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Abstract 

The aim of this work is to measure the effect of band-gap on TiO2 thin films by changing tetrabutylorthotitanate 

(TBOT), diethanolamine (DEA), and temperature. The sol-gel method is experimentally introduced to find out the 

better band-gap of TiO2 thin films by varying the concentration of TBOT (4 ml to 10 ml), DEA (2 ml to 5 ml), and 

temperature (350°C to 650°C). With the help of an ultraviolet-visible spectrophotometer for the wavelength of 

300-900 nm, these thin films are characterized concerning optical properties (transmittance spectra, absorbance 

spectra, direct band-gap, and indirect band-gap). The direct and indirect band-gaps are found 3.38 eV and 3.25 eV 

respectively, which are close to or within the standard band-gap range of TiO2 (3.2 eV to 3.35 eV) and are found at 8 

ml TBOT, 3 ml DEA, and a temperature of 550°C. 
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1. Introduction 

Titanium dioxide (TiO2) is widely used in photocatalytic applications as it provides chemical stability, non-toxicity, and 

low cost [1-2]. Nowadays, TiO2 is also considered an energy conversion material. It could be electrode materials for 

lithium-ion batteries [3] embedded in the membrane of polymer electrolyte fuel cells [4]. TiO2 is one of the popular candidates, 

as its band-gap is quite wide, and therefore only the ultraviolet region of the light could be absorbed [5]. 

The sample preparation conditions, crystal phase, surface area, size distribution, and porosity [6-7] are mainly responsible 

for the photocatalytic properties of TiO2. Additionally, the photocatalytic movement of anatase TiO2 is higher than rutile TiO2 

because of the fact that the band-gap energy of anatase (3.23 eV) is higher than the rutile (3.00 eV) [8]. However, some 

methods, namely chemical routes such as sol-gel dip-coating [9] and sol-gel spin-coating [10], consume less energy and do not 

require expensive equipment.  

Many research groups have demonstrated that the nano-TiO2 films prepared from the sol-gel method can make good 

photoanodes of dye-sensitized solar cells [11] and photo electrocatalytic hydrogen production devices [12]. The structural, 

electronic, and optical properties of iron (Fe)-doped TiO2 thin films by sol-gel technique are investigated, which shows that the 

increase of illumination intensity causes the increase of photocurrents [13]. The machine learning algorithm is an important 

criterion to learn types of atoms considering structural geometrical data of anatase TiO2 nanoparticles [14]. A magnetron 

sputtering technique is used for coating sulfur electrodes into the TiO2 thin film with the variation of deposition times [15]. The 

Gaussian process regression model is developed for the predictions of anatase TiO2 photocatalysts’ energy band gaps 

depending on the lattice parameters and surface area [16]. The TiO2 thin-film preparation using sol-gel spin coating process 

is briefly investigated along with optical and material characteristics for future research scope [17]. A Cd-Si co-doped TiO2 
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hierarchical coating on the surface of a glass slide is fabricated, which exhibits superhydrophobic properties. Besides, the 

optical band-gap and surface chemical ligands of the prepared thin films are studied [18]. Any change of charge distribution of 

the crystal unit cells leads to the variation of the single-oscillator parameters [19]. 

This study serves many purposes to optimize TiO2 thin films. First of all, it fabricates TiO2 thin films by sol-gel method. 

Characterization of optical properties of TiO2 thin films by ultraviolet-visible spectrophotometer is another focus of this research 

work. Measuring the effect of band-gap on TiO2 thin films by changing various parameters, i.e., tetrabutylorthotitanate (TBOT), 

diethanolamine (DEA), and temperature, is a major work to fulfill the research goal. Finding out the better band-gap of TiO2 thin 

films with the concentration of TBOT, DEA, and temperature is the ultimate focus of this study. 

2. Experimental Details 

In this section, the sol-gel transition, sol-gel process, preparation of TiO2 thin films, substrate cleaning, and preparation of 

precursor solution are briefly described. 

