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ABSTRACT.The objective of this work is to study the effects of contact 
parameters on the cracking parameters of a specimen and a pad assembly. 
These parameters have been studied and evaluated by the finite element 
method analysis in two dimensions fretting fatigue model through the Abaqus 
calculation code. Different values of the coefficient of friction of 0.1, 0.3 and 
0.6 were applied on the various lengths in contact for a = 0.1, 0.5 and 1mm. 
Thus, on the various values of angle of orientation of the crack equal to 15 °, 
30 ° and 45 °. In addition, elements of the type (CPE4R) and the criterion of 
maximum tangential stress were applied. The curves of the crack parameters 
such as the SIF coefficients and the integral J were obtained and discussed. 
 
KEYWORDS: 2D crack; FEM; Fretting fatigue; Stress intensity factor (SIF); 
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INTRODUCTION 

 
retting fatigue is a mechanical phenomenon of damage that occurs between two assembled parts (a test 
tube and a pad), under a contact load and in the presence of repeated oscillatory or relative surface 
movement. Indeed, several studies have been proposed in the literature to model the problems in 

fretting fatigue, among these studies we cite the work of Kyvia et al [1] treated the different aspects related to 
the modeling of fretting fatigue by the FEM method, to present common experimental setups and analytical 
solutions for thecylindrical contact. Another numerical method used by Hojjati et al [2] to predict both sides the 
initiation phase and the crack propagation. Thus, to estimate the fracture life by fretting fatigue under a 
conforming contact configuration. Julien et al [3] studied the propagation of fretting fatigue cracks by the use of 
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the FEM method, to simulate and deduce the distributions of the stress intensity factor (SIF) in the length of 
the crack front. 
Thanh et al [4] proposed a new approach based on the evaluation of nucleation, and the lifetime of 
deterioration due to fretting fatigue, to measure the change of the central point of the power spectral density 
(CP -PSD). In addition, Nadeem Ali Bhatti, and Abdel Wahab [5] used three numerical models in fretting 
fatigue, to model the effect of in-phase and out-of-phase loads on contact stresses and damage initiation 
locations. Qingmingetal [6] used the finite element method (FEM), for different sizes, shapes and properties of 
inclusions, to study and analyze the effects of randomly distributed micro-inclusions on the fretting fatigue 
behavior of heterogeneous materials. Antti et al [7] presented a robust wear simulation method, based on the 
finite element method, and adapted to contact friction. Tongyan and Abdel Wahab [8] used the finite element 
method (FEM) to study the evolution of contact variables and wear scars during the wear process by friction. 
Antti et al [9] to assess the risk of friction in the large end performed a detailed contact analysis of a large 
connecting rod. Jouko et al [10] studied the role of wear particle movements under axisymmetric loading 
conditions, of a flat on flat annular contact in a self-coupled hardened and tempered steel material. Wijesuriya 
and Mallikarachchi [11] evaluated finite element models and analytical techniques for fatigue fretting crack 
propagation. Wang and Abdel Wahab [12] analyzed the wear characteristics in partial slip regime on the effects 
of loading conditions in fretting fatigue. Chen et al [13] studied by the finite element method the initiation and 
growth of fretting fatigue cracks, In addition, they calculated the contact stress, to know the crack initiation 
angle by the criterion (MTS). Nitikornet al [14] carried out finite element fatigue fretting experiments, to study 
the influence of cylindrical contact on plate and on crack nucleation. 
The goal of this study is to model the effect of the variation of the coefficient of friction, on the parameters of 
cracking. More precisely, on the evaluation of the stress intensity factor in mode I and the contour  integral J for 
a model in homogeneous material with linear and isotropic elastic behavior.This problem is studied in fretting 
fatigue, two cases of crack were studied with different positions, one of horizontal crack of angle α = 0 ° and 
another case of an inclined crack of α = 15, 30 and 45 °. 
 
 
CRACK MODELIZATION  
 
Maximum tangential stress criterion 

his criterion, introduced by Erdogan and Sih [15] for elastic materials, indicates that the crack 
propagates in the direction for which the circumferential stress σθθ is maximum, it is a local approach 
since the direction of the crack growth is directly determined by the local stress field. According to this 

criterion, the growth of the crack follows the direction of (θ = θ0) which is perpendicular to the tangent of 
maximum stress. The angle of deviation of the crack θ0 can be obtained by: 
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We can deduce: 
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So, we have: 
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θ gives the direction of the maximum of the circumferential stress which determines the angle of bifurcation. 
 
