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ABSTRACT 

DETERMINING MASTER REGULATORY GENES OF MUSCLE SENESCENCE IN 
THE HAWK MOTH, MANDUCA SEXTA 

 
Leah Naasz 

Director: Bernie Wone, Ph.D. 

 Skeletal muscle exhibits a gradual deterioration of its functional capabilities as it 

senesces.  While the adverse effects of muscle aging are well-known, the molecular 

trigger of this degenerative process is unknown.  Here, I aim to identify master regulatory 

genes (i.e., transcription factors) that might be involved in the initiation of the muscle 

senescence process in our muscle aging model Manduca sexta.  This invertebrate adult 

moth was chosen as the model organism due to its relatively short lifespan, similarity to 

the vertebrate muscular system, and relatively low-cost to rear.  Master regulatory genes 

are genes of a particular signaling pathway that is expressed at the foundation of specific 

biological pathways including growth, development, or disease manifestation.  Time 

series RNA-Seq data can be used to construct gene regulatory networks to determine 

master regulatory genes.  Here, I used the corto package in Rstudio to infer regulatory 

gene networks and create a regulon from the time series transcriptomics dataset from 

muscle tissue of Manduca sexta.  Corto inferred a regulon of 118 candidates (r > 0.74).  

The regulon was visualized by Cytoscape to determine highly interconnected genes as 

possible master regulator genes of muscle senescence.  Further research into the 

validation of top candidate genes is needed using qRT-PCR or knock out approaches.  

Discovering the master regulatory genes in Manduca sexta will help identify biomarkers 

involved in the upregulation of the muscle aging process. 
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INTRODUCTION 

Muscle aging is a dynamic biological process whose underlying molecular 

regulatory mechanisms are essentially unknown despite its negative effects on whole 

organism metabolism and physiology.  In mammals, the impairment of muscle function is 

a key component of the overall aging process (Hindle 359).  As muscles senesce and 

myofibrils decrease, the loss of force-generating capacity results in sarcopenia and 

decline in muscle function (Evans 6, Walston 623).  Furthermore, muscle senescence can 

also lead to other detrimental conditions including osteoporosis, osteoarthritis, and 

muscular dystrophy (Baar 148).  However, there is no unifying hypothesis for muscle 

senescence.  While several hypotheses of skeletal muscle aging have been proposed, such 

as an increase of apoptosis, decrease in the number of satellite cells (Etienne), and 

mitochondrial fusion (Wone et al. b) what molecular mechanism triggers the aging 

process remains unknown due to the dynamic, yet universal, changes associated with 

aging.  In fact, the unifying hypothesis of muscle senescence may be a combination of the 

hypotheses mentioned above.  Previous studies into muscle senescence have 

demonstrated that significant transcriptional changes occur during the aging process 

(Lin).  Therefore, further analysis into these transcriptional changes is necessary to 

determine the specific molecular mechanisms that initiate muscle senescence.  

The development of biological processes or diseases is controlled by a 

transcription factor, or a group of transcription factors known as transcriptional master 

regulators (Sikdara and Datta).  Therefore, identifying the master regulators of muscle 

senescence that initiate muscle aging will further our understanding of the process of 

aging itself and possibly the diseases or conditions associated with it.  New correlation-
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based gene regulatory network inference pipelines make it possible for master regulators 

to be identified from RNA-Seq data (Mercatelli 3917).  Here, I determine the master 

regulator genes underpinning muscle senescence using the corto algorithm in Rstudio 

(Mercatelli), from a time series RNA-Seq dataset in muscle tissue of the hawk moth, 

Manduca sexta.  Determining the master regulators of muscle senescence allows for the 

identification of the molecular mechanism that regulates transcriptional changes, alters 

gene expression, and ultimately, determines the molecular source that initiates skeletal 

muscle aging.  By understanding the regulatory controls underlying the initiation of age-

related musculoskeletal decline, the possibility to restore muscle function and prolong 

health expectancy in old age might be possible (Baar 153).   

