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February 2006

Abstract

An agent-based model of a simple financial market with arbitrary number of traders
having relatively general behavioral specifications is analyzed. In a pure exchange econ-
omy with two assets, riskless and risky, trading takes place in discrete time under en-
dogenous price formation setting. Traders’ demands for the risky asset are expressed as
fractions of their individual wealths, so that the dynamical system in terms of wealth and
return is obtained. Agents’ choices, i.e. investment fractions, are described by means of
the generic smooth functions of an infinite information set. The choices can be consistent
with (but not limited to) the solutions of the expected utility maximization problems.

A complete characterization of equilibria is given. It is shown that irrespectively of the
number of agents and of their behavior, all possible equilibria belong to a one-dimensional
“Equilibrium Market Line”. This geometric tool helps to illustrate possibility of different
phenomena, like multiple equilibria, and also can be used for comparative static analysis.
The stability conditions of equilibria are derived for general model specification and allow
to discuss the relative performances of different strategies and the selection principle
governing market dynamics.
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1 Introduction

This paper is devoted to the analytic investigation of an asset pricing model where an arbitrary
number of heterogeneous generic traders participate in a speculative activity. We consider a
simple, pure exchange economy where one asset is a riskless security, yielding a constant return
on investment, and another asset is a risky equity, paying a stochastic dividend. Trading takes
place in discrete time and in each trading period the relative price of the risky asset is fixed
through a market clearing condition. Agents participation to the market is described in terms
of their individual demand for the risky asset. We impose only one restriction on the way in
which the individual demands of traders are formed. Namely, the amount of the risky security
demanded by any trader is assumed to be proportional to his current wealth. Corresponding
investment shares of the agents’ wealth are chosen at each period on the basis of the commonly
available information.

This behavioral assumption is consistent with a number of strategies based on optimization,
and in particular on the maximization of expected utility function with constant relative risk
aversion (CRRA). However, the framework is not limited to such rational behaviors. Works
of Herbert Simon (see e.g. Simon (1976)) emphasize that agents operating in the markets may
not be optimizers, but still avoid to behave in completely random or irrational manner. That
is even if they are not “rational” in the sense as this word is widely used in economics, the
traders can follow some deliberately chosen or invented procedures. Such agents can be called
procedurally rational to stress the difference with respect to the smaller class of substantively
rational optimizers. We model procedural rationality by means of smooth investment functions
which map the information set to the present investment share.

The presence of procedural rationality in the market naturally leads to the idea of hetero-
geneity of agents. There are not doubts that even rational agents differ in terms of preferences
and implied actions. In the last years, many contributions emphasize an importance of the
heterogeneity in expectations for explanation of observed “anomalies” of financial markets
(i.e. those facts that cannot be explained by classic financial models) like huge trading volume
or excess volatility, see e.g. Brock (1997). In this paper investment functions are agent-specific
and, thus, describe the outcome of an idiosyncratic procedures which can be defined as the
collective description of the preferences, beliefs and implied actions.

Using assumption of CRRA-type of behavior but avoiding the precise specification of in-
vestment functions we derive the dynamical system governing asset price and agents’ wealths.
The natural rest points of this system turn out to correspond to the constant levels of price
return and relative wealths. We provide a complete characterization of such equilibria in terms
of few parameters related with investment functions and derive their stability conditions. We
find that, irrespectively of the number of agents operating in the market and of the shape of
investment functions, there exist a simple relation between equilibrium price return and in-
vestment fractions. A simple function, the “Equilibrium Market Line”, previously introduced
in Anufriev, Bottazzi, and Pancotto (2006), can be used to obtain a geometric characterization
of both the location of all possible equilibria and the conditions of their stability.