Different parameters to characterize the singular zone 
The characterization of the singular zone subjected to several essential parameters, which makes it possible to 
study this zone such as, the stress intensity factor K and the integral of the contour J. 
 

 
 

Figure 1: Singular zone meshing 
 
Stress intensity factor 
Saverio [16] defined the stress intensity factor K, which is the only significant parameter, which allows to know 
the state of stress and strain at any crack point. 
 

 IK F a            (5) 
 
where, F is the geometric correction factor of the model used. 
 

         2 3 41.12 0.23( / ) 10.6 / w 21.7 / w 30.4 / wF a w a a a                           (6) 

 
where the stress intensity factor KII is calculated by the relation. 
 
    sin (3cos 1) 0I IIK K            (7) 
 
Contour Integral J 
Several authors in fracture mechanics have allowed to model the problem of the presence of a crack in an in-
depth way and have developed the calculation methods. Among these authors Rice [17] and Bui [18] with 
contour integrals (J), Nguyen [19] and Destuynder [20] by introducing an arbitrary field in the formulation of 
the integral they have approached. Indeed, work has been developed on the basis of elasticity in small 
displacements and mainly addresses the first phase of the cracking process. 
 
Relation betweenK and Jparameters 
In the fracture mechanics, we have two Eqns. (8) and (9) which allow to assemble the two parameters one 
obtains according to Tran [21]: 
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Stress field in the crack front vicinity 
The stress field in 2D in the vicinity of the crack front, were proposed by Tada et al. [22] by the general 
equation: 
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Fig.2 shows the stress field near a crack point with the polar coordinates (r, θ). In addition, Eqn. (11) which is 
illustrates the constraints on the two axes (x and y). 

 
 

Figure 2: Stress field in the crack front vicinity 
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Singularity zone in modeling 
We have chosen CPE4R type elements for the modeling by Abaqus. This type of element is used for 2D 
models. A reduced integration element (CPE4R) two-dimensional plane strain quadrilateral at 4 nodes (bilinear). 
This type of element is well suited for simulation. Thus, one uses singular elements around the front of the 
crack. The types of these singular "quarter point" elements are collapsed quadratic elements. 
The mesh around the zone of singularity is refined according to the number of the contour, thus according to 
the size of the crack front. 
 
 
 
 
 
 
 
 (a) (b) 
 

Figure 3: Collapsed quadrilateral element to obtain a triangular element b)The elements chosen types for modeling around of tow 
cracks tips. 

CPE4R 
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FRETTING FATIGUE  
 
Different geometric configurations used in fatigue fretting 

o apply the contact stress, three types of counter-body are generally used (Fig. 4). The sphere/plane contact is 
preferred in the study of wear because it is easy to implement and facilitates the comparison with the pion-disc 
contact. The cylinder/plane contact is more often linked to the study of cracking because we can then formalize 

the loading in two dimensions and model it by finite elements. The plane/plane contact is used more and more. By 
varying the radius of curvature of the edges of the counter-body (zero for a straight edge), the contact pressure profile can 
be adjusted and thus more easily approach a real situation. 
 
 
 
 
 
 
 
 

 Sphere-Plane   Cylinder-Plane  Plane-Plane 
  

Figure 4: Different geometric configurations used for fretting tests. 
 
Coefficient of friction (COF) 
The coefficient of friction, µ, is a measure of the amount of friction that exists between two surfaces. A low value of the 
coefficient of friction indicates that the force required for sliding to occur is less than the force required when the 
coefficient of friction is high. The value of the coefficient of friction is given by: 
 

 



Frictional force

normal force
                                                                                                          (12) 

 
The transposition gives: friction force = µ × normal force. The friction coefficient is the ratio of a force to a force and 
therefore has no units Bird and Chivers [23]. 

 

 
                                                                                           (a)                                          (b) 
 

Figure 5: Model to model fretting fatigue and initial cracking; a) Slave-Master model of fretting fatigue; b) boundary conditions and 
dimensions of model. 

