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ABSTRACT. Reinforced concrete structures may need repair in order to ensure 
the designed durability. The assessment of the structural condition usually is 
made in loco, but sometimes numerical analyses are required as a low cost and 
effective preliminary diagnosis. Lumped damage mechanics (LDM) may be 
used as an alternative diagnosis procedure. In LDM approaches for reinforced 
concrete structures, the concrete cracking in modelled by a damage variable 
and the reinforcement yielding is represented by plastic deformations. 
Therefore, this paper presents LDM as a diagnosis tool to analyse actual 
structures. Then, the procedure is applied in two case studies. The first one is 
a former bridge arch tested in laboratory. Such bridge was deactivated after 
almost three decades in service and some damage were observable. The 
second case study deals with a reinforced concrete balcony that collapsed after 
fifteen years of service. In the moment of collapse, only the dead load was 
acting in the balcony.  The results show that LDM numerical response of 
those structures are quite close to laboratory observations, for the former 
bridge arch, and to in loco measurements, for the balcony. In this sense, 
according to the analysed structures, LDM may be used as a diagnosis tool. 
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INTRODUCTION 
 

einforced concrete (RC) structures require periodical inspection, maintenance and repairs to ensure the designed 
durability. Inspections can identify damages that, if were not corrected, can lead to partial or total collapse of the 
structure. When a structure shows signs of damage it is necessary to investigate its causes, which results in a 

diagnosis that serves as the basis for adopting intervention measures. 
The assessment of structural damage may occur in loco using non-destructive methods such as visual inspection [1], acoustic 
emission [2] and ground penetrating radar [3], or destructive methods as explosions [4]. This analysis can also take place in 
laboratory, using samples of an original structure [5] or with the combination of experimental and numerical analysis, aiming 
to reproduce the experimental behaviour, as the stress/strain and fatigue [6] or the damage and dynamic properties [7]. 
Other diagnosis techniques are based only on numerical analysis of the structures such as nonlinear dynamic analysis [8] or 
on artificial neural networks [9]. One of the most used computational method for modelling the occurrence of damage and 
monitoring the cracking process in reinforced concrete structures is the finite element method (FEM) [10-17]. However, a 
disadvantage of these procedures using FEM is the significant computational cost. 
An efficient alternative to such procedures in order to assess damage in reinforced concrete structures is the Lumped 
Damage Mechanics (LDM). This theory combines the concepts of the classic damage and fracture mechanics in plastic 
hinges, which defines the concrete cracking as the damage variable. LDM was firstly proposed to analyse RC structures 
submitted to seismic loads [18-22]. Later, LDM was expanded for several other conditions, as impact loads [23-25] and 
tunnel linings [26-28]. 
One of the great advantages of using LDM to evaluate damage of reinforced concrete structures is the use of parameters 
easily obtained by civil engineers in practice, such as cracking moment and the load conditions. In order to ensure that LDM 
may be applied in actual engineering problems, Flórez-López et al. [29] defined structure integrity according to the damage 
level of the structural elements. For reinforced concrete elements, a damage value around 0.3 or 0.4 represents the beginning 
of the reinforcement yield, and a damage of approximately 0.6 means the bearing capacity of the element [29]. 
In the light of the foregoing, the objective of this paper is the application of LDM as a diagnosis tool of RC structures, using 
a former bridge arch and a balcony that suffered collapse as case studies. The first case is an arch that was removed from 
an actual bridge in China [13] and tested in laboratory and the second one is a collapsed balcony of an actual building in 
Brazil [30]. Then, the damage variable is used as a diagnosis tool, presenting satisfactory results for both analysed structures. 
 

 
 

Figure 1: Relations among variables in a structural problem. 
 