Our model can be confronted with the last contributions in the field of the Heterogeneous
Agent Models (HAMs) extensively reviewed in Hommes (2006). First, the majority of HAMs
are built assuming independence of the agents’ demands from their wealths. In terms of
expected utility theory, it amounts to consider constant absolute risk averse (CARA) traders.
CARA-type of behavior is assumed for the sake of simplicity, in order to decouple wealth
evolution from the system and concentrate on the analysis of price dynamics. Our choice of
the CRRA framework is motivated, instead, by the empirical and experimental evidence in
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its favor (see the discussions in Levy, Levy, and Solomon (2000) and Campbell and Viceira
(2002)) and also by a relative rarity of corresponding HAMs (exceptions are Chiarella and
He (2001), Chiarella, Dieci, and Gardini (2006), Anufriev, Bottazzi, and Pancotto (2006)).
Second, since HAMs are concentrated on the heterogeneity in expectations, it is typical to work
with common demand functions (i.e. preferences, attitude towards risk, etc.). Furthermore,
the expectations are modeled in the simplest possible way sufficient to reflect different stylized
behaviors, like “fundamental”, “trend chaser” or “contrarian” attitude. Keeping investment
functions generic, we intend to avoid unrealistic simplicity of the agents’ expectations and
assumption of fixed preferences. Consequently, the role of such parameters as the length of
memory or coefficient of trend extrapolation can be analyzed without changing the model set-
up. Third, HAMs usually deal either few types of investors (e.g. two types in DeLong, Shleifer,
Summers, and Waldmann (1991) and Chiarella and He (2001), three in Day and Huang (1990)
and up to four types in Brock and Hommes (1998)) or with the limiting properties of the market
when the number of types is large enough (Brock, Hommes, and Wagener, 2005) to apply some
variation of the Central Limit Theorem. Instead, our results are valid for any finite number
of investors.

At the same time, the current model can also be compared with so-called, evolutionary
finance literature (see, e.g. Blume and Easley (1992), Sandroni (2000) and Hens and Schenk-
Hoppé (2005)). These are analytic investigations of the market with many assets populated
by the agents of CRRA-type behavior. One important drawback of these contributions is the
assumption of short life of the assets leading to the ignorance of the capital gain on the agents’
wealths. Our work can be seen, thus, as an extension of the evolutionary finance analysis in
this direction, even if we consider simpler market setting with only one risky asset.

Finally, one can consider this model as an analytic counterpart of the numerous simulations
of the artificial financial markets with CRRA agents (see, e.g. Levy, Levy, and Solomon (1994),
Levy, Levy, and Solomon (2000) and Zschischang and Lux (2001) and recent review in LeBaron
(2006)). The need of such analytic investigation seems apparent because of the inherent
difficulty to interpret the results of simulations in a systematic way. Model with generic agents’
behaviors is especially useful given the tendency to simulate markets with many different types
of behavior.

There is one common question which unify all three streams of the literature mentioned
above. Is the Milton Friedman’s hypothesis about impossibility for the non-rational agents
to survive in the market valid? Our general results provide a simple and clear answer to this
question. Indeed, we show that the survivors in the market are determined not only by their
strategies, but instead by the total behavioral ecology. Consequently, the Friedman’s hypoth-
esis is not valid in our framework, even if it can hold for some particular cases. E.g. applying
our results to the set of expected utility maximizing behaviors one can re-obtain findings of
Blume and Easley (1992) that the survivor is rational agent but not any rational agent will
survive.

The rest of the paper is organized as follows. In Section 2 we describe our economy,
presenting assumptions and briefly discussing them. First, we explicitly write the traders’
inter-temporal budget constraints. Second, we derive the resulting dynamics in terms of
returns and wealth shares. Finally, we introduce agent specific investment functions. In
Section 3 we start the equilibrium and stability analysis of the system from the simplest
case of a single agent in the market. The Equilibrium Market Line is derived, and its use
is discussed. The stability conditions are obtained in general and, then, specified for some
economically important special cases. Section 4 is devoted to the analysis of the general case
with arbitrarily large number of traders in the market. Our findings and implications are
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summarized in Section 5.

