Tuts., vol. 19, no. 2,pp. 855–873, 2nd Quart., 2017.5

3. M.Zeinali, J. Thompson, C.Khirallah, N.Gupta,”Evolution of Home Energy Management and6

Smart Metering Communications towards 5G”,The Network of the Future (NoF) conference7

2017.8

4. K. Mekki et al., “A comparative study of LPWAN technologies for large-scale IoT deploy-9

ment”, ICT Express, vol. 5, no. 1, pp. 1-7, 2019.10

5. “Cellular system support for ultra low complexity and low throughput Internet of Things,”11

3GPP, Sophia Antipolis, France, Rep. TR 45.820.12

6. Bima et al.," A Performance Analysis of General Packet Radio Service (GPRS) and Narrow-13

band Internet of Things (NB-IoT) in Indonesia", Kinetik: Game Technology, Information14

System, Computer Network, Computing, Electronics, and Control, 5(1).15

7. J. Chen et al., “Narrowband Internet of Things: Implementations and applications,” IEEE16

Internet Things J., vol. 4, no. 6,Dec. 2017.17

8. M. Lauridsen et al., “Coverage and Capacity Analysis of LTE-M and NB-IoT in a Rural Area,”18

in VTC Fall, 9 2016.19

9. L. Wan et al., "Performance Analysis of NB-IoT Technology for Indoor IoT Applications,"20

(ICCTEC), Dalian, China, 2017, pp. 1365-1369,21

10. R. D. Vieira et al., "GSM evolution importance in re-farming 900MHz band", Vehicular22

Technology Conference 2010. VTC2010- Fall. IEEE 72nd, September 2010.23

11. (ITU-R) 2012, Propagation data and prediction methods for the planning of indoor radio24

communications systems and radio local area networks in the frequency range 900MHz to25

100GHz, Recommendation ITU-R P. 1238-7 (02/2012), Geneva, viewed 1 Feb 2013,26

12. 3GPP , “Evolved Universal Terrestrial Radio Access (E-UTRA); Further advancements for27

E-UTRA physical layer aspects,” Tech. Rep. 36.81428

13. H. Claussen, "Efficient modelling of channel maps with correlated shadow fading in mobile29

radio systems," 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile30

Radio Communications, 2005, pp. 512-51631

14. Action Nechibvute, Albert Chawanda, Pearson Luhanga, "Piezoelectric Energy Harvesting32

Devices: An Alternative Energy Source for Wireless Sensors", HINDAWI, Volume 2012.33

15. B. Martinez et al., “The power of models: Modeling power consumption for IoT de-34

vices,”IEEE Sensors, pp. 5777-5789,Oct. 2015.35

16. X. Vilajosana, Q. Wang, F. Chraim, T. Watteyne, T. Chang, , and K. S. J. Pister, “A realistic36

energy consumption model for TSCH networks,”IEEE Sensors, vol. vol. 14, no. 2,pp. 482489,37

Feb. 2014.38

17. M. Zeinali and J. Thompson, “Impact of compression and aggregation in wireless networks39

on smart meter data”, in proceedings of IEEE International workshop on Signal Processing40

advances in Wireless Communications, Jul 2016.41

18. D. Zordan, B. Martinez, I. Vilajosana, , and M. Rossi, “On the performance of lossycompres-42

sion schemes for energy constrained sensor networking,”ACM Trans. SensorNetw, vol. vol.43

11, no. 1, Aug. 2014.44

19. M. Lauridsen, R. Krigslund, M. Rohr and G. Madueno, "An Empirical NB-IoT Power Con-45

sumption Model for Battery Lifetime Estimation," 2018 IEEE 87th Vehicular Technology46

