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Abstract 

This study proposes a new image compression technique that produces a high compression ratio yet consumes 

low execution times. Since many of the current image compression algorithms consume high execution times, this 

technique speeds up the execution time of image compression. The technique is based on permanent neural networks 

to predict the discrete cosine transform partial coefficients. This can eliminate the need to generate the discrete 

cosine transformation every time an image is compressed. A compression ratio of 94% is achieved while the average 

decompressed image peak signal to noise ratio and structure similarity image measure are 22.25 and 0.65 

respectively. The compression time can be neglected when compared to other reported techniques because the only 

needed process in the compression stage is to use the generated neural network model to predict the few discrete 

cosine transform coefficients. 
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1. Introduction 

Image compression is an important field, especially in social media applications. In these applications, there are many 

requirements. Since most social media applications run on smartphones and personal devices, media content size and device 

processing speed are the most important requirements. These two requirements relate to each other, where a change in one 

affects the other. For example, if the media content is large, the hardware processing time will increase as compared to 

small-sized media content. Therefore, media content size should be as small as possible so that it can be stored and transmitted 

with minimal storage and processing power requirements.  

Despite advances in information technology and, in particular, in the storage and processor industries, digital visual and 

audio systems are always speed- and storage-hungry. This is because there are continuous advances in smart phones and their 

applications, such that better image and video quality are improved alongside advancements in hardware designs. For example, 

in 2021, it is assumed that multimedia video content will need about 70% of communication bandwidth  [1]. This is an 

important observation because most social media applications run on smartphones. While smartphones are always improving, 

they face processor speed limitations  [2] due to the difficulty in processor cooling  [2]. Mobile phone processors can be 

improved and made more powerful in terms of speed, but the heating problem can impose the usage of a thermal management 

system, where the processor speed has to be reduced  [2]. Keeping in mind the consumer’s need for better smartphone cameras 

and audio hardware, it is necessary to search for alternative and supporting solutions. Current mobile phone cameras have high 

resolution capability and can capture images of up to, and larger than, 4000×3000 pixels in size  [3]. A color image of such size 

requires about 36×106 bytes of unsigned integers to be stored in raw pixels. Storing many such images requires large storage. 
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Transmitting one such image also requires high transmission bandwidth and high processing capability. Therefore, it is always 

preferable to represent images in small sizes as much as possible. This leads to the study of image compression techniques.  

Image compression is the process of reducing the image size while trying to keep the image appearance quality as of the 

original image. There are two main techniques: lossless, and lossy image compression. In the lossless image compression 

technique, the compressed and decompressed image pixels are exactly the same  [4]. If compressed and decompressed images 

differ in the number of pixels, the technique is known as lossy image compression, in which some pixel information is lost  [4]. 

Usually, lossy image compression methods produce a higher compression ratio (CR), which means the compressed images are 

of small size. However, lossless image compression methods are always preferable because they preserve pixel information. 

Many medical applications use lossless image compression methods for better diagnosis  [5-6]. Many applications have been 

built on lossy image compression techniques, as long as the decompressed image appearance quality is acceptable.    

Image transformation techniques—such as the fast Fourier transform (FFT), the discrete cosine transform (DCT), and the 

wavelet transform (WT)—are currently the most widely used techniques in the image compression field. DCT, for example, is 

integrated into many current image compression technique standards, such as JPEG   [7-8]. The main disadvantage of such a 

technique is the processing time it takes. This can be noticed from Eq. (1), in which the basic technique requires the cosine to 

be calculated, and multiplications and double summations are to be performed. Recent methods use standard matrices to 

calculate DCT coefficients without performing the cosine calculation every time. However, many matrix multiplications are 

still required to calculate DCT coefficients and quantization, in addition to the integer coding step.   

Lossy compression methods can be implemented using pattern recognition methods. Image pixels removed during 

compression can be recovered intelligently. A vast number of pattern recognition methods has been reported [9-12], including 

artificial neural networks (NN), Support Vector Machine (SVM), Self-Organizing Map (SOM), Principle Component Analysis 

(PCA), etc. Each of these has advantages and weaknesses. 