 

BACKGROUND 

The term master regulators, or master regulator genes, was previously defined as a 

“gene that is at the top of the regulatory hierarchy” and by definition, “is not under the 

regulatory influence of any other gene” (Chan).  However, this definition is no longer 

absolute.  Current research published by Chan describes a new definition for the term 

master regulator as “a gene or signaling pathway that is expressed at the foundation of a 

developmental lineage or cell type, participates in the specification of that lineage by 

regulating multiple downstream genes, and when mis-expressed, has the ability to 

respecify the fate of cells destined to form other lineages.” (Chan).  Other studies have 

shown that some master regulator genes can be regulated by others (Cai).  The action of 

master regulators triggers large-scale transcriptional cascades that are responsible for 

complex cellular processes, such as apoptosis, cell differentiation, and proliferation, 
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DNA-repairing processes, and disease manifestation (Hanahan and Weinberg, and Cai).  I 

hypothesize that muscle aging lies under the control of the molecular action of master 

regulators.  These master regulators lie at the top of the transcriptional regulation 

hierarchy because they control most of the regulatory activities of other transcription 

factors and associated genes (Sikdar and Datta).  

Furthermore, master regulators have been shown to play a key role in multiple 

signal transduction pathways.  Signal transduction pathways allow cells to sense specific 

signals, produce a cellular response, and serve an important role in information 

integration (Tapia-Carrillo).  Specific transcription factors (TFs) can modulate the 

transcription of groups of genes that participate in these signal transduction pathways and 

can also be termed master regulators (Tapia-Carrillo).  The analysis of the gene 

regulatory networks of signal transduction pathways that contain TFs and their target 

genes, along with generated co-expression data from transcriptomic data (Hansen), 

allows for the identification of master regulators that have the greatest influence over 

expression differences (Tapia-Carrillo).  

 The use of bioinformatic approaches that infer gene regulatory networks may help 

elucidate the specific molecular interactions involved in muscle senescence.  Currently, 

most of the current tools for gene network inference that perform a master regulator 

analysis require a high amount of RAM and/or a computer cluster to be computed 

(Mercatelli 3916).  As a result, the use of the lightweight Rstudio package corto for gene 

network inference and master regulator analysis can be used to determine master 

regulators and calculate the enrichment of the TF-centered network on a user-selected 

signature (Mercatelli 3917).  A recent study revealed the master regulators behind the 
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SARS-CoV-2 virus by comparing infected and mock samples of bronchi epithelial cells 

in a MERS dataset and a SARS dataset (Guzzi et al. 982).  Their  results showed a 

decreased expression of the ACE-2 protein receptor and thus a candidate as a master 

regulator, allowing for the future development of specific therapies against the SARS-

CoV-2 virus (Guzzi et al. 982).  The ability of the corto algorithm to produce such results 

shows its potential in determining master regulators.  

Manduca sexta was chosen as the model organism for examining muscle 

senescence based on previous research performed by Wone et. al (a and b). As shown 

previously, M. sexta has a relatively short lifespan of about ten days, making in vivio 

studies of aging readily observable.  They quickly reproduce, supplying large populations 

with ease in comparison to its mammalian counterparts (Del Grosso 6).  The housing and 

rearing of M. sexta are also relatively inexpensive.  Manduca sexta also possesses a 

muscular system that is similar to vertebrates (Del Grosso 6).  Specifically, the 

synchronous contraction of the endothermic, dorsolateral flight muscles of M. sexta 

during neural stimulation make it a reliable model organism (Yuan et. al, Marden 167, 

and Heinrich 232).  The use of this invertebrate model will be useful in determining the 

molecular underpinnings of muscle senescence, allowing for further translational 

applications.   
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METHODOLOGY 

Data Collection 

The hawk moths, Manduca sexta, were obtained from the University of Arizona, Tucson, 

AZ, and were used for all experiments.  An artificial diet was used to rear the larvae and 

was given ad lib.  Then, adults were individually reared in a 299 cm3 cage (BioQuip 

Products, Rancho Dominguez, CA, USA).  Eggs, larvae, and adults were housed at 25 °C 

under a of 16-hour light / 8-hour dark cycle at 60% humidity.  Artificial nectar was 

administered ad lib to the adult moths (Educational Science, League City, Texas, USA).  