Conference (VTC Spring), 2018, pp. 1-5.47

20. T. Welch, "A technique for high-performance data compression," Computer, vol. 17, pp. 819,48

June 1984.49

21. D. Huffman, "A method for the construction of minimum-redundancy codes," Proceedings50

of the IRE, vol. 40, pp. 10981101, Sept 1952.51



Version September 24, 2021 submitted to Journal Not Specified 16 of 16

22. Jambek, A. B. and Nor Alina Khairi. “PERFORMANCE COMPARISON OF HUFFMAN52

AND LEMPEL-ZIV WELCH DATA COMPRESSION FOR WIRELESS SENSOR NODE AP-53

PLICATION.” American Journal of Applied Sciences 11 (2014): 119-126.54

23. J. Z. Kolter and M. J. Johnson, "Redd: A public data set for energy disaggregation research,"55

in In proceedings of the SustKDD workshop on Data Mining Applications in Sustainability,56

pp. 16, 2011.57

24. M. Zeinali, J. Thompson, "Comprehensive practical evaluation of wired and wireless internet58

base smart grid communication", IET Smart Grid Journal, 2515-2947, March 2021.59

25. M. Zeinali and J. S. Thompson, "Implementation of Highly Accurate Test-Bed for Practical60

Evaluation of Wired and Wireless Internet Based Smart Grid Communications," 2019 UK/61

China Emerging Technologies (UCET), pp. 1-4, 2019.62

26. M. Zeinali, I. S. Bayram and J. Thompson, "Performance Assessment of UK’s Cellular Net-63

work for Vehicle to Grid Energy Trading: Opportunities for 5G and Beyond," 2020 IEEE64

International Conference on Communications Workshops (ICC Workshops), 2020, pp. 1-6,65

27. Matz, Andreas P.; Fernandez-Prieto, Jose-Angel; Cañada-Bago, Joaquin; Birkel, Ulrich, "A66

Systematic Analysis of Narrowband IoT Quality of Service" Sensors 20, no. 6: 1636, 2020.67

28. J. W. Heron, J. Jiang, H. Sun, V. Gezerlis and T. Doukoglou, "Demand-Response Round-Trip68

Latency of IoT SmartGrid Network Topologies," in IEEE Access, vol. 6, pp. 22930-22937,69

2018.70

29. Hassan Malik, Muhammad Mahtab Alam, Yannick Le Moullec, Alar Kuusik, "NarrowBand-71

IoT Performance Analysis for Healthcare Applications", Procedia Computer Science,Volume72

130, Pages 1077-1083,2018.73

30. R. Ratasuk, B. Vejlgaard, N. Mangalvedhe and A. Ghosh, "NB-IoT system for M2M com-74

munication," 2016 IEEE Wireless Communications and Networking Conference, 2016, pp.75

1-5.76

Short Biography of Authors77

Mehdi Zeinali received his MSc degree in wireless communication engineering from Lund University,
Lund, Sweden. From September 2014 to 2020 he worked as a research assistant and PhD student at the
University of Edinburgh. Recently he joined as a member of academic staff to the Nottingham Trent
University (NTU). His main research interest is digital communication, wireless sensor networks, and
now he is investigating architecture, technologies, requirements, challenges, and proposed solutions
of internet-based smart grid communications.78

John Thompson John S. Thompson (Fellow, IEEE) is currently a Professor of signal processing and
communications with the School of Engineering, University of Edinburgh, Edinburgh, U.K. He
currently participates in two major U.K. research projects that study new concepts for data-driven
signal processing and for millimeter-waveband wireless communications. His current research
interests include antenna array processing, cooperative communications systems, and energy-efficient
wireless communications. He has authored or coauthored more than 300 articles on these topics.
Prof. Thompson was elevated to fellow of the IEEE for contributions to antenna arrays and multihop
communications in January 2016.79

Review Reports:80

Reviewer 1 comments and authors’ response81

Reviewer 2 comments and authors’ response82

Reviewer 3 comments and authors’ response83



Version September 24, 2021 submitted to Journal Not Specified 17 of 16



Version September 24, 2021 submitted to Journal Not Specified 18 of 16


	Introduction
	System Modelling
	Simulation Results 
	Test-bed Results 
	Conclusion
	Acknowledgment
	References