The use of neural networks in image compression is based on training the NN on the image pixels, using fewer hidden 

nodes and output weights  [9, 13-15]. These hidden nodes and output weights represent the compressed image. To decompress 

it, the hidden nodes are passed through the output weights to get the decompressed image. The size of the hidden nodes and the 

output weight represent the CR  [16-19]. Image pixels can be removed and returned back, using the NN approach [20-21]. 

Another method is to train the NN on the DCT coefficients of the image, after it is decomposed into many blocks  [16-19]. A 

block size of 8×8 pixels is not uncommon. While the NN performance in image compression is acceptable, the drawback is that 

training must be done for every image to be compressed, and that usually consumes time. Another shortcoming of NN is that a 

high CR may not be achieved in many cases  [13, 19, 22].  

In this research, both NN and DCT techniques are investigated to mitigate the shortcomings of each method and to utilize 

the advantages of both techniques. The proposed technique relies on building a general purpose and permanent NN that can be 

used to estimate the DCT coefficients so that neither training nor recalculating DCT coefficients are needed each time an image 

is to be compressed.  

2. Predicting DCT Coefficients Using Neural Networks 

DCT is being used extensively for image compression. Any multidimensional signal (an image, in this case) can be 

represented by many data points, as the sums of cosine functions oscillating at various frequencies  [8]. These points are the 

DCT coefficients. The image can be reconstructed completely by calculating the inverse of DCT with number points less than 

the original image number of pixels. The image can still be reconstructed when using a reduced number of DCT coefficients. 

The quality of the reconstructed image is directly proportional to the number of DCT coefficients used. Usually, DCT is 

applied on blocks of an image with a preferable size of 8×8 pixels  [7]. 
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Thus, in order to compress an image, DCT coefficients must be calculated for each 8×8 block. After that, a few other steps 

must be performed, such as quantization and coding  [7]. However, quantization step is used to make most of the high 

frequencies reduced to zero. The number of DCT coefficients needed to be processed is proportional to the chosen image 

quality. Choosing the percentage of coefficients is allowed in order to control the CR. However, a higher CR affects the 

decompressed image quality  [7]. The process should be done for every image to be compressed involving DCT. In order to 

simplify the proposed technique, the quantization step is not implemented in the proposed method, which prevents from further 

controlling the CR and decompressed image quality. However, quantization is currently under investigation and will be 

presented in an upcoming research article.  

In this research, a reasonably general NN model is built, using image block pixels as input feature vector samples and 

DCT coefficients as targets. This produced NN model is used each time an image is to be compressed, without recalculating the 

DCT coefficients. The process starts by collecting many images. More than 11,000 color images with various sizes are 

used  [23]. These images are converted to grayscale images. The proposed technique is applied to color images in a later 

publication. Each image is then divided into 8×8 non-overlapping blocks. DCT is calculated for each block producing 8×8 

coefficients. Eq. (1) shows the DCT calculation for a block of size 8×8. Out of these coefficients, the first 2×2 {DCT 

coefficients (1,1), (1,2), (2,1), (2,2)} are retained. Eq. (2) is used to reconstruct the block pixels values. 
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Since in this proposed method only four coefficients are needed, few calculations are performed. They are as follows: 
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below is an example of an 8×8 block of one image of the dataset and its corresponding DCT coefficients. 

92   97   101   103   103   104   105   106

92   97   101   102   103   104   105   106

94   98   100   101   103   104   106   106

94   97   100   100   102   103   105   106

94   96     97     97

i
Block =

    98    100   102   103

93   94     95     96    97     97     99    101

91   94     95     97    97     97     98    100

 
 
 
 
 
 
 
 
 
 
 

 (8) 

  