Separation of the moths based on sex occurred when housing the adult moths to prevent 

mating.  Dates for hatching and death were recorded for each individual.  The lifespan of 

each adult was calculated in full days.  Day 2 (D2) was identified as middle age and 

advanced age was defined as Day 5 (D5) post-eclosion (Wone et al. a).  Female moths 

were identified as middle aged in Day 4 and advanced age was identified as Day 7 (Wone 

et al. a).  A time series characterization of age-related changes in flight muscle across the 

moth lifespans was performed, sampling the moths at diel time and age.  Moths were 

euthanized by decapitation.  Beginning at middle age and continuing until advanced age, 

during photophase (0900 h) and scotophase (2100 h after 1 h of activity), dorso-

longitudinal muscles of adults were collected (Wone et al. a).  Each sex was sampled at 

eight consecutive time points.  Males were sampled at time points D2 at photophase and 

N2 at scotophase, D3, N3, etc. until N5.  During the sampling, males Age 2 (MA2) were 

classified as middle age and males Age 5 (MA5) were classified as advanced age.  

Females were sampled at time points D4 (day four at photophase), N4 (night 4 at 

scotophase), D5, N5, D6, N6, D7, and N7.  Unlike the male classification, females Age 4 
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(FA4) were classified as “middle aged” and females Age 7 (FA7) were classified as 

“aged”.  A total of 48 moths were sampled for RNA-Seq.  Flight muscles were selected 

for sampling, dissected, and flash frozen in liquid nitrogen.  Less than 90 seconds elapsed 

from time of death to flash freezing of dissected muscle tissue.  The samples were ground 

to a fine powder under liquid nitrogen and stored at -80˚C until RNA extraction. 

RNA extraction 

Fifty mg of extracted muscle tissue was placed in 2 mL microcentrifuge tubes.  1 mL of 

TRIzol™ reagent was added to each tube and homogenized.  After incubation for 5 min 

at room temperature, to dissociate the nucleoprotein complexes, 0.200 mL of chloroform 

was added to each tube, vortexed, and incubated at room temperature for 3 min.  The 

samples were then centrifuged at room temperature for 15 min at 12,000x g.  

Approximately 500 μL of the aqueous phase was extracted and pipetted into a new 2 mL 

microcentrifuge tube.  Chloroform was then added (0.200 mL) to each tube and was 

vortexed again.  After centrifugation, the samples sat at room temperature for 3 min.  

Samples were then centrifuged for 15 min at 12,000x g at room temperature.  The 

aqueous phase was extracted and placed in a fresh microcentrifuge tube.  Isopropyl 

alcohol (500 μL of 100%) was added to the sample tubes, capped and inverted several 

times, then allowed to incubate at room temperature for 10 min.  To pellet the RNA, 

samples were centrifuged at 12,000x g for 10 min at room temperature.  The supernatant 

layer was pipetted from the sample tubes, rinsed with 500 μL of 75% ethanol, and 

centrifuged at 8,000x g at room temperature for 10 min.  The supernatant layer was then 

removed once again, and the samples were washed again with the 500 μL of 75% 

ethanol.  The samples were centrifuged again at room temperature for 10 min at 8,000x g.  
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After centrifugation, the supernatant layer was removed, and the precipitate was isolated 

for drying under a laminar flow hood until all remaining ethanol was evaporated.  To 

reform the precipitate, 20 μL of molecular grade water was added to it and stored in a 

freezer at -80 ˚C. 

Time Series RNA Sequencing 

RNA sequencing (RNA-Seq) was performed on Manduca sexta flight muscles across diel 

time, ages, and sex. Novogene (Novogene, Sacramento, CA, USA) prepared cDNA 

libraries and performed RNA Sequencing (RNA-Seq).  The Illumina NovaSeq 6000 

platform sequenced RNA-Seq libraries as 150-nt paired-end reads (Illumina, San Diego, 

CA, USA) with 18 samples per high-output flow cell.  A total of 16 cells were used to 

generate about 20-25 M reads per sample.  After several quality control checks, such as 

trimming, removal of primer, and removal of low-quality reads, high-quality readers were 

obtained.  Next, the filtered high-quality reads of all samples were mapped on the 

Bombyx mori reference genome, since only a draft genome is currently available for 