2.1.   Sol-gel process 

In this compound method, the “sol” (or arrangement) is gradually developed towards the arrangement of a gel-like 

diphasic framework containing both the fluid stage and strong stage whose morphologies go from discrete particles to 

consistent polymer organizations. The arrangement of polymer network includes interfacing the metal habitats with oxo 

(M-OM) or hydroxo (M-OH-M) spans. 

M − OR + H2O → M − OH + ROH (1) 

M − OH + HO − M → M − O − M + H2O (2) 

M − OR + HO − M → M − O − M + ROH (3) 

2.2.   Preparation of TiO2 thin film 

TiO2 thin film can be prepared by using four steps: substrate cleaning, precursor solution preparation, substrate dipping 

and withdrawing, and heat treatment. The whole process is shown in Fig. 1.  

Cleaning the Substrate Preparation of the 

Precursor Solution

Substrate Dipping and 

Withdrawing

Heat Treatment

Step-1 Step-2 Step-3 Step-4

 

Fig. 1 Different steps of sol-gel process  

2.3.   Preparation of precursor solution 

At first, a specific amount of TBOT is dissolved into a specific amount of absolute ethanol to yield a specific concentrated 

solution, and then it is magnetically stirred for 2 hours. After stirring for 2 h at room temperature, a mixed solution of water and 

ethanol in the ratio of 1:10 is added dropwise. The resultant alkoxide solution is stirred at room temperature for hydrolysis 

reaction for 2 h. Hence, the precursor solution is made through this process. Then, the glass substrate is dipped in and pulled 
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back from the solution to make thin layer of TiO2 film on glass substrate. The dipping and withdrawal speed is 2 mm/sec. The 

substrates cover with the gel films dried at 600°C before calcining at 550°C for 1 h. The magnetic stirrer employed in this work 

is shown in Fig. 2. 

 

Fig. 2 Magnetic stirrer used for stirring solution 

3. Result Analysis 

The result is analyzed into three parameters. TiO2 film is deposited by TBOT variation, DEA variation, and temperature 

variation, which is briefly shown in this section. A low-cost dye-sensitized solar cell is fabricated later successfully with the 

sol-gel derived TiO2 thin film/photoelectrode. To do this chlorophyllin-sodium copper salt dye, carbon counter electrode and 

KI-based electrolyte are also used. This result shows that the photoelectron conversion efficiency of the TiO2 thin 

film/photoelectrode, deposited with 1.0 g of polyethylene glycol (PEG), is the highest among the samples of this investigation. 

8 ml TBOT and 3 ml DEA are used to prepare the precursor solution [20]. That is why 8 ml TBOT and 3 ml DEA are used in 

this research. 

3.1.   Deposition of TiO2 film by TBOT variation 

In this section, firstly, the transmittance and absorbance spectra of thin films for various concentrations of TBOT keeping 

DEA steady at 3 ml is prepared. Fig. 3(a) shows the optical conveyance spectra of the prepared films. All the films have a sharp 

cut-off at around 380 nm wavelength and reach to the top at around 400 nm. The film which has TBOT concentration of 8 ml 

is close to the standard curve. Corresponding absorbance spectra is shown in Fig. 3(b). 

According to Tauc law reliance of assimilation, the co-productive α on photon vitality (hν) can be expressed in Eq. (4). 

( )
m

h A h Egα ν ν= −  (4) 

where m is equivalent to 1/2 and 2 for immediate and aberrant changes separately, α is ingestion coefficient, A is edge width 

boundary, and hν is photon energy. The equation of α is expressed in Eq. (5). 

0
4

 
kπ

α
λ

=  (5) 

The transmitted light can be absorbed by the film material. In the fundamental absorption region, the transmission T is given in 

Eq. (6) [21]. 

0
4

exp( )
k t

T A
π
λ

−
=  (6) 
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where k0 is the extinction coefficient. From Eq. (6), t is film thickness and λ is the wavelength of incident light. If k0 << n, then 

the principle variation of T occurs in the exponential term, and the pre-exponential term A which accounts for reflecting effect 

is close to unity. In this regard, the equation of T is shown in Eq. 7 [1]. 

exp( t)T α= −  (7) 

Then, from Eq. (7), the absorption coefficient [22] can be expressed as: 

100
2.303 log( )

T
α =  (8) 

Hence, by knowing the value of transmittance T, the value of absorption coefficient α can be determined. Again, Eq. (9) 

describes the photon energy. 