 
REVIEW ON LUMPED DAMAGE MECHANICS FOR FRAMES AND ARCHES [26-29] 
 

he variables of a structural problem can be categorised in three sets: kinematic, static and internal ones (Fig 1). Such 
variables are related by three sets of equations, which can be called as kinematic equations, equilibrium relations and 
constitutive law (Fig 1). Classic finite element analysis usually relates directly the matrix of generalised displacements 

{U} and matrix of generalised external forces {P}. Note that the approach presented in this paper presents more matrices, 
defined in this section. Then, considering a structure composed by frame and arch elements in a XZ Cartesian reference 
[26], such quantities are described by: 
 

R 
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       1 1 1 ... ... ...
T

i i i j j j n n nu w u w u w u wU     (1) 

 

       1 1 1 ... ... ...
T

u w ui wi i uj wj j un wn nP P P P P P P P P P P PP    (2) 

 
where u1 is the node 1 displacement parallel to the X-axis, w1 is the node 1 displacement parallel to the Z-axis and θ1 is the 
node 1 rotation on the XZ plane. Analogously, Pun is the applied force on node n parallel to the X-axis, Pwn is the applied 
force on node n parallel to the Z-axis and Pθn is the applied moment on node n on the XZ plane. 
 
 
The structural equilibrium is given by: 
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being [B]b the transformation matrix and {M}b the generalised stresses of a finite element b, both given as follows: 
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where Mi and Mj are bending moments on the nodes i and j of the element, respectively, Ni is the axial force on the node i 
of the element, αb is the orientation of the frame element and Lb its length; βb, χb and Rb geometrically define the circular 
arch element (Fig 2). Note that the second member of (3) is the sum of the internal forces of each finite element. 
 

 
Figure 2: Generalised stresses and geometric definition of (a) arch and (b) frame finite elements. 

 
The kinematic relations for a finite element are given by: 
 

         
bb

Φ B U U            (7) 

 
being [B(U)]b the same transformation matrix previously presented in (5-6) considering large displacements and {Φ} the 
matrix of generalised deformations, which is conjugated to {M} and written as: 
 

     
T

i j ib
Φ            (8) 

 
where φi and φj are flexural rotations due to the bending moments Mi and Mj, respectively, and δi is the axial deformation 
related to Ni. 
If small displacements and small deformations are assumed, (7) can be rewritten as follows: 
 

      0b b
Φ B U            (9) 

 
being [B0] the transformation matrix for the initial condition. 
The elastic relations of the element are obtained by assuming the deformation equivalence hypothesis, by applying the 
Castigliano’s Theorem [26-27, 29] and considering the inelastic phenomena are concentrated at hinges located at the edges 
of the element (Fig 3): 
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where {Φp}b is the matrix of generalised plastic deformations, that accounts for reinforcement yielding, and [F(D)]b is the 
damaged flexibility matrix, both written as: 
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being di and dj the damage variables at hinges i and j, respectively, which account for concrete cracking. The terms Fij0 are 
described in the Appendix for frame and arch elements. 
 

 
Figure 3: Lumped damage modelling for reinforced concrete members [26-29]. 

 
In order to complete the constitutive law, the evolution laws of internal variables (damage and plastic rotation) must be 
considered. Thus, consider the complementary energy of the finite element: 
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The evolution law of the damage variables are obtained throughout the Griffith criterion i.e. 
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where Gi and Gj are the damage driving moments for the hinges i and j, respectively, and Y(di) and Y(dj) are the cracking 
resistance functions [28]. 
The cracking resistance function for reinforced concrete elements [29] is given by: 
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being Y0 and q model parameters. 
The plastic evolution laws for each hinge of the element are given by: 
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being fi and fj the yield functions for the hinges i and j, respectively, and C and k0 model parameters. Note that the model 
parameters Y0, q, C and k0 can be directly related to the classic theory of reinforced concrete structures, as presented by 
[20, 27-29]. 
 
 
CASE STUDIES 
 
Bridge Concrete Arch [13] 

he first case study is the failure analysis of two reinforced concrete arch ribs that were part of a 28 years old bridge 
in China. The geometry of the arches is described in Tab. 1. The failure experiments were made in laboratory where 
the arches were submitted to static loads [13]. Fig. 4 presents the location of the applied loads (P).  

 

Span (L) Height (H) Radius 
Inclined angle at arch 

foot 
Cross section 

width (T) 
Cross section 

height (h) 

19.72 m 3.08 m 17.89 m 35.5° 20 cm 28 cm 

 

Table 1: Arch geometric parameters [13]. 
 

 
 

Figure 4: Lumped damage modelling for the arch tested by [13]. 
 