792.00   -24.67   -5.67   -6.14    -1.75   -1.44   -0.627   0.23

  17.89     -5.47   -1.64   -1.38    -2.05    0.26   -0.02     0.22

   -2.46      0.04   -4.8     -1.42     0.75   -0.36   

i
DCT of Block =

 0.87    -0.83

   -4.04      0.97    2.48   -0.54     0.72     0.37    0.08    -0.51

    1.25      0.03   -1.12    0.182  -0.50     0.27    0.48     0.13

    1.19      0.30    0.01   -0.23     0.12     0.12   -0.44    -0.08

   -0.06      0.33    0.18    0.71     0.50     0.07   -0.20     0.27

    0.01      0.11    1.02    0.20    -0.36    -0.07   -0.38   -0.61

 
 
 
 
 
 
 
 
 
 
 
 

 (9) 

The only needed coefficients are: 
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−

=
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The total number of samples becomes more than 6×106 samples. It is enough to randomly select only 350,000 samples to 

train the NN using the backpropagation model in order to predict the DCT 2×2 coefficients. Once the NN is fully trained, it is 

used to predict the values of these four DCT coefficients. These numbers represent the compressed image. To decompress it, 

the inverse DCT is applied on each of the four values of this collection of DCT coefficients, and the decompressed image is 

generated.  

NN is a rigid yet simple model that can be used for classification and regression. The principle construction of the 

backpropagation model lies on updating the free parameters of the model based on the error generated from prediction. As 

shown in Fig. 1, each link in the NN algorithm between two layers of neurons represents a number called weight. In many 

applications, two layers are enough to construct an efficient NN model  [24]. One set of weights connects the inputs to the 

hidden nodes, while the other set of weights connects the hidden nodes to the output node. 

 
Fig. 1 Neural network unit 
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In NN, the node activation function is: 

, ( )
j i ij j ji

net y w y f net= =∑  (11) 

In Eq. (11), the transfer function f(netj) can be any smooth, differentiable, and nonlinear function. The logistic function 
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 is used in this study.  

The errors are calculated as: 
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where tj is the target output and yj is the predicted output. For the output layer, the errors are calculated as: 

( ), ( ) '( )
j

j j j j j j

j j j j

yE E E
y t y t f net

y net y net

∂∂ ∂ ∂
= − = = −

∂ ∂ ∂ ∂
δ  (13) 

The backpropagation error for node i in Eq. (13) is calculated as: 
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Finally, the weights are updated as: 

,
j

j j ij

ij j ij ij

netE E E
y w

w net w w

∂∂ ∂ ∂
= = ∆ = −

∂ ∂ ∂ ∂
δ µ  (15) 

where µ in Eq. (15) is the learning rate, which is less than 1.0.  

Following Eq. (11) to Eq. (15) leads to yj being very close to tj within a minimum possible difference error. When reaching 

this stage, the NN is said to be either the regression or classification general predictor. In this research, the application needs the 

regression NN model. Fig. 2 shows the NN built for this purpose. 

 
Fig. 2 The NN built to predict the DCT coefficients 

Fig. 3 shows the proposed method of image compression and decompression stages. The NN is trained successfully. The 

size of the hidden layer cannot be determined precisely. Use of the NN growing and pruning algorithm is the common practice 

for determining the best hidden layer size [24]. Hidden layer sizes from 4 to 8 are investigated, and are found to produce almost 
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similar NN performance. Only sizes 3 and lower produced unsatisfactory results where DCT(2,1) and DCT(2,2) are not 

predicted by NN. The NN shows various performance accuracy for various hidden layer sizes. Fig. 4 shows the results for 

number of hidden nodes ranging from 4 to 10 nodes. The difference in performance accuracy between 8 nodes and 4 nodes is 

about 8%. For number of nodes exceeding 8, there is no much improvement. To demonstrate the proposed method, a generated 

NN model has 64×8 hidden free parameters in matrix form and 8×4 output free parameters in matrix form; this size gives the 

best results among all the others. These two matrices are the only needed information to generate the needed DCT 2×2 

coefficients from any image that needs to be compressed. Generating these DCT coefficients involves only matrix 

multiplication, which can be performed easily and efficiently in any mobile phone or mobile device. In the receiving device, 

the received DCT coefficient must be used to reconstruct the decompressed image. Eq. (2), which computes the inverse DCT, 

is used for this purpose. It can be seen that using a hidden layer with 8 nodes does not outperform calculating the DCT 

coefficients directly because the number of arithmetic operations is higher. However, when using 4 hidden nodes, the number 

of arithmetic operations is comparable to that of the direct DCT coefficients calculation. It is worth mentioning that, if the DCT 

coefficients are increased to 3×3, then the number of direct DCT calculations is double the number of calculations based on NN 

predictions. This, in fact, promotes the use of NN in this application. 

