
Modelling and visualising traces for reflexivity in

synchronous collaborative systems

Damien Clauzel, Karim Sehaba, Yannick Prié

To cite this version:

Damien Clauzel, Karim Sehaba, Yannick Prié. Modelling and visualising traces for reflexivity
in synchronous collaborative systems. International Conference on Intelligent Networking and
Collaborative Systems, Nov 2009, Barcelone, Spain. IEEE Computer Society, pp.16–23, 2009,
<10.1109/INCOS.2009.55>. <hal-00474036>

HAL Id: hal-00474036

https://hal.archives-ouvertes.fr/hal-00474036

Submitted on 20 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archive Ouverte a LUniversite Lyon 2

https://core.ac.uk/display/47826401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00474036

Modelling and visualising traces for reflexivity in

synchronous collaborative systems

Damien Clauzel

Université de Lyon, CNRS

Université Lyon 1, LIRIS, UMR5205

F-69622, France

Damien.Clauzel@liris.CNRS.fr

Karim Sehaba

Université de Lyon, CNRS

Université Lyon 2, LIRIS, UMR5205

F-69676, France

Karim.Sehaba@liris.CNRS.fr

Yannick Prié

Université de Lyon, CNRS

Université Lyon 1, LIRIS, UMR5205

F-69622, France

Yannick.Prie@liris.CNRS.fr

Abstract—This article addresses issues related to traces mod-
elling and visualisation in synchronous collaborative learning.
The objective is to propose models and tools for representing,
transforming, sharing and visualizing traces of users’ experi-
ences. The traces here represent the users’ activities in their
interactions with the learning platform. Our proposition is based
on reflexive learning defined as the ability to interact with the
situation, in order to meet one’s own limitations. This work takes
place in the ITHACA project which aims at developing an on-
line learning platform that uses interaction traces as knowledge
sources on, and for, the learners’ learning as individuals or
groups. In this paper, we propose a general framework for
trace management and sharing, a generic model of synchronous
collaborative activity based on the notion of interaction modes,
which we specialized for whiteboard sharing and text chatting.
We modelled an IRC client and developed a first implementation.

I. INTRODUCTION

Synchronous collaborative learning software are increas-

ingly used in various teaching situations: discussion structur-

ing [1], collaborative design [2], [3], construction of knowl-

edge [4], etc. Other environments aim to be generic, such

as the Platine [5], [6] or the Omeg+ [7] platforms. These

environments provide a set of synchronous tools (chat, shared

text editor, videoconference, whiteboard, etc.) and regulation

mechanisms, such as control of speech turn, advanced refer-

encing and group awareness. However, they do not provide

tools for sharing experience and providing feedback to their

users, despite the importance of such practices in learning.

Indeed, as pointed out in [8], the challenge today is to

provide technology-oriented dissemination of practices and

experiences for effective collaborative learning.

The objective of our research is to propose models and tools

for the representation, treatment and sharing of interaction

traces in the context of a synchronous collaborative activity.

The interaction traces are here defined as histories of users’

actions collected in real time from their interactions with the

software. The approach we advocate is to use the interaction

traces as knowledge sources on, and for, the learners’ learning

as individuals (reflexive learning [9]) or as groups (collabo-

ration, sharing and coordination). Indeed, the visualisation of

traces will allow learners to use their own experiences, the

results they produced, and the new knowledge they deduced.

In this sense, [10] stipulates that by such means, a learner

can ensure the relevance of his approach or readjust his

actions. To assert this, we rely on reflexive learning aimed

at improving student’s competences. Such learning is defined

as being directed, or turned back on itself, or self-referential.

We consider in our study two kinds of reflexivity. One is

individual, and is the perception that a user has on his own

activity. It is used for metacognitive processes that allow to

understand strategies that might be used for different tasks,

the conditions under which these strategies might be used and

the extent to which the strategies are effective. For example,

learners can know about different strategies for reading a

textbook as well as strategies to check their comprehension.

The other kind of reflexivity is group reflexivity through

awareness, when members of a group want to have a high-level

view on their actions; this is done through multiple sharing of

different perceptions.

The principle of our approach is, in a first level (collection

phase), to observe and to store the user’s actions in the form

of modelled traces. At a second level (transformation phase),

traces of meaningful high-level to the user are calculated.

These high-level traces can be exploited both:

• in real time in order to personalize the environment, to

encourage collaboration, to increase adaptability within

the learners’ team, and to ensure awareness of each

learner in learning space, and

• afterwards in order to provide a feedback on the learner’s

experience for quality improvement purposes and to en-

able learners to revise their action in order to fill gaps.

The work presented in this paper is part of our investi-

gation within the ITHACA project1 (Interactive Traces for

Human Awareness in Collaborative Annotation). This project,

by its multidisciplinary nature, aim at proposing models,

architecture and tools for both the interactive visualisation

of traces of a synchronous collaborative activity, and the

synchronous collaborative annotation of temporal documents

(eg synchronous films co-annotation). In terms of application,

the project focuses on distance learning of French language.