The loads were applied at middle (point E), at the left quarter plus 27 cm (point C) and at the right quarter of the arch (point 
G), which were applied in eighteen load steps. The two end sections of the arches were fixed. 
The reinforcement is located near the upper and lower sides of the arch cross section. Three bars with 16 mm of diameter 
composed each layer. Tab. 2 presents the elastic constants of the materials. 
 

Material Concrete Steel 

Elastic modulus E (GPa) 9.8 210 

Poisson’s ratio ν 0.17 0.27 

 

Table 2: Material elastic constants [13]. 
 
Due the long usage time and problems related to the removal and transportation of the arches, both of them suffered 
damages at the two ends (nodes A and I). Moreover, at 1/8 distance of the left and right supports (nodes B and H) the 
arches were also damaged, when they were being dismantling in the field, resulting in two notches.  
It was obtained that the collapse load (Pmax) was equal to 68 kN and 65 kN for the tested arches. Tab. 3 presents the 
experimental data of the vertical displacements at the measured location, for different load ratios. 
 

T 
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Load P/Pmax (%) 
Vertical displacement (mm)

Node E 
0 0 

6.76 - 

8.46 - 

10.15 4.43 

11.84 5.02 

13.53 5.77 

16.91 7.24 

27.99 12.63 

39.06 17.39 

47.91 22.35 

52.35 24.96 

54.57 26.53 

59.41 30.07 

68.97 36.4 

73.09 39.49 

77.5 43.45 

90.88 56.43 
 

Table 3: Experimental data of vertical displacements for Pmax = 68kN [13]. 
 

 
 

Figure 5: Inclined balcony slab [30]. 
 
Collapse of a reinforced concrete balcony slab [30] 
A balcony of a fifteen years old building suddenly collapsed. The balcony structure severely cracked at the clamped end of 
the cantilevered slab, rotating approximately 17 degrees, but remained connected to the rest of the structure of the building, 
as is shown in Fig. 5. 
The balcony floor structure is a reinforced concrete slab with 12 cm of thickness, 9.32 m long and 2.03 m wide (Fig. 6). The 
cantilevered slab is clamped in the outer edge of the living room slab, whose thickness is 15 cm, and both are simply 
supported on the facade beam. The bottom of the two slabs are on the same level, so the difference in thickness between 
them results in a 3 cm step at the top of the cantilevered slab, located next to the beam (Fig. 7). 
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The visual inspection of the fractured slab showed steel bars with 9.5 mm of diameter spaced 150 mm. Analysis of samples 
of concrete and steel bars resulted in characteristic compressive strength (fck) equal to 30 MPa and yield stress of 500 MPa, 
respectively. The permanent vertical loads on the slab are concrete dead load (3.0 kN/m2), weight of the bottom coating 
(0.4 kN/m2), weight of the laying mortar (1.0 kN/m2) and weight of the marble floor (0.56 kN/m2). These loads generate 
a bending moment in the clamped section equal to -10.55 kNm/m. The flexural design considering only the permanent 
vertical loads and concrete with fck of 14 MPa, value adopted in the building design, results in a steel area equal to 3.4 cm2/m. 
This value is lower than the steel area actually utilized on the balcony slab, which is 4.72 cm2/m. 
 

 

Figure 6: Dimensions of the living room and the balcony 
in cm. 
 

Figure 7: Cross-section A-A of the slabs (dimensions in cm). 

Thus, it was concluded that the accident was caused by the abrupt rectification of the steel bars of the negative reinforcement 
that were installed with double curvature in the form of a step, due to the rupture of the surface layer of concrete by the 
action of the straightened bars (Fig. 8). 
 

 
 

Figure 8: Detail of the steel bars before the accident [30]. 
 