2 Model Definition

Consider a simple pure exchange economy where trading activities take place in discrete time.
The economy is composed by a riskless asset (bond) giving in each period a constant interest
rate rf > 0 and a risky asset (equity) paying a random dividend Dt at the beginning of each
period t. The riskless asset is considered the numéraire of economy and its price is fixed to 1.
The ex-dividend price Pt of the risky asset is determined at each period, on the basis of the
aggregate demand, through market-clearing condition. The resulting intertemporal budget
constraint is derived below and the main hypotheses, on the nature of the investment choices
and of the fundamental process, are discussed. These hypotheses will allow us to derive the
explicit dynamical system governing the evolution of the economy.

2.1 Intertemporal budget constraint

We consider general situation when the economy is populated by a fixed number N of traders1.
Let Wt,n stand for the wealth of trader n at time t and let xt,n stand for the fraction of this
wealth invested into the risky asset. We consider the model without consumption where total
agent’s wealth has to be reinvested. Thus, after the trading session at time t, agent n possesses
xt,n Wt,n/Pt shares of the risky asset and (1− xt,n) Wt,n shares of the riskless security. In the
beginning of time t + 1 the agent gets (in terms of the numéraire) random dividends Dt+1 per
each share of the risky asset and constant interest rate rf for all shares of the riskless asset.
Therefore, at time t + 1 the wealth of agent n reads

Wt+1,n(Pt+1) = (1− xt,n) Wt,n (1 + rf ) +
xt,n Wt,n

Pt
(Pt+1 + Dt+1) . (2.1)

Through the capital gain, the new wealth depends on the price Pt+1 of the risky asset, which
is fixed so that aggregate demand equals aggregate supply. Assuming a constant supply of
risky asset, whose quantity can then be normalized to 1, price Pt+1 is defined as the solution
of the equation

N∑

n=1

xt+1,n Wt+1,n(Pt+1) = Pt+1 . (2.2)

Simultaneous solution of (2.1) and (2.2) provides new price Pt+1. Once the price is fixed, the
new portfolios and wealths are determined and economy is ready for the next round.

The dynamics defined by (2.1) and (2.2) describe an exogenously growing economy due to
the continuous injections of new riskless assets, whose price remains, under the assumption
of totally elastic supply, unchanged. It is convenient to remove this exogenous economic
expansion from the dynamics of the model. To this purpose we introduce rescaled variables

wt,n = Wt,n/(1 + rf )
t , pt = Pt/(1 + rf )

t , et = Dt/(Pt−1 (1 + rf )) , (2.3)

1Using the terminology of the literature about heterogeneous agent modeling, we consider N types of agents
(cf. Brock, Hommes, and Wagener (2005)). However, the relative wealth of all traders with the same investment
behavior (type) is constant inside our framework. Furthermore, only the total wealth belonging to all traders
of the same type matters for the aggregate market dynamics. Consequently, we associate each type with a sole
trader. In the terminology of the evolutionary finance literature we deal with N different strategies (cf. Hens
and Schenk-Hoppé (2005)).
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denoted with lower case names. The last quantity, et, represents (to within the factor) the
dividend yield. Rewriting (2.1) and (2.2) using new variables one obtains






pt+1 =
N∑

n=1

xt+1,n wt+1,n

wt+1,n = wt,n + wt,n xt,n

(
pt+1

pt
− 1 + et+1

)
∀n ∈ {1, . . . , N} .

(2.4)

These equations represent an evolution of state variables wt,n and pt over time, provided that
stochastic process {et} is given and the set of investment shares {xt,n} is specified.

In this paper the agents’ investment shares are assumed to be independent of the contem-
poraneous price and wealth, the assumption which will be formalized in Section 2.3. Under
such assumption, the dynamics imply a simultaneous determination of the equilibrium price
pt+1 and of the agents’ wealths wt+1,n, so that N + 1 equations in (2.4) define the state of the
system at time t + 1 only implicitly. Indeed, the N variables wt+1,n, defined in the second
equation, appear on the right-hand side of the first, and, at the same time, the variable pt+1,
defined in the first equation, appears in the right-hand side of the second. For analytical
purposes, one has to derive the explicit equations that govern the system dynamics.