The article is organized as follows: Section II presents and

discusses the theoretical foundation of our work. Its consists

1http://liris.cnrs.fr/ithaca – this project is funded by the French National
Research Agency (ANR), it features three labs: LIRIS (http://liris.cnrs.fr/),
ICAR (http://icar.univ-lyon2.fr/) and TECFA (http://tecfa.unige.ch/) and the
eLycée company (http://www.eLycee.com/)

in showing the contribution of traces reflection for learning.

Section III presents the general architecture of our system.

Section IV details the model we have proposed to represent,

to share and to visualise interaction traces in synchronous

systems. Section V presents a preliminary application we built.

Section VI presents the conclusion and perspectives.

II. REFLEXIVITY, AWARENESS IN SYNCHRONOUS

LEARNING SYSTEMS

Reflexivity plays a central role in theoretical research on

human learning, as shown in several studies (see for exam-

ple [11]). According to [12], reflexivity is defined as the ability

to interact with the situation in order to meet its own cognitive

and socio-cognitive limitations. Through reflexivity, individ-

uals can exercise control over their cognitive activity and

actions, which allows individual and collective self-assessment

and constructive criticism on oneself. In the context of human

learning, reflexivity can facilitate appropriation and compre-

hension of the environment for complex tasks. In collaborative

activities, synchronicity is one of the key elements that enable

the development of reflexivity. Individual and collective reflex-

ivities (specially needed in learning activities [13]) are used

to build group awareness, which in turn reinforce synchronous

collaboration [14] among participants.

Using the traces of the learner’s activity is an effective way

to encourage reflection on the learning process. This type of

reflection, consecutive to the task called “reflective follow-

up” [15] allows the learner to visualise traces of her actions

and leads to awareness allowing meta-cognitive regulation.

The difficulty with this approach is to detect, to trace, to model

and to represent the meaningful actions of the learner [16].

Sherlock 2 [15] is an example of a system using this kind of

reflexive incentives. Plaisant [17] used a system that graph-

ically represents the actions performed by the learner using

boxes and arrows. [18] has developed a system based on traces

allowing the tutor to perceive the status of learners’ work. [19]

has proposed a conceptual framework for tracking a learner’s

activity and attention in order to assist the user in his work.

A reflexive method used in ergonomics is to use traces of

the operators (via video) as a tool for construction of new

knowledge by making the subject face its activity record.

Nevertheless, it appears to us a/ that studies on the reflexive

usage of traces of learners’ activity in learning environments

do not cover the full extend of metacognitive activities that

such traces allow; b/ that traces have not been so far used as

such for reflexivity in synchronous environments; and c/ that

the systems that have been developed so far are ad-hoc and

lack the formal modelling of observables and traces, which

would on the contrary allow rapid prototyping and exploration

of innovative use of traces. To address such issues, we have

proposed a general architecture for explicitly managing traces

within so-called Trace-Based Systems, which we will apply in

the context of synchronous collaborative learning tools.

III. GENERAL ARCHITECTURE FOR SYNCHRONOUS

COLLABORATIVE TRACES

A. Traces in synchronous collaboration

Our team has been working on traces for several years,

building applications and studying various usages [20], [21].

As illustrated in Figure 1, our approach supposes that 1/ some

of the user’s interactions with her applications are traced, and

2/ personal traces can be further reused within so-called trace-

based applications, providing individual services such as:

• interactive visualisation: the user can explore, query,

annotate one’s trace, for instance for direct activity reflex-

ivity (online), or for exploring one’s past history (offline);

• trace-based assistance: for instance the adaptation of the

learning scenario.

Internet

Others

Applications

Others

Applications

Others

Applications T
ra

c
e

s
T

ra
c
e

s
T

ra
c
e

s

Trace-based

Application

Others

Applications

Others

Applications

Others

Applications T
ra

c
e

s
T

ra
c
e

s
T

ra
c
e

s

Trace-based

Application

Others

Applications

Others

Applications

Others

ApplicationsT
ra

c
e

s
T

ra
c
e

s
T

ra
c
e

s

Trace-based

Application

user 1

user 2

user 3

Synchronous

Application

Synchronous

Application

Synchronous

Application

Fig. 1. Traces for individual and collective use.

In this article, we are mostly interested in synchronous col-

laborative applications, considering that such applications can

be enhanced and extended by tracing users and providing them

with two kinds of reflexivity: 1/ online individual reflexivity

is related to personal activity visualisation; 2/ online group

reflexivity is related to personal activity sharing and to group

activity awareness

Of course, synchronous tools always already offer a basic

native online group reflexivity that is related to the very scope

of such tools (e.g. if somebody is writing on the whiteboard,

what he writes is intended to be shared). There also exists

a second kind of reflexivity, related to the extension of the

application with “parallel” activity indicators (e.g. when Skype

tells the user that “John is typing”, it adds a sense of awareness

of what John is doing apart from the chat message that will

likely arrive on the screen). We want to go beyond this second

kind of group reflexivity, by considering traces as such and

apart from the main synchronous application. This will allow

us to extend the use of one synchronous tool 1/ with activity

related to the tool itself (eg. muting the sound can be part of

the shared trace); 2/ with activity related to other tools, be they

asynchronous (eg. sharing the use of a word processor during

the session) or synchronous (eg. extending one’s whiteboard

trace with part of one’s visioconference activity).