 
RESULTS 
 
Bridge Concrete Arch [13] 

he arch was divided in eight finite elements, as shown in Fig. 4. Although a complete nonlinear analysis is possible 
[14-29], since the goal of this paper is to present a diagnosis of the analysed structure, a single measurement of the 
tested arch [13] is taken into account. Then, the procedure was carried out for the step of 10.15% of the collapse T 
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load i.e., experimental value of 6.902 kN, since the collapse load is 68 kN. The vertical displacement at the mid-span of the 
tested arch is equal to 4.43 mm. 
The LDM analysis reached applied load of 6.802kN (about 10% of the collapse load) and vertical displacement of 4.334mm 
for the initial damage values in nodes A, B, H and I equal to 0.25, 0.23, 0.22 and 0.12, respectively. Compared to the 
experimental values, the absolute and relative displacement errors were equal to 0.096 mm and 2.16%. 
For the estimated initial damage values in the arch, it is possible to suggest minor repairs at nodes A, B, H and I, considering 
what is indicated by Flórez-López et al. [29] (Tab. 4), if the arch was not tested up to collapse and then returned to service. 
 

Performance 
level 

Maximum expected 
damage in beams 

Maximum expected 
damage in columns 

Description 

1 0.30 0.10 The elements do not require any intervention after the event 

2 0.40 0.30 Some minor repairs may be needed 

3 0.50 0.40 The element requires reparation at reasonably costs 

4 0.60 0.50 The structure requires a major rehabilitation process 

5 > 0.70 > 0.60 Inacceptable structural behaviour 

 

Table 4: Performance level for damage [29]. 
 
Collapse of a reinforced concrete balcony slab [30] 
Since the acting permanent load is 4.96kN/m² during the accident, it was verified that the damage evolution law (Eqn. 14) 
that G < Y(d), i.e. the loads did not cause the damage in the clamped section. This is corroborated by comparing the cracking 
moment (15.73kNm/m) with the acting bending moment in the clamped section (10.22kNm/m). To achieve the cracking 
moment (15.73kNm/m) and the ultimate moment (23.69 kNm/m), the load in the balcony should be 7.63kN/m² and 
11.5kN/m², respectively. Based on that and in the conditions observed in loco, the accident occurred due to the action of 
the straightened bars. In the ultimate condition of the slab section, was observed that the residual thickness was 
approximately 2 cm, as shown in Fig. 9. 
The simulation, considering large displacements, reached a damage value of 0.9995 and the horizontal and vertical 
displacement in the edge of the slab are equal to 13.57cm and 58.99cm, respectively. These values lead to an angle 
approximately equal to 17.30°, which confirms the in loco observations. Note that the damage obtained in the analysis 
characterises an inacceptable structural behaviour [29] (Tab. 4), denoting that almost there is no cross section at the clamped 
end. Assuming that the damage penalises directly the inertia moment [27], the remaining thickness at the clamped end is 
estimated as 0.95cm, quite close to the field observations. 
 

 
 

Figure 9: Geometry and typical reinforcement after the accident [25-26]. 
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CONCLUSION 
 

his paper presents lumped damage mechanics (LDM) as a diagnosis tool to evaluate damage levels (concrete 
cracking) in reinforced concrete (RC) structures. Differently from all previous studies, where LDM was used in 
nonlinear analyses, this paper showed that the LDM formulation can be easily applied in practical engineering 

problems. Therewith, LDM was applied as a diagnosis tool in two different structures: a former bridge arch in China that 
was tested in laboratory and a RC balcony slab in Brazil that collapsed after 15 years of service. 
For the former bridge arch, LDM response was quite close to the experimental one and then initial damage values in four 
different points were estimate around 0.20, concluding that minor repairs might be needed if the arch was returned to 
service. 
On the other hand, the RC slab balcony collapsed with only permanent loads where, the reinforcement straightened up due 
to an incorrect design. By applying LDM, it was noticed that the analysis reached large displacements as the actual balcony, 
with a rotation near 17º, quite close to in loco observations. The calculated damage was 0.9995, characterising collapse. Also, 
the residual thickness is estimated near to 1.0 cm, quite close to in loco measure (2.0 cm). 
Finally, regarding the analysed engineering problems in this paper, it is possible to observe that the LDM may be adequately 
a diagnosis tool to evaluate the levels of damage in structures, being able to determine the distribution of initial/current 
damage values and to verify its acceptability and safety for use. Moreover, it is feasible tool for technical analysis of actual 
structural accidents, such as the case of the RC balcony slab in Brazil. 
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APPENDIX 
 

ust for convenience, the flexibility matrix of a damaged member (12) is reproduced here: 
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For frame members such matrix is denoted as: 
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For arch elements the terms of the flexibility matrix are given by:  
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