 
 

NUMERICAL MODEL FOR MODELING 
 

n our model, the dimensions of the mesh are: height B = 8mm and width C = D = 7mm, the length of the 
horizontal crack has dimensions a = 0.1, 0.5, and 1mm. A 4-node (bilinear) two-dimensional plane strain quadrilateral 
reduced integration element (CPE4R) was used around the contact zone (fretting fatigue). The number of elements 
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of this model is 180436 and the number of nodes is 183916. Coefficients of friction (COF) of 0.1, 0.3 and 0.6, were used 
in this study. The steel structure, the elastic material parameters are E = 72.10 GPa and ν = 0.3. The structure is subjected 
to uniform tensile stress, normal load, the pressure load were considered σ = 100 MPa, 50N and 50N, respectively, the 
fixed support was applied to the lower surface of the structure. The crack is inclined by the angle α = 15 °, 30 ° and 45 °. 
 

 
RESULTS AND DISCUSSIONS 
 

he variation of the stress intensity factor as a function of (a/w) is shown in (Fig. 6). From this comparison, we 
show that the value of KI is much higher than that of KII. For the modeling of the problems in fretting fatigue, 
these comparisons are confirmed by numerous studies Kimura and Sato [24], Cho [25], Giner et al [1] and as a 

function of the crack length have been presented by Pitta et al [26], Hojjati et al [27] and Ackiel et al [28]. Thus, these 
results were confirmed by Nandish et al [29] on crack propagation. Indeed, Kimura and Sato [24] obtained that the stress 
intensity factor KI in fatigue by fretting has higher values compared to the study without fretting. 
 
 

 
 a) b) 

 

Figure 6: The variation of the SIF factor along the ratio (a/w) a); and b)The variation of the (J) in function of crack length. 
 

Fretting fatigue from a horizontal crack 
The figure below presents the model in contact with fretting fatigue in detail, in precision the contact surface. Thus, the 
boundary conditions of a horizontal crack of α = 0°. 
 

 
 

Figure7: FEM model and  contact zone in the case α = 0°. 

T 
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 a)                                            b) 

 
c) 

 

Figure 8:  The evolution of the FIC as a function of time increment with COF a) 0.1, b) 0.3 and c) 0.6α = 0°. 
 
The variation of the stress intensity factor as a function of the increment of the cracking time in fretting fatigue, for the 
model studied is presented on Fig. 8. One uses the various crack lengths (a) = 0.1, 0.5 and 1.0 mm and coefficient of 
friction 0.6 for the problem of fritting fatigue. Indeed, we notice that the increase in the time increment causes an increase 
in KI, and a decrease in KII of the same length and the same coefficient of friction. In addition, the increase in the 
coefficient of friction in the studied case α = 0 ° causes a decrease in KI and KII. These results were obtained by Sallam et 
al [30] in the case of the effects of the coefficient of friction on the stress intensity factor concerning the KI. The rate of 
increase of KII is small compared to KI. 
Fig. 9 shows the evolution of the integral of the contour (J) as a function of the time increment for the cases of COF = 
0.1, 0.3 and 0.6 between the three cases of lengths a = 0.1, 0.5 and 01mm, at from this comparison. The first three values 
are almost zero and linear. It can also be observed that, with the increase of the time increment, there is an increase in (J) 
of the same length and the same coefficient of friction from the third time increment. However, there is a decrease in the 
results of (J) for different friction coefficients between them. 
 
Fretting fatigue from an inclined crack 
The following model shows the fatigue fretting of two parts in contact with each other and contains a crack inclined by 
the angle α = 15 °, 30 ° and 45 ° with a coefficient of friction 0.6. 
The SIF evolution as a function of the time increment with a friction coefficient 0.6 is indicated in (Fig.11). This 
comparison is carried out on the different crack lengths for a = 0.1, 0.5 and 01mm and the angle inclination α = 15 ° 
(Fig.11a), α = 30 ° (Fig.11b) and α = 45 ° (Fig.11c) for the fretting fatigue model. In addition, the increase in the 
increment time causes a decrease in KI and an increase in KII on the contrary for the comparison of the results obtained 
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for α = 0 °.However, the value of KII is almost linear is equal to 0 in the case of (a = 0.1mm) with (α = 15 °), but KII less 
than (0) in the case of a = 0.5mm with (α =45 °).Moreover, the results obtained from FIC are proportional to the crack 
length. 
 