 
(a) Image compression stage 

 
(b) Decompression stage 

Fig. 3 The proposed method of image compression and decompression stages 

 
Fig. 4 Performance accuracy of NN for various hidden layer sizes 

3. Results 

To evaluate the compression quality, two metrics are used: peak signal to noise ratio (PSNR), and structure similarity 

image measure (SSIM), as seen in Eq. (16) and Eq. (18) [25]. 

2

10

255
10 log ( )PSNR

MSE
=  (16) 
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where  

MSE: is mean square error 

im: is the original image 

Dim: is the decompressed image 

R and C: are image dimensions 
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where µx ad µy are averages of the two images, σx and σy are the variance of the two images, and c1 and c2 are two variables to 

stabilize the division with weak denominator. 

While the CR is defined in many ways, Eq. (19) is used to calculate the CR as a percentage  [12]. So, compression 

percentage and CR are used here interchangeably. 
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where N is the data size. 

When 2×2 DCT coefficients are built from an 8×8 block size, the CR is found to be 93.8% by dividing 4 (the number of 

DCT coefficients) by 64, which is the block size. The NN is evaluated randomly on 5,000 images from the dataset. The average 

performance accuracies are PSNR= 22.25 and SSIM=0.65.  

To improve the compression quality, various block sizes are investigated. Specifically, block sizes of 3×3, 4×4, 5×5, 6×6, 

7×7 and 8×8 are investigated. Each block size produces different CR, PSNR, and SSIM values. Table 1 and Fig. 5 show the 

result of using these various block sizes, and their performances based on Eq. (19) and Eq. (20). PSNR and SSIM decrease as 

CR increases by increasing the block size. The maximum obtainable CR is 94%. It can be obtained with PSNR less than 23. 

The table also shows the training and testing accuracy of the NN. Its compression quality is directly checked using the images 

to construct the DCT coefficients. It is found that PSNR and SSIM are identical to the PSNR and the SSIM generated using the 

proposed method, with differences on the order of 10
-3

. This proves that NN can be used successfully to replace the calculation 

of DCT coefficients each time an image is to be compressed. 

Table 1 Performance accuracy in NN training and prediction applied of images dataset 

Block Size CR % 
NN Performance Accuracy 

PSNR SSIM 
DCT (1,1) DCT (1,2) DCT (2,1) DCT (2,2) 

3 × 3 55 99.31 99.04 99.40 99.42 30.30 0.93 

4 × 4 75 99.76 99.73 99.71 99.85 27.42 0.87 

5 × 5 84 99.56 99.70 99.69 99.62 25.71 0.81 

6 × 6 89 98.13 97.72 97.78 98.57 24.66 0.76 

7 × 7 92 97.96 97.18 98.61 98.80 23.88 0.71 

8 × 8 94 98.28 97.98 98.92 98.92 23.28 0.68 
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Fig. 5 CR vs compression performance on the image dataset 

Fig. 6 shows well-known images, both of which are used to investigate the proposed method performance. Figs. 7(a)-(f) 

show the result of using the proposed method on the two images in Fig. 6. Figs. 7(a) and 7(b) are the original images; Fig. 7(c) 

is the Baboon image with a 3×3 block size which produced PSNR = 28.17 and SSIM = 0.88, while Fig. 7(d) is the Pepper 

image with a 3×3 block size which produced PSNR = 44.25 and SSIM = 0.99. When the block size changes to 8×8, the results 

are different. Fig. 7(e) shows PSNR = 23.02 and SSIM = 0.49 on the Baboon image, while Fig. 7(f) shows PSNR = 29.92 and 

SSIM = 0.90 for the Pepper image. The two images show a difference in performance. However, the quality appearance is not 

visually noticeable to the observer as shown in Figs. 7(a)-(f). Various block size effects are also shown. 