For this, we consider as illustrated on Figure 1 that a

user can share and stream his traces to the trace bases of

other users, who are then able to use shared traces plus their

own personal traces within their trace-based applications. It

becomes possible that the user will be aware of the activity

of his group’s members and to situate his activity within the

group. Sharing of traces can also be symmetric or asymmetric,

depending on the activity or the status of the users. For

instance user 1 and user 2 can fully exchange their activities

as peers, while user 3 as a tutor could be aware of user 2

activity as a pupil, the reciprocity being false.

B. Trace-Based Management Systems

The general goal of our team being to make traces first-class

citizens of computer systems (as for instance files are), we had

to define precisely what traces are and how they were to be

manipulated. For that, in [22] we defined the notion of Trace-

Based Management Systems (TBMS) as systems devoted to

the management of modelled traces.

Interactions

Trace Base
Management

System

Collecting

T1

T2

T4

T3

τ1

τ3

τ2
M1

M1M2

M3

Transformations

Querying

Visualisation

Trace-based

assistance

time

o1 o2 o3 o4

c1

c2

r1

c3

Fig. 2. A Trace-Based Management System framework for using modelled
traces. The example trace T3 is somewhat detailed: the trace model M3

contains three obsels types (c1, c2, c3) and one relation type (r1). T3 contains
four obsels: o1 and o3 are related to instants, while o1 and o4 are related to
intervals. There is a relation between o3 and o4. A TBMS offers query and
transformation services.

A modelled trace is a trace explicitly associated with its

trace model. A trace model is an ontology that describes the

vocabulary of the trace. A trace results from the observation

of the interactions between a user and her system, it has a

temporal extension related to the time of the observation. A

trace is composed of observed elements (or obsels) represent-

ing the interaction between the user and the system. Each obsel

has a set of attributes / values that is related to the temporal

extension of the trace (e.g. it can be related to an instant or a

temporal interval). As shown on Figure 2, a trace can contain

relations between obsels (e.g. T4). A trace model is then a set

of observed element types and relations types, as M1 and M2

respectively describe the obsels of T1 and T2.

Modelled traces are managed by Trace-Based Management

System (TBMS). The process of collecting is that of cre-

ating a first modelled trace – called primary trace – from

several sources. The traces can be used in various ways

(visualisation, assistance, adaptation, etc.) within dedicated

applications. These applications can take advantage of two

main services provided by a TBMS. A trace-querying service

is dedicated to retrieving traces from the trace base according

to various criteria. More interesting is the transformation

service, whose role is to operate transformations on traces.

Indeed primary traces originating from the collecting may not

have the right abstraction level for the target application (eg.

one want to visualise a high-level trace showing the realization

of “answering an exercise” instead of the low-level, primary

trace describing “using a web browser”), or there may be

traces from several applications that should be considered

together, etc. The TBMS can then transform one or several

traces according to a transformation τ resulting in a new trace

in the base. Figure 2 shows a primary trace T1, transformed

by selection into T2 according to τ1 and T3 according to τ2.

T2 is transformed by rewriting into T3 according to τ3. A

transformation by fusion (see Figure 3) consists in copying all

the obsels of two or more traces into a new one.

A complete formalization of our metamodel proposal for

traces models, traces, queries and transformations can be found

with precise semantics in [23]. We are currently developing an

open-source TBMS that implements such metamodel.

C. Synchronous Collaborative Traces

So as to adapt to the synchronous collaborative framework

of the ITHACA project context, and to the uses we foresaw,

we somewhat extended the notion of TBMS (see Figure 3).

At the architectural level, if users do have a personal TBMS

for managing their own traces, they should also be able to

manage other’s shared traces. Inter-TBMS communication is

then needed so as to be able from one side to share traces, and

from the other side to collect shared traces. At the metamodel

level, we also needed to be able to manage in one single trace

base personal traces and other’s traces. For that we introduced

the notion of the subject of a modelled trace, who is the user

that was observed during the collect. For instance, the subject

of T1, T3 and T5 (My private trace, My shared trace, My

dedicated activity trace) is user3, while the subject of T2 (User

2 shared trace) is user2. The subject of T6 and T7 is the triple

(user1, user2, user3).

As it is not the main subject of this article, we will not

go deeper into trace-based systems theory. We will neither

address privacy issues related to trace exploitation, which is a

complex question overcoming widely the scope of the work we

present here. Let us just state that we are aware of the question

and that we ensure in all our developments that the user be

provided with full property and control of the diffusion of

her trace. The remainder of the paper is devoted to presenting

our trace models for synchronous collaboration and our first

developments.

Internet

Others

Applications

Others

Applications

Others

Applications

user 1

user 2

user 3

Synchronous

Application

TBMS

Others

Applications

Others

Applications

Others

Applications

Individual and

collective trace

vizualisation

and sharing

Synchronous

Application

TBMS

Trace-based

synchronous

application

extension

Individual and

collective trace

vizualisation

and sharing

Synchronous

Application

TBMS
Others

Applications

Others

Applications

Others

Applications

user 3

My private trace User 2 shared trace

User 1 shared trace

User 3 - Trace base

Group shared trace

Me within the group trace

My dedicated activity trace

My shared traceτ1

τ2

τ3

τ4

M1 M2

M2

M3

M2

M4

M5

Collecting
(from app)

Sharing
(to tbms)

Collecting
(from tbms)

Collecting
(from tbms)

T1 T2

T4

T3

T5

T7

T6

Fig. 3. Left: general architecture for individual and collective trace visualisation and sharing. Note that user 2 and user 3 have a separate trace-based
application, while user 1 has a more integrated trace-based extension of the synchronous application. Right: the trace base of user 3. This base contains the
primary trace T1 of user3, which is abstracted/rewritten by τ1 into the trace T5 that is more adapted to the representation of a user 3 high-level activity. T1

is also modified into T3 by selecting obsels that user 3 wants to share. User 1 and user 3 have shared their traces, and a fusion transformation τ3 is used to
build a common “group trace”. User 3 can then use τ4 so as to build a trace adapted to the visualisation of her activity within that of the group.

IV. TRACE MODELS OF SYNCHRONOUS COLLABORATIVE

ACTIVITIES

A. Interaction modes and tools

In its most generic aspect, we consider that a synchronous

collaborative tool is a computer environment allowing a group

of persons to realize an activity together and in the same time,

while depending on each others. Such environment can be

composed of several software components that support group

regulation, communication and production. Synchronous col-

laboration is supported by interactions happening in shared

workspace, written discussion, video conferencing, etc.

To take into account the variety of synchronous tools and

activities, we propose to define an “interaction mode” as a

means for a user to interact with another user, as an established

practice of interacting through a computerized channel.

We identify the following interaction modes in synchronous

collaborative activity:

• sharing a whiteboard: participants can draw, write, insert

resources, etc. Example of a tool implementing such

interaction mode: Dabbleboard2

• collaboratively editing a text: sharing a writing area. Ex.:

Gobby2

• videoconferencing. Ex.: Skype2

• text chatting. Ex.: Skype or ICQ2

• co-browsing: several user can engage into a common

browsing session, sharing URI, pushing pages, etc.; Ex.:

eMédiathèque2

• screen sharing: remotely viewing and controlling a distant

computer; Ex.: VNC2

Of course, an interaction mode can be used in combina-

tion with other ones (eg. videoconferencing and sharing a

whiteboard). Also, there is not always a strong connection

2http://www.dabbleboard.com, http://gobby.0x539.de, http://www.skype.
com, http://icq.com/, http://www.eLycee.com/what_is_elycee/eMediatheque/,
http://en.wikipedia.org/wiki/Virtual_Network_Computing

between a software and the interaction modes: an application

can implement several interaction modes. For example, Skype

(voice and video) instantiate a videoconferencing interaction

mode, but also a text chatting interaction mode.

B. A generic model for synchronous collaborative activity

traces

We introduce (Figure 4) a generic model of traces in a

synchronous collaborative activity, built upon a description of

a generic synchronous collaborative environment. The purpose

of this model is to propose a way to formally describe any

synchronous collaborative activity. Our approach is based on

a modular decomposition of the activity description: th model

is composed of several sub-models related to interaction modes

and one sub-model related to the whole activity.

The obsels are organized within a specialization hierarchy.

At the top level is the generic obsel from a synchronous

collaborative activity, describing that the user has made a

temporally situated interaction within the traced computer

based environment.

There are two main parts in this generic model of the

synchronous collaborative activity. The first one (bottom in

Figure 4) deals with the various categories of interaction

modes. The second one (top right in Figure 4) focuses on

global interactions. It contains obsels for describing the partic-

ipants of the synchronous collaboration, particularly the user

and her actions that are not specific to a precise interaction

mode, but global to her computer environment like copy and

paste, etc. Such approach gives us the possibility to express

transmodal relations between obsels. For example, one can

think of doing a copy from a text chat for pasting it onto a

whiteboard. We designed our model such as neither the copy

or the paste interactions belong to a specific interaction mode,

but belong to the common computer environment.

Each of the interaction modes is described, in a generic

manner, by a specific interaction mode model. This model

http://www.dabbleboard.com
http://gobby.0x539.de
http://www.skype.com
http://www.skype.com
http://icq.com/
http://www.eLycee.com/what_is_elycee/eMediatheque/
http://en.wikipedia.org/wiki/Virtual_Network_Computing

Generic
collaborative

activity's obsel

Common
system obsel

Interaction
modes' obsel

User's obsel Clipboard's
obsel

videoconference
obsel

screen sharing
obsel

Text chat
obsel

whiteboard
obsel

shared web
browser obsel

Collaborative
text editor obsel

Copy into the
system's
clipboard

Paste into the
system's
clipboard

Fig. 4. Structure of the generic trace models for synchronous collaborative
activities; specific obsels are not all detailed here

can be further specified for matching the precise feature of

applications, and extending for supporting new interaction

modes. We detail here two interaction modes: the whiteboard

sharing model and the text chatting model.

1) Whiteboard sharing model: Figure 5 shows our mod-

elling of a generic whiteboard software. It allows us to

describe the user’s interactions with any kind of whiteboarding

software. We identify two generic kinds of objects, “text”

(such as typed by user) and “shape” (everything else); the

generic actions being to create, to alter and to delete them.

The “content” obsels’ attributes have complex types, spe-

cific to each whiteboard application. They contain data about

objects such as position, shape, colour, textual content, etc.

The model is expandable. One can think for instance of

extending it for integrating a semantic aspect, if the software

allows it, with a new obsel text correction describing the action

to fix a spelling mistake in a text, without altering its meaning,

and a new relation is linked to linking together two connected

elements, them being text or shape.

2) Text chatting model: Figure 6 shows our modelling of a

generic text chat software. It allows us to describe the user’s

interactions made in any kind of text chat software. The central

obsel is chat channel activation; it represents a conversation

channel for the user, and therefore contains in its attributes all

the global informations about this precise conversation. The

obsels in relation to this channel, such as sending and reception

of messages, relay on it for contextualisation.

This model is also expandable. One can think to immedi-

ately expand it in order to add the concept of “conversation”,

with the relation is an answer to linking two messages, the

second being a direct answer to the first one. Such extension

rely on being capable of automatically analysing the structure

and content of a chat channel for inferring such relation.

We could also have added a relation describing the link

between a user and a chat channel; but this relation is non-

trivial because software or communication protocols do not

always announce the user’s presence, except when he is talking

(before that, they are invisible for a newcomer). That is why

we do not include this relation in our generic model.

user ID

beginning of user
presence

content
creating text

content
altering text

closing whiteboard
deleting whiteboard

deleting element

whiteboard
obsel

Generic
collaborative

activity's obsel

Interaction
modes' obsel

Common
system obsel

User's obsel

Relation

Specialisation

is
 a

c
ti
v
a
te

d
 b

y

is connected to

is
 a

 w
ri
ti
n
g
 o

n
 w

h
it
e
b
o
a
rd

is
 a

 w
ritin

g
 o

n
 w

h
ite

b
o
a
rd

is
 p

o
in

tin
g
 to

is
 p

o
in

tin
g
 to

is a writing on whiteboard

is
 a

 w
ri
tin

g
 o

n
 w

h
ite

b
o
a
rd

is a w
riti

ng on w
hite

board

is
 a

 d
e
le

tin
g
 o

f

te
rm

in
a
te

s

a
 w

h
ite

b
o
a
rd

 u
se

content

altering shape's
aspect

content
creating shape

id
activating whiteboard

pointing element

Fig. 5. Generic model of whiteboard user interactions; attributes are not all
detailed here

C. A synchronous trace example

As a concrete example, let’s imagine the following situation:

Alice, Bob and Charlie are three learners engaged into a

synchronous collaborative activity. Their work is to search the

web for precise informations, and to collect useful resources

for a future work. For doing this, they use a shared web

browser. They have a chat for communicating, and the result

of their searches is organized onto a shared whiteboard. Alice,

Bob and Charlie all have a TBMS on their computer, and are

tracing their software. They share altogether their activity’s

traces, allowing everybody to know what the others are doing.

In this example, we are following Alice and her trace.

On her computer, beside her usual applications, Alice has a

software component that allow her to visualise, to manipulate

and to share her activity’s traces. This software allows her to

see what she has and the members of her group has done.

The precise features and behaviours of this tool are defined

by Alice’s teacher.

The example scenario is the following: first, Alice logs into

her activity environment and discovers that Bob and Charlie

are already here. She displays the activity’s whiteboard and

beginning of user presence (Alice)

beginning of user presence (Bob)

copy into the
system clipboard

paste from the
system clipboard

beginning of user presence (Charlie)

end of user presence

terminates th session of

is a paste of

is used in

obsel
relation

chat channel
activation

chat message
composition

receiving a
chat message

chat channel
closure

is
a v

alid
atio

n

of c
hat m

ess
age

finishes a chat

is
 re

ce
iv
ed

 o
n

is sent by

is sent by

is a composition

of chat m
essage on

sending a
chat message

activating whiteboard
creating text closing whiteboard

terminates a whiteboard useis a writing on whiteboard

activating shared
web browser

changing page
is made in

finishes

shared web
browser closure

Fig. 7. Alice’s activity trace

user ID

beginning of user
presence

Text chat obsel

Generic
collaborative

activity's obsel

Interaction
modes' obsel

Common
system obsel

User's obsel

Relation

Specialisation

is
se

nt b
y

is activated by

is a composition of

a chat message on

fin
ish

es

a ch
at

is
 r

e
c
e

iv
e

d
 o

n

sending a chat
message

content

receiving a chat
message

content

chat message
composition

channel

chat channel
activation

chat channel
closure

is
 a

 v
a

lid
a

ti
o

n
 o

f
a

 c
h

a
t
m

e
s
s
a

g
e

 o
f

is
 s

en
t b

y

Fig. 6. Generic model of text chat user interactions, attributes are not all
detailed here

open her web browser. She goes on the chat and read the

messages from Bob and Charlie. Bob finds in his web browser

an interesting resource and pushes the page to Alice and

Charlie. Then Alice writes on the chat that she will collect

this resource; Charlie answers OK. So, Alice copies the web

resource’s URI into her clipboard; after that she pastes the URI

onto the shared whiteboard as a new text. She then closes the

whiteboard, the chat and the web browser and stops working.

There are several possibilities for presenting a trace to

a user: literal text, graph, timeline, etc. Those possibilities

are discussed in the next section. For the current example,

we focus on Alice’s trace with a timeline visualisation (see

Figure 7). Alice’s trace is represented here with a timeline

approach, on which are placed all the obsels of her personal

trace. Each interaction mode (common, text chat and white-

board) is displayed in its own colour for clarity. The relations,

such as specified in the trace’s model are displayed as oriented

arcs connecting the obsels.

D. Requirements for trace visualisation

Presenting a trace to a user is not a trivial task, first because

of the temporal nature of a trace (a trace can cover periods

ranging from minutes to months), and second because of the

complex information it contains. As stated in section III-C, we

are currently engaged into a process of identifying the various

characteristics of modelled traces, in order to define how to

sustain individual and group reflexivity with trace sharing and

visualisation in realtime.

For the moment, we have defined general simple principles

that we will gradually improve with the results coming from

our prototypes. Amongst them, we state that a software for

interactive visualisation of traces must support the following

properties:

• selecting the trace(s) to visualise;

• browsing of traces according to various characteristics:

time, obsels’ types, etc.

• choosing amongst several visual renderings for interact-

ing with traces;

• applying transformation on traces: fusion, filtering, etc.

• selecting obsels for further work (refactoring, export,

etc.).

There can be several visual renderings of a trace. One

can choose to explore a trace using a natural text rendering

approach, while another would prefer a graph with a fisheye

for details, or a timeline, etc. The strong decoupling of the

trace’s visualisation from its content implies to propose to the

user some tools for managing the representation methods (at

least obsels selection).

As we are working on visualisation of shared traces in

synchronous collaborative environments, our main objective

is to be able to share and to visualise traces on individual

and collective bases. We also need to be able to visualise

collections of past traces (such as ones concerning finished

activities) in order to analyse and to share past activities.

Concerning the synchronous collaborative aspects on traces

visualisation, our needs are therefore the followings:

• sharing and accepting traces: for providing group aware-

ness in a trace supported synchronous collaborative ac-

tivity, being able to share traces is critical. It must be

doable on an individual or collective base, after selecting

or constructing the very traces that are going to be shared.

• sharing and accepting traces presentation styles: as traces

visualisation relays on rendering definitions, those can

be shared as well among the activity participants in order

for them to have a common representation of activity’s

traces.

• sharing and accepting traces transformations: in the same

way as for the traces and presentation style sharing, users

must be able to share and to accept traces transformations.

• partaking of group trace: for achieving group awareness,

a user must be able to collect information from the actions

of the other members of his group. This is done by trace

sharing, where each member of the group partake trace(s)

of his interactions with the rest of the group. Every user

then has the possibility to collect and process those traces,

via transformations, for producing a personal meaningful

trace describing the global group activity.

V. A FIRST APPLICATION

Following those requirements, we are currently develop-

ing several software components and a test prototype for

experimenting with our trace-based approach for supporting

synchronous collaborative activities.

The first one is an IRC client called WeeChat3, that we

did extend for trace collecting4. When the user interacts

with the IRC client, or when events happen (connection of

a user, receiving of a message, request for a file transfers,

etc), WeeChat sends the corresponding obsels to the user’s

TBMS. Figure 8 presents our specialization of the generic

3http://www.weechat.org/
4http://gforge.liris.cnrs.fr/projects/weechat-traces/

model of text chatting interaction mode (see Section IV-B2)

for describing the interactions made by a user on a generic

IRC client (middle). We expanded this extension for covering

the specific features of the WeeChat application, as well as its

implementation of IRC (bottom). Figure 8 shows how the dif-

ferent levels of abstraction are specialized, and the obsels that

can be directly used with their specification from the generic

model. We consider this first specialisation/implementation of

our generic model a first validation of this model and of

our general approach of modelling synchronous activities with

interaction modes.

The second software is a tool for visualising traces, but

also interacting with them by applying transformations (trace

fusion, filtering, etc.) and sharing them with other people. The

current implementation is kind of rough, but it already allows

to show the user’s own trace together with a trace resulting

from the fusion of other users’ traces. Future versions of the

tools will propose several visualisation modes, transformation

and sharing possibilities, etc. the goal being to create a com-

plete generic software for interactive visualisation of traces.

VI. CONCLUSION AND FUTURE WORK

This article presents a model of traces dedicated to syn-

chronous collaborative activities. Our research is based on

awareness, meta-cognition, self-perception and reflexive learn-

ing in order to improve students’ skills as an individual or

as group. It consists in proposing tools allowing the user

to visualise and analyse their own experiences, the results it

produces and the knowledge deduced.

The general principle of our method is to observe, by

various means, the user’s actions and represent them in

structures called observed elements. Thus, we have presented

a general framework for using modelled traces (based on

observed elements) and trace-base management. We then have

proposed a generic trace model for synchronous collaborative

activity based on the notion of interaction mode (roughly

related to a communication channel), and we have specialized

and illustrated this model for two modes: whiteboard sharing

and text chatting. As a first implementation, we have extended

the WeeChat IRC client for trace collecting and implemented

a first tool for trace visualisation.

Our first informal tests with such approach give quite

interesting results on the modelling and the architectural side.

Our first text-based visualisation tool is operational and will

be extended with more user-related functionalities, so as to be

able to test its usefulness in real synchronous communication

situations. Our current objective in the ITHACA project is to

integrate as a plug-in the generic module of trace manage-

ment in two Technology Enhanced Learning (TEL) platforms

(French learning / general school support), and to adjust

the modelling and instrumentation for tracing the various

collaborative tools, while building dedicated trace visualisation

tools adapted to the specific learning tasks of these TELs. A

special effort will be devoted to a precise study of the trace

transformations that will be needed so as to reach adequate

levels of abstraction.

http://www.weechat.org/
http://gforge.liris.cnrs.fr/projects/weechat-traces/

Generic
collaborative

activity's obsel

IRC obsels

Weechat
obsels

server

connect to a
server

disconnect
from a
server

key code
input buffer
input mask

key press

change statut
to present

change statut
to away

message

sending a chat
message

content

receiving a chat
message

content

chat message
composition

channel

chat channel
activation

chat channel
closure

user ID

beginning of user
presence

Text chat obsel

Interaction
modes' obsel

is
 s

e
n
t
b
yis sent by

is
 r

e
c
e
iv

e
d
 o

n

is a compositio
n of

a chat m
essage on

is
 a

 v
a
lid

a
tio

n
 o

f

a
 c

h
a
t
m

e
ss

a
g
e
 o

f

Relation

Specialisation

fi
n
is

h
e
s

a
 c

h
a
t

is
 a

ct
iv
at

ed
 b

y

is
 m

a
d
e
 i
n

finishes a connectio
n

is
m

ade o
n

is
 a

 c
o
n
ta

in
e
r

fo
r

finishes an absence

is
 m

a
d
e
 in

Common
system obsel

User's obsel

buffer
create buffer

is displaying

delete buffer

is
m

ade o
n

window

create
window

is made in

delete
window

is
 m

a
d
e

o
n

nickname

set
nickname

is made on

activate
buffer

is
 a

n
 a

c
ti
v
a
ti
o
n
 o

f

is
 m

a
d
e
 o

n

Fig. 8. Exerpt from the WeeChat’s specific trace model

Future works also include the study of automated trace-

base learning of users’ habits or activity schemes that could

be reused by users themselves through trace-based assistants,

or by experts for TEL environments enhancement.

REFERENCES

[1] M. Baker, M. Quignard, K. Lund, and A. Séjourné, “Computer-
supported collaborative learning in the space of debate,” in Proc. of the

Int. Conf. on Computer-Supported Collaborative Learning. Dordrecht,
Netherlands Kluwer Academic Publishers, 2003, pp. 11–20. 1

[2] A. Soller, F. Linton, B. Goodman, and A. Lesgold, “Toward intelligent
analysis and support of collaborative learning interaction,” in Proceed-

ings of the Int. Conf. on Artificial Intelligence in Education. Amsterdam,
Netherlands: IOS Press, 1999, pp. 75–82. 1

[3] M. Constantino-González and D. Suthers, “Coaching collaboration in a
computer-mediated learning environment,” in Proceedings of the Inter-

national Conference on Computer-Supported Collaborative Learning,
L. Erlbaum, Ed., 2002, pp. 583–586. [Online]. Available: http://lilt.ics.
hawaii.edu/lilt/papers/2002/Constantino-Suthers-CSCL-2002.pdf 1

[4] D. Suthers and D. Jones, “An architecture for intelligent collaborative
educational systems,” in Proc. of Int. Conf. On artificial intelligence in

education. Amsterdam, Netherlands: IOS Pres, 1997, pp. 55–62. 1

[5] D. Raymond, Y. Yano, C. E. Mauad, V. Baudin-Thomas, T. Gayraud,
M. Diaz, K. Kanenishi, and K. Matsuura, “Bringing mobility to syn-
chronous collaborative activities: Recent enhancements of the "platine"
platform,” in WMTE, 2005, pp. 59–61. 1

[6] D. Raymond, K. Kanenishi, K. Matsuura, Y. Yano, V. Baudin,
T. Gayraud, and M. Diaz, “Synchronous cscl with platine environment,”
in Proc. of the International Conference on Computer-Supported Col-

laborative Learning 2005 (CSCL2005), May 2005, pp. 45–47. 1

[7] J. Lonchamp, “Supporting synchronous collaborative learning: A
generic, multi-dimensional model,” Int. Journal of Computer-Supported

Collaborative Learning, vol. 1, no. 2, pp. 247–276, June 2006. [Online].
Available: http://dx.doi.org/10.1007/s11412-006-8996-7 1

[8] C. Jones, L. Dirckinck-holmfeld, and B. Lindstrom, “A relational,
indirect, meso-level approach to CSCL design in the next decade,”
IJCSCL, vol. 1, no. 1, pp. 35–56, 2007. 1

[9] P. Jermann, A. Soller, and Muehlenbrock, “From mirroring to guiding:
a review of the state of the art technology for supporting collaborative
learning,” International Journal of Artificial Intelligence in Education,
vol. 15, no. 4, pp. 261–290, 2005. 1

[10] D. Masciotra, “Réflexivité, métacognition et compétence,” Vie péda-

gogique, vol. 134, pp. 29–31, feb 2005. 1

[11] S. O’Mahony and F. Ferraro, “The emergence of governance in an
open source community,” Academy of Management Journal, vol. 50,
pp. 1079–1106, Oct. 2007. [Online]. Available: http://www.business.
ualberta.ca/tcc/documents/TII_3_OMahoney_Ferraro_final.pdf 2

[12] D. A. Schön, The Reflective Practitioner: How Pro-

fessionals Think in Action. Basic Books, June 1983.
[Online]. Available: http://www.amazon.com/exec/obidos/redirect?tag=
citeulike07-20&path=ASIN/0465068782 2

[13] A. J. G. Cockburn and H. Thimbleby, “A reflexive perspective of cscw,”
SIGCHI Bull., vol. 23, no. 3, pp. 63–68, 1991. 2

[14] U. Farooq, J. M. Carroll, and C. H. Ganoe, “Supporting creativity
with awareness in distributed collaboration,” in GROUP07: International

Conference on Supporting Group Work. ACM Press, 2007, pp. 31–40.
2

[15] S. Katz, A. Lesgold, G. Eggan, and M. Gordin, “Modelling the student in
sherlock 2,” International Journal of Artificial Intelligence in Education,
vol. 4, no. 3, pp. 495–518, 1992. 2

[16] C. Gama, “Towards a model of metacognition instruction in interactive
learning environments,” Ph.D. dissertation, University of Sussex, 2003.
2

[17] C. Plaisant, A. Rose, G. Rubloff, R. Salter, and B. Shneiderman,
“The design of history mechanisms and their use in collaborative
educational simulations,” in Proceedings of the Computer Support

for Collaborative Learning (CSCL) 1999 Conference, 1999. [Online].
Available: http://hcil.cs.umd.edu/trs/99-11/99-11.pdf 2

[18] C. Despres and S. George, “Supporting learners’ activities in a distance
learning environment,” International Journal of Continuing Engineering

Education and Lifelong Learning, vol. 11, pp. 261–272, 2001. 2

[19] D. Clauzel, C. Roda, M. Raglianti, G. Stojanov, and al, “Deliverable
1.3: AtGentive Conceptual Framework and Application Scenarios,”
Consortium AtGentive, Tech. Rep., Sep. 2006, atGentive European
project. [Online]. Available: http://www.AtGentive.com 2

[20] D. Cram, D. Jouvin, and A. Mille, “Visualizing interaction traces to
improve reflexivity in synchronous collaborative e-learning activities,”

http://lilt.ics.hawaii.edu/lilt/papers/2002/Constantino-Suthers-CSCL-2002.pdf
http://lilt.ics.hawaii.edu/lilt/papers/2002/Constantino-Suthers-CSCL-2002.pdf
http://dx.doi.org/10.1007/s11412-006-8996-7
http://www.business.ualberta.ca/tcc/documents/TII_3_OMahoney_Ferraro_final.pdf
http://www.business.ualberta.ca/tcc/documents/TII_3_OMahoney_Ferraro_final.pdf
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0465068782
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0465068782
http://hcil.cs.umd.edu/trs/99-11/99-11.pdf
http://www.AtGentive.com

in 6th European Conference on e-Learning, Oct. 2007, pp. 147–158.
[Online]. Available: http://liris.cnrs.fr/publis/?id=3000 2

[21] L. Sofiane Settouti, Y. Prié, J.-C. Marty, and A. Mille, “A trace-based
system for technology-enhanced learning systems personalisation,” in
The 9th IEEE Int. Conf. on Advanced Learning Technologies, Jul.
2009. [Online]. Available: http://liris.cnrs.fr/publis/?id=3974 2

[22] J. Laflaquière, L. S. Settouti, Y. Prié, and A. Mille, “A trace-based
System Framework for Experience Management and Engineering,”
in Second International Workshop on Experience Management and

Engineering (EME 2006) in conjunction with KES2006, Oct. 2006.
[Online]. Available: http://liris.cnrs.fr/publis/?id=2473 3

[23] L. S. Settouti, Y. Prié, P.-A. Champin, J.-C. Marty, and A. Mille,
“A Trace-Based Systems Framework : Models, Languages and
Semantics,” LIRIS , University of Lyon, France, UMR CNRS
5205, Université Lyon 1, technical report, 2009. [Online]. Available:
http://hal.inria.fr/inria-00363260/en/ 3

http://liris.cnrs.fr/publis/?id=3000
http://liris.cnrs.fr/publis/?id=3974
http://liris.cnrs.fr/publis/?id=2473
http://hal.inria.fr/inria-00363260/en/

	Introduction
	Reflexivity, awareness in synchronous learning systems
	General architecture for synchronous collaborative traces
	Traces in synchronous collaboration
	Trace-Based Management Systems
	Synchronous Collaborative Traces

	Trace models of synchronous collaborative activities
	Interaction modes and tools
	A generic model for synchronous collaborative activity traces
	Whiteboard sharing model
	Text chatting model

	A synchronous trace example
	Requirements for trace visualisation

	A first application
	Conclusion and future work
	References