2.2 The dynamical system for wealth shares and price return

Let an be an agent specific variable, dependent or independent from time t. We denote with〈
a
〉

t
the wealth weighted average of this variable at time t on the population of agents, i.e.

〈
a
〉

t
=

N∑

n=1

an ϕt,n , where ϕt,n =
wt,n

wt
and wt =

N∑

n=1

wt,n. (2.5)

The transformation of the implicit dynamics (2.4) into an explicit one is not, in general,
possible also because the market price should remain positive over time. On the other hand,
the agents are allowed to have negative wealth, which is interpreted as debt in that case.
Therefore, ϕt,n are arbitrary numbers whose sum over all agents is equal to 1 for any period t.

The next result gives the condition for which the dynamical system implicitly defined in
(2.4) can be made explicit without violating the requirement of positiveness of prices.

Proposition 2.1. Let us assume that initial price p0 is positive. From equations (2.4) it is
possible to derive a map RN → RN that describes the evolution of traders’ wealth wt,n with
positive prices pt ∈ R+ ∀t provided that

(〈
xt

〉
t
−

〈
xt xt+1

〉
t

) (〈
xt+1

〉
t
− (1− et+1)

〈
xt xt+1

〉
t

)
> 0 ∀t . (2.6)

If previous condition is met, the growth rate of (rescaled) price rt+1 = pt+1/pt − 1 reads

rt+1 =

〈
xt+1 − xt

〉
t
+ et+1

〈
xt xt+1

〉
t〈

xt (1− xt+1)
〉

t

, (2.7)

the individual growth rates of (rescaled) wealth ρt+1,n = wt+1,n/wt,n − 1 are given by

ρt+1,n = xt,n

(
rt+1 + et+1

)
∀n ∈ {1, . . . , N} , (2.8)
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and the agents’ (rescaled) wealth shares ϕt,n evolve according to

ϕt+1,n = ϕt,n
1 + (rt+1 + et+1) xt,n

1 + (rt+1 + et+1)
〈
xt

〉
t

∀n ∈ {1, . . . , N} . (2.9)

Proof. See appendix A.

The market evolution is explicitly described by the system of N + 1 equations in (2.7) and
(2.8), or, equivalently, in (2.7) and (2.9). The dynamics of rescaled price pt can be derived
from (2.7) in a trivial way, but price will remain positive only if condition (2.6) is satisfied2.
Finally, using (2.4), one can easily obtain the evolution of unscaled price Pt.

Expression (2.7) for the return determination stresses the role of the relative agents’ wealths
in our model. Agents who are more rich have a higher influence on the price determination.
However, our model differs from other contributions with the same feature (Blume and Easley,
1992; Hens and Schenk-Hoppé, 2005) in that the capital gain is included into the price return
so that the latter depends on the investment decisions from two consequent periods. Wealth
dynamics (2.8) reveal that individual returns are proportional to the gross return (capital gain
or loss plus the dividend yield), which is typical for the market with the CRRA agents. Finally,
equation (2.9) describes the evolution of the relative wealth. One can interpret this relation
as a replicator dynamics, initially used in mathematical biology and then in evolutionary
economics, since it shows that an market influence of any agent changes according to his
performance relative to the average performance. Furthermore, one has to take the (rescaled)
wealth return as a measure of performance.