  
(a) Baboon image (b) Pepper image 

Fig. 6 Two images under test 

Universal image quality index (UIQI) is also shown in Tables 2 and 3 for purposes of quality review. The UIQI metric 

measures the image distortion as a combination of loss of correlation, luminance, and contrast distortion  [26-27].  

For the purpose of evaluating the proposed method in terms of CR, PSNR, SSIM, UIQI, and execution time, set 

partitioning in hierarchical trees (SPIHT) and Joint Photographic Group (JPG) algorithms are used. SPIHT is very effective in 

terms of CR. The level index is used to choose the preferred CR  [28-29]. The compression index is calculated as data size (the 

number of DCT coefficients) divided by block size. Tables 2, 3, and 4 show the proposed method performance compared to the 

SPIHT and JPG algorithms, respectively, in terms of CR, PSNR, SSIM, UIQI, and execution speed, when applied to the Pepper 

image. The execution speed depends on the hardware and software being used. The reported results, rather than the absolute 

values, are shown here for purposes of comparison. Tables 5 and 6 show these metrics when applied to the Baboon image. Fig. 

8 compares the image quality after being decompressed and shows the execution time differences between the proposed 

method and the SPHIT method. It can be seen that the proposed method is at least 10 times faster than the SPIHT algorithm. 

The SPIHT algorithm outperforms the proposed method in terms of image quality for relatively low CR. When the CR gets 

higher, the differences between the two methods start to disappear. However, the proposed method is much faster than the 

SPIHT method. 
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(a) Baboon uncompressed image (b) Pepper uncompressed image 

  
(c) Compressed image 3×3 block size (d) Compressed image 3×3 block size 

  
(e) Compressed image 8×8 block size (f) Compressed image 8×8 block size 

Fig. 7 The effect of the proposed method on image quality for various compression ratio 

Table 2 Performance accuracy of the proposed method on Pepper image 

Block Size CR index CR % PSNR SSIM UIQI speed 

3 × 3 2.25 55 44.25 0.99 0.97 0.0120 

4 × 4 4.00 75 39.89 0.98 0.93 0.0113 

5 × 5 6.25 84 36.85 0.97 0.88 0.0111 

6 × 6 9.00 89 34.18 0.95 0.83 0.0110 

7 × 7 12.25 92 32.07 0.93 0.78 0.0117 

8 × 8 16.00 94 29.92 0.90 0.73 0.0108 

Table 3 Performance accuracy of SPIHT method on Pepper image 

SPIHT Index CR index CR % PSNR SSIM UIQI speed 

11 4.2 76 44.55 0.99 0.99 0.0942 

12 7.5 86 43.55 0.99 0.98 0.1023 

13 12.5 92 41.40 0.98 0.95 0.1192 

14 19.7 95 38.24 0.97 0.91 0.1401 

15 30.0 97 34.57 0.94 0.84 0.1766 

16 43.3 98 30.70 0.89 0.75 0.2154 



International Journal of Engineering and Technology Innovation, vol. 11, no. 2, 2021, pp. 122-134 131