 

 
 a)     b) 

 
c) 

Figure 9:  The evolution of the integral of the contour (J) as a function of time increment with COF a) 0.1, b)  0.3  and c) 0.6α =0°. 
 

 

 
Figure10: Fretting fatigue model with an initial inclined crack α = 15°, 30° and 45°. 
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                                                   a)                                                                                 b) 
 

 
c) 
 

Fig. 11:  The evolution of the FIC as a function of time increment with COF 0.6 and α = 15°, 30° and 45°. 
 

 

 
 a) b) 
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c) 

 

Figure 12:  The evolution of the integral of the contour(J) as a function of time increment with COF 0.6 and α = 15°, 30° and 45°. 
 

Fig. 12 shows the evolution of the FIC as a function of time increment with a friction coefficient 0.6 and the angle of 
inclination α = 15° (Fig. 12a), α = 30° (Fig. 12b) and α= 45° (Fig.12c), the values of (J) are proportional to the crack 
length.However, increasing the time of the increment causes an increase in (J) in all three cases of the crack length.The 
value of (J) is increased by increasing the time increment and the tilt angle α. The tables below explain the different results 
of comparison between the angles of inclination and the crack length concerning the SIF (Tab. 1). Tab. 2 shows the 
results of the integral of the contour (J). 
 
 

 α=0° α=15° α=30° α=45° 

𝑎 KI KII KI KII KI KII KI KII 

0.1 51.96 -15.83 51.74 -1.654 50.85 11.39 41.04 14.04 

0.5 136.7 -20.12 135.3 9.121 122.4 32.90 69.98 48.97 

1.0 216.1 -24.35 215.8 21.21 184.4 54.39 138.2 70.03 

 
Table1: The different results of SIF comparisons between tilt angles and crack length. 

 
 
 

 
 

α=0° α=15° α=30° α=45° 

𝑎 J J J J 

0.1 3.9551E-08 3.7222E-08 3.7717E-08 2.6127E-08 

0.5 2.5744E-07 2.5544E-07 2.2318E-07 6.9398E-08 

1.0 6.2125E-07 6.5278E-07 5.1345E-07 3.3319E-07 

 
Table2:Different results of comparison of the integral of the contour (J) between the angles of inclinationand the crack length. 
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 a) b) 
 

Figure 13:  SIF evolution: a)as a function of the crack length (a);b) as a function of the angle (α) 
 

Fig. 13 shows the evolution of the stress intensity factor (SIF) as a function of the length of the crack in Fig. (13a) and as a 
function of the angle (α) in Fig. (13b).In addition, the angle of the crack α increases KI decreases for the same α as the 
length of the crack increases.Fayed [31] justified that KI increases for higher crack tilt angles, i.e. α> 60° and the rate of 
increase of KII is relatively low when the ratio (a/w) increases. 
 

 
                                                         a) b) 

Figure 14:  The evolution of the integral of the contour J: a)as a function of the crack length (a);b) as a function of the angle (α). 
 

Fig. 14 shows the integral of the contour (J) as a function of the crack length in Fig. (14a) and as a function of the angle 
(α) in Fig. (14b) for different crack lengths (a).The increase in crack length causes an increase in (J), these forms of results 
were obtained by Margi et al [32].In addition, the results obtained are proportional, and the increase in the angle (α) Fig. 
(14b) causes a decrease in (J) in all cases of the crack length.The low rate of decrease of (J) for the low crack length a = 
0.1mm is high for a = 0.5mm and 1.0mm. Especially from α> 20°. 
 
 
CONCLUSION 
 

wo cases of fretting fatigue were studied, firstly the contact in fretting fatigue concerning a horizontal crack and 
the other study based on an inclined crack for different values of angles α = 15 °, 30 ° and 45 °. The finite element 
method was used to model the contact between the two parts. It is observed that with the increase of the time 

increment of the load the integral of the contour J increases, for the different cases of the angle of inclination of the crack. 
T 
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The results obtained in our work justified, that the effects of contact to influence important on the parameters of crack. 
Thus, the low value of (COF) gives results of stress intensity factor (KI) in mode I higher in fretting fatigue. The results 
obtained show that the coefficient of friction of a low value causes a time is higher compared to a higher coefficient of 
friction for the case of a rectilinear crack of α = 0°. There is a proportionality between the results obtained from FIC and 
the integral of the contour (J) as a function of the time increment of the load in fretting fatigue. 
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