Manduca sexta.  To count read numbers mapped on each gene FeatureCounter v1.5.0-p3 

was used.  In total, male Manduca sexta RNA-Seq analysis produced 1,501,272,784 raw 

reads and 1,424,653,808 clean reads.  Upon further analysis, approximately 84.6% of 

total clean reads were mapped to the Bombyx mori reference genome.  For the female 

Manduca sexta, RNA-Seq analysis produced 1,520,863,862 raw reads and 1,437,381,790 

clean reads in total.  Approximately 87.2% of the clean reads generated were mapped to 

the Bombyx mori, silkworm reference genome (Wone UnPub Data).  
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Validation of Differential Expression Genes (DEGs) using qRT-PCR 

RNA-Seq results were validated from selected muscle-specific genes and these include 

akirin, gelsolin, kelch-like protein 5, and titin (see Del Grosso 34).  Briefly, primers for 

the selected genes were designed and used for qRT-PCR (Table 1 from Del Grosso 34).  

The Luna® Universal One-Step qRT-PCR Kit (New England Biolabs, Ipswich, MA, 

USA) and the Applied Biosystems QuantStudio 3 Real-Time PCR System (Applied 

Biosystems, Foster City, CA, USA) were used for the qRT-PCR validation (Del Grosso 

34). 

Table 1. Forward and reverse primers designed for the selected genes for qRT-PCR 
validation (Del Grosso 34). 

 

Master Regulator Analysis 

Using corto (Correlation Tool), a lightweight R package for Gene Network Inference and 

Master Regulator Analysis, a Master Regulator Analysis (MRA) was performed from 

gene expression data for the male hawk moths provided by the RNA-Seq analysis (Del 

Grosso 34).  The female data was not used for this analysis because there were no 

identifiable point specific age-related changes in their RNA-Seq data (Del Grosso 54).  
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Therefore, using the male RNA-Seq data, a regulon was generated as the output of the 

corto function from an expression matrix, that featured genes as rows and samples as 

columns, and a list of centroids formatted into a character vector indicating which genes 

to consider as centroids.  These centroids are otherwise referred to as master regulators.  

After the regulon was generated by the corto function, the regulon was loaded into 

Cytoscape—an open-source bioinformatics platform for visualizing molecular interaction 

networks and the integration of gene expression profiles.  Loading the data into 

Cytoscape created a visual regulon network from which subnetworks were created and 

analyzed to see the connections and interactions of each gene.  The genes with the most 

connections, aka the ones that were highly connected to other genes, were separated from 

the rest of the genes, colored, and then highlighted for visual examination purposes.  The 

description of these genes was identified from the RNA-Seq matrix.  
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RESULTS 

Using the corto function, an output object termed a regulon was generated and 

consisted of 118 centroid-based target genes (r > 0.75) from a list of 5,820 transcription 

factors.  Loading the regulon into Cytoscape produced a visual network (Figure 1) 

consisting of three subnetworks, as well as other much smaller gene interactions between 

2-3 genes. 

 

Figure 1. Visualization of the regulon consisting of 118 candidate genes that might be 
involved in muscle senescence of the hawk moth, Manduca sexta.  

 

Further analysis of subnetworks of the regulon provided a list of 16 highly connected 

candidate genes of muscle senescence.  The visualization of subnetwork A identified 6 

genes that were highly connected to the other genes Ms115451404, Ms115442008, 

Ms115454932, Ms115442540, Ms115451225, and Ms115440962 (Figure 2).  

Visualization of subnetwork B identified 6 genes that were highly connected to the other 

genes Ms115455723, Ms115450289, Ms115454391, Ms115442113, Ms115453610, and 
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Ms115453934 (Figure 3).  Visualization of subnetwork C identified 4 genes that were 

highly connected to the other genes Ms115453894, Ms115449049, Ms115445268, and 

Ms115445569 (Figure 4).  

  

Figure 2. Visualization of subnetwork A showing 6 candidate master regulator 
genes Ms115451404, Ms115442008, Ms115454932, Ms115442540, Ms115451225, and 
Ms115440962 highly interconnected with other genes.  
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Figure 3. Visualization of subnetwork B showing 6 candidate master regulator 
genes Ms115455723, Ms115450289, Ms115454391, Ms115442113, Ms115453610, and 
Ms115453934 highly interconnected with other genes. 