Table 4 Performance accuracy of JPG method on Pepper image 

Compression Quality 

(JPG input) 
CR % PSNR SSIM UIQI speed 

100 80 44.84 0.99 0.95 0.0223 

90 93 40.48 0.99 0.89 0.0151 

80 95 38.29 0.99 0.85 0.0153 

70 96 36.99 0.99 0.82 0.0119 

60 97 35.84 0.99 0.79 0.0136 

30 98 32.66 0.98 0.68 0.0127 

Table 5 Performance accuracy of the proposed method on Baboon image 

Block Size CR index CR % PSNR SSIM UIQI speed 

3 × 3 2.25 55 28.17 0.88 0.88 0.0120 

4 × 4 4.00 75 25.80 0.76 0.77 0.0114 

5 × 5 6.25 84 24.59 0.67 0.67 0.0113 

6 × 6 9.00 89 23.85 0.59 0.59 0.0112 

7 × 7 12.25 92 23.32 0.54 0.52 0.0105 

8 × 8 16.00 94 23.02 0.49 0.46 0.0155 

Table 6 Performance accuracy of SPIHT method on Baboon image 

SPIHT Index CR index CR % PSNR SSIM UIQI speed 

11 4.2 76 44.46 0.99 0.99 0.1028 

12 7.5 86 43.40 0.99 0.99 0.1338 

13 12.5 92 40.24 0.98 0.98 0.1750 

14 19.7 95 35.52 0.96 0.95 0.2142 

15 30.0 97 30.71 0.89 0.86 0.2626 

16 43.3 98 26.49 0.74 0.69 0.3105  

  
(a) Quality vs compression ratio (b) Quality vs execution time 

Fig. 8 Compression quality and speed of SPIHT vs the proposed method on pepper image 

It is important to test the algorithm on many images with various properties, such as texture and entropy. The proposed 

method shows comparable quality to the JPG and SPIHT methods on some images, but not on others. Also, it shows faster 

execution time than both methods for some test images. Table 7 and Table 8 show the comparison for two different images, 

namely, Cameraman and Barbara. 

Table 7 Performance accuracy of proposed, JPG and SPIHT methods on Cameraman image 

Proposed method JPG Method SPIHT method 

CR % PNSR Speed CR % PNSR Speed CR % PNSR Speed 

84 24.8 0.0113 81 35.8 0.0057 86 40.5 0.159 

92 23.0 0.0112 93 29.9 0.0049 92 37.2 0.144 

94 22.4 0.0164 95 26.5 0.0048 95 33.1 0.136 
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Table 8 Performance accuracy of proposed, JPG and SPIHT methods on Barbara images 

Proposed method JPG Method SPIHT method 

CR % PNSR Speed CR % PNSR Speed CR % PNSR Speed 

84 22.0 0.0164 81 33.4 0.0110 86 40.8 0.185 

92 21.1 0.0176 93 26.8 0.0092 92 36.6 0.152 

94 20.9 0.0164 95 24.4 0.0083 95 32.0 0.123 

4. Discussion 

Almost all compression algorithms introduce some artifacts in the decompressed images. However, it varies from one 

algorithm to another. Both the JPG and SPIHT algorithms experience artifacts. Since the proposed method does not have many 

levels of compression, it introduces artifacts in a consistent manner. To compare the proposed method to the SPIHT and JPG 

algorithms, Fig. 9 shows the comparison in terms of artifact creation at the lowest CR. It is clear that the proposed method does 

not introduce artifacts that can be visually noticed. The only method that produces visually noticeable artifacts is the SPIHT 

method. Fig. 10 shows a visual comparison with more sets of test images. Even though the PSNR of the JPG and SPIHT 

methods are much higher than in the proposed method, the visual appearance of the three different compression methods is 

almost similar. 

(a) Original Image (b) Proposed method image (c) JPG image (d) SPIHT image 

Fig. 9 Pepper image with artifacts 

    
(a) Original Images (b) Proposed method (c) JPG method (d) SPIHT method 

Fig. 10 Cameraman and Barbara images compared visually 

5. Conclusions 

The neural network model is built to predict the DCT coefficients of grayscale images. The NN is trained on a vast 

number of image samples. To compress an image, the image is divided into blocks of size 8×8 or less. The NN is then used to 

predict the first four DCT coefficients of each block. The proposed NN is of general nature where it is used each time an image 
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is to be compressed. This makes the computation time of the image compression step is almost negligible since the predefined 

NN is used to predict the DCT coefficients. The compression process does not need the DCT coefficients computation 

anymore, as the general NN model is enough. The decompression is done by calculating the inverse of DCT four coefficients, 

with enough padding with zeros. The resulting quality of the decompressed images is satisfactory. In fact, for low CR, the 

proposed compression method can reach lossless compression quality. The proposed method outperforms the SPIHT 

algorithm in terms of execution speed on the compression side. The suitability of using the proposed method in color images is 

under investigation by the author. 
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