1240
(ev)

hc
E hν

λ λ
= = =  (9) 

Fig. 3(c) shows the curves of (αhυ)
2
 versus photon energy hν for direct band-gap transitions of TiO2 thin films for 

different concentrations of TBOT keeping DEA constant at 3 ml. It can be shown from Fig. 3 that for 8 ml TBOT the band-gap 

(3.28 eV) is within the range of the standard band-gap (3.20 - 3.35 eV). Direct band-gap transitions of TiO2 thin films for 

different concentration of TBOT keeping DEA constant at 3 ml is shown in Fig. 3(c). It can be shown from the Fig. 3 that for 8 

ml and 10 ml TBOT, it is close to the standard band gap range of 3.20 - 3.35 eV of TiO2. For 4 ml TBOT, it is within the 

standard range. However, for 6 ml TBOT, it is very low from the standard mark. Indirect band-gap transitions of TiO2 thin 

films for different concentration of TBOT keeping DEA constant at 3 ml is shown in Fig. 3(d). 
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(c) Direct band-gap transition (d) Indirect band-gap transition  

Fig. 3 Various parameters of TiO2 thin films for different concentration of TBOT keeping DEA constant at 3 ml 
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The variation of TBOT keeping DEA constant at 3 ml is shown in Table 1. In this table, direct and indirect band-gaps are 

given. The band-gaps are measured with 4 ml, 6 ml, 8 ml, and 10 ml TBOT. Here, 8 ml TBOT is highlighted for its better 

performance.      

Table 1 TBOT variation keeping DEA constant at 3 ml 

Variation Direct band-gap (eV) Indirect band-gap (eV) 

4 ml TBOT 3.58 3.28 

6 ml TBOT 3.44 2.70 

8 ml TBOT 3.28 3.18 

10 ml TBOT 3.49 3.11 
 

From Figs. 3(c)-(d) and Table 1, it is clear that both direct and indirect band gap for 8 ml TBOT is close to or within the 

standard range. Therefore, for further optimization, the concentration of TBOT is fixed at 8 ml in this study. 

3.2.   Deposition of TiO2 film by DEA variation 

From the previous section, this work has the optimized value of TBOT at 8 ml. Now, keeping TBOT at 8 ml, this section 

varies DEA. TiO2 films are prepared by DEA variation by sol-gel process so that the surface of prepared films is grown 

uniformly. It can be clearly understood that the sol-gel derived TiO2 films are visually transparent. First, the transmittance and 

absorbance spectra of thin films for different concentrations of DEA keeping TBOT constant at 8 ml is shown. 

Fig. 4(a) shows the optical transmittance spectra of the prepared films. All the films have a very sharp cut-off at around 380 

nm wavelength and reach to the peak at around 400 nm. The films are highly transparent in the visible range and have low 

transmittance at the ultraviolet region. It is noted that the average transparency of the sol-gel derived TiO2 films is 81% in the 

visible range. The film which has DEA concentration of 3 ml is closer to the standard curve. Corresponding absorbance spectra 

are shown in Fig. 4(b). Direct band-gap transitions of TiO2 thin films for different concentration of TBOT keeping DEA constant 

at 3 ml is shown in Fig. 4(c). Indirect band-gap transitions of TiO2 thin films for different concentration of DEA keeping TBOT 

constant at 8 ml is shown in Fig. 4(d). The variation of DEA keeping TBOT constant at 8 ml is shown in Table 2.  
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Fig. 4 Various parameters of TiO2 thin films for different concentration of DEA keeping TBOT constant at 8 ml 
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Table 2 DEA variation keeping TBOT constant at 8 ml 

Variation Direct band-gap (eV) Indirect band-gap (eV) 

2 ml DEA 3.21 2.89 

3 ml DEA 3.30 3.25 

4 ml DEA 3.30 2.95 

5 ml DEA 3.35 2.80 
 

From Figs. 4(c)-(d) and Table 2, it is clear that both direct and indirect band gap for 3ml DEA is within the standard range. 