 

Figure 4. Visualization of subnetwork C showing 4 candidate master regulator 
genes Ms115453894, Ms115449049, Ms115445268, and Ms115445569 highly 
interconnected with other genes. 
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DISCUSSION 

The genes that showed multiple connections may be of importance for regulating 

other genes involved in muscle senescence.  These candidate master regulator genes need 

to be verified using either qRT-PCR to quantify gene expression or knock-out approaches 

to validate they are of regulatory significance.  Using qRT-PCR allows for the validation 

of reference genes in this experiment by comparing it to a foreign cRNA added to each 

RNA sample prior to qRT-PCR of younger hawk moths to normalize data for reference 

gene transcripts prior to assessment of their expression stability (Czechowski et al. 12).  I 

hypothesize that if these genes are of significance, a gene knock-out approach will allow 

for genetic mutation of these genes to render them non-functional.  Thus, the process of 

muscle senescence might be greatly inhibited.  Analyzing the flight capabilities of adult 

hawk moths also provides useful since only younger hawk moths can fly, while aged 

hawk moths cannot.  Therefore, if these candidate genes are indeed master regulators, 

advanced age hawk moths will be able to fly following knock-out of the genes.  

The corto algorithm appeared to identify genes that likely do not have regulatory 

significance.  Specifically, genes identified were at one time point with very low 

expression levels near advanced age.  After all, high expression levels of a gene during 

early age might be an indicator that that gene is a master regulator (Lavenus et al. 1368–

1388).  However, our low expression levels of these genes at advanced age samples likely 

indicate that these genes identified by corto are not involved in the regulation of muscle 

senescence, nor are they master regulators.  If they were master regulators, we would 

expect to see low expression levels at the younger age samples.  Instead, these genes 

were only very lowly expressed at one time point in advanced age.  The corto algorithm 
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was only able to find genes that had one expression at one time point within the time 

series data.  When genes with only one expression time point were removed from the 

dataset (i.e., all genes with zero values for any time point), the corto function was unable 

to generate a regulon.  This nonfunctioning corto command might be an error with either 

the coding or the algorithm itself.  We have communicated with the developer of corto 

and have not heard back and thus resolve this issue (Per Comm F. Giorgi). 

Because corto is a correlation tool and not a tool for temporal time expression 

data, it does not have the ability to consider the RNA-Seq data of M. sexta as dependent 

data points.  Instead, corto measures the degree in which one variable is related to 

another by measuring the co-occurrence between variables (Mercatelli 3916).  This 

measured co-occurrence is used as a means to infer regulatory mechanisms or gene 

functions (D’Haeseleer, Hansen).  Corto treats each sample as an independent time point, 

whereas time series data expression is dependent on the data prior.  Therefore, corto does 

not take prior data points into consideration.  Perhaps because of this, the algorithm is not 

as powerful for identifying key regulators or genes if it does not consider what is 

expressed prior  

To overcome the issues mentioned above, the use of another gene regulatory 

network algorithm is necessary.  A gene regulatory network algorithm that might provide 

useful for analyzing this specific data is ARACNe: Algorithm for the Reconstruction of 

Accurate Cellular Networks or the Time Delayed Correlation algorithm (TDCor) in 

Rstudio.  TDCor has successfully inferred linear gene regulatory network for a time-

series transcriptomic data set of an Arabidopsis lateral root initiation (Lavenus et al. 1369 

and 1372), showing its ability to counteract the problems encountered in this study with 
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corto and our time-series dataset.  In the Arabidopsis study, TDCor reconstructed 

network topology from a subset of expression profiles to provide links in very early 

activated genes to late activated genes of lateral root initiation (Lavenus et al. 1373).  The 

study indicated that TDCor is suitable for identifying master regulators of Arabidopsis 

lateral root initiation with a high level of confidence (Lavenus et al. 1375).  The ability of 

TDCor to analyze transcriptomic data accurately while also creating topology links based 

on time of activation may help elucidate the master regulators that control muscle 

senescence in Manduca sexta.  
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