Having obtained the explicit dynamics for the evolution of price and wealth one is interested
in the asymptotic behavior of the system. It turns out that the dynamics defined by (2.7) and
(2.8) does not possess any interesting fixed point in terms of the levels of price and wealth.
Indeed, if the price and the wealth were constant, one would have rt+1 = ρt+1,n = 0 for all t
and n. This implies that for all agents xt,n = 0 in those periods when a positive dividend is
paid, i.e. there is no demand for the risky asset (and (2.6) is violated). The reason is that the
rescaling of variables in (2.3) does not remove an expansion due to the wealth growth of the
CRRA agents. The presence of this expansion suggests to look for possible asymptotic states
of steady growth. In order to guarantee that the dynamics given in Proposition 2.1 is defined
in terms of the price return and wealth shares3 we make the following

Assumption 1. The dividend yields et are i.i.d. random variables obtained from a common
distribution with positive support.

This assumption implies that price and dividends grow at the same rate. Even if this prop-
erty characterizes the fundamental price in an economy with geometrically growing dividend,
Assumption 1 is restrictive in our framework. The price in our model is determined through
the market clearing condition and is not necessary fixed on the fundamental level. On the
other hand, the annual historical data for the Standard&Poor 500 index suggest that yield
can be reasonably described as a bounded positive random variable whose behavior is roughly
stationary. Moreover, Assumption 1 is also common to several works in literature (Chiarella
and He, 2001; Anufriev, Bottazzi, and Pancotto, 2006).

2In general, it may be quite difficult to check the validity of this condition at each time step. However, if
agents are diversifying and do not go short, then inequality (2.6) is satisfied (Anufriev, Bottazzi, and Pancotto,
2006).

3Recall that the dividend yield term, appearing in (2.7) and (2.9), contains asset price in the denominator.
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2.3 Agents’ investment functions

In definition of the agents’ behavior we intend do not rely on any particular specification of
the functional form for the demand. Instead, we define it as general as possible inside our
framework. One of the principle leading to our definition of the investment decisions is that
these decisions, being idiosyncratic and endogenous, have to be independent of the contempo-
raneous price and wealth levels. Moreover, since in this paper we are mainly concerned with
the effect of speculative behaviors on the market aggregate performance, we let aside those
issues which may occur under asymmetric knowledge of the underlying fundamental process.
Thus, we assume that the structure of the yield process defined in Assumption 1 is known to
everybody. Along the same line, we assume that all agents base their investment decisions at
time t exclusively on the public and commonly available information set It−1 formed by past
realized prices. This set can alternatively be defined through the past return realizations as
It−1 = {rt−1, rt−2, . . . } and we make the following

Assumption 2. For each agent n there exists a differentiable investment function fn which
maps the present information set into his investment share:

xt,n = fn(It−1) . (2.10)

Function fn in the right-hand side of (2.10) gives a complete description of the investment
decision of the n-th agent. The knowledge about the fundamental process is not explicitly
inserted in the information set but is embedded in the functional form of fn. Past realiza-
tions of the fundamental process do not affect agents’ decisions, which, rather, tend to adapt
to observed price fluctuations. One can refer to this investment behavior, common in the
agent-based literature (e.g. Brock and Hommes (1998)), as “technical trading”, stressing the
similarity with trading practices observed in real markets. At the same time, Assumption 2
rules out other possible dependencies in the investment function fn, like an explicit relation
of the present investment choice with past investment choices or with investment choices of
other traders. It is also clearly violated for those agents whose demand is independent of the
wealth, like in case with CARA expected utility maximizers.

The investment choice described by (2.10) can be obtained as the result of two distinct
steps. In the first step agent n, using a set of estimators {gn,1, gn,2, . . . }, forms his expectation
at time t about the behavior of future prices, θn,j = gn,j(It−1) where θ.,j stands for some
statistics of the returns distribution at time t + 1, e.g. the average return, the variance or the
probability that a given return threshold be crossed. With these expectations, using a choice
function hn possibly derived from some optimization procedure, he computes the fraction of
the wealth invested in the risky asset xt+1,n = hn(θn,1, θn,2, . . . ). For such interpretations, the
investment function fn from Assumption 2 would be a composition of estimators {gn,·} and
choice function hn. This intuitive and common in the economic literature interpretation is not
required by our framework, even if it is perfectly compatible with (2