Therefore, for further optimization, the concentration of DEA is fixed at 3 ml in this study. 

3.3.   Deposition of TiO2 film by temperature variation 

The transmittance and absorbance spectra of thin films for temperature variation keeping TBOT and DEA constant at 8 ml 

and 3 ml respectively are shown. Fig. 5(a) shows the optical transmittance spectra of the prepared films. All the films have a 

very sharp cut-off at around 380 nm wavelength and reach to the peak at around 400 nm.  

The films are highly transparent in the visible range and have low transmittance at the ultraviolet region. It is noted that 

the average transparency of the sol-gel derived TiO2 films is 80% in the visible range. The film which has a temperature of 

550°C is close to the standard curve. Corresponding absorbance spectra is shown in Fig. 5(b). Direct band-gap transitions of 

TiO2 thin films for temperature variation keeping TBOT and DEA constant at 8 ml and 3 ml respectively are shown in Fig. 5(c), 

presenting the curves of [h]
2
 versus photon energy hν. It can be shown from Fig. 5 that for 550°C it is within the standard 

band-gap range of 3.20 - 3.35 eV of TiO2. For 650°C, it is close to the standard range. However, for 350°C it is very low from 

the standard mark. Indirect band-gap transitions of TiO2 thin films for temperature variation keeping TBOT and DEA constant 

at 8 ml and 3 ml respectively are shown in Fig. 5(d). 
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Fig. 5 Various parameters of TiO2 thin films for temperature variation keeping  

TBOT and DEA constant at 8 ml and 3 ml respectively 
 

 

50 



Proceedings of Engineering and Technology Innovation, vol. 19, 2021, pp. 45-52 

 

Temperature variation is shown in Table 3 keeping DEA and TBOT constant at 3 ml and 8 ml respectively. From Figs. 

5(c)-(d) and Table 3, it is clear that both direct and indirect band gap for 550°C is close to or within the standard range. 

Therefore, the optimum temperature is 550°C for a better band gap by keeping TBOT and DEA at 8 ml and 3 ml respectively. 

The direct and indirect band-gaps are found 3.38 eV and 3.25 eV respectively, which are close to or within the standard 

band-gap range of TiO2 (3.2 eV - 3.35 eV) and are found at 8 ml TBOT, 3 ml DEA, and a temperature of 550°C. Finally, the 

whole result is shown in Table 4. 

Table 3 Temperature variation keeping DEA and TBOT constant at 3 ml and 8 ml respectively 

Variation Direct band-gap (eV) Indirect band-gap (eV) 

350°C 3.68 2.99 

450°C 3.60 2.88 

550°C 3.38 3.25 

650°C 3.63 3.19 

 

Table 4 Summary of the whole experiment 

TBOT variation keeping DEA constant at 3 ml 

Variation Direct band-gap (eV) Indirect band-gap (eV) 

4 ml TBOT 3.58 3.28 

6 ml TBOT 3.44 2.70 

8 ml TBOT 3.28 3.18 

10 ml TBOT 3.49 3.11 

DEA variation keeping TBOT constant at 8 ml 

Variation Direct band-gap (eV) Indirect band-gap (eV) 

2 ml DEA 3.21 2.89 

3 ml DEA 3.30 3.25 

4 ml DEA 3.30 2.95 

5 ml DEA 3.35 2.80 

Temperature variation keeping DEA and TBOT constant at 3 ml and 8 ml respectively 

Variation Direct band-gap (eV) Indirect band-gap (eV) 

350°C 3.68 2.99 

450°C 3.60 2.88 

550°C 3.38 3.25 

650°C 3.63 3.19 

4. Conclusions 

This study mainly focuses on the measurement of the effect of band-gap on TiO2 thin films by changing TBOT, DEA, and 

temperature. At 550°C, the band-gap is better than the rest of the combination (350°C, 450°C, and 650°C). Therefore, the direct 

and indirect band-gap are found 3.38 eV and 3.25 eV respectively, which are close to or within the standard band-gap range of 

TiO2 at 8 ml TBOT, 3 ml DEA, and a temperature of 550°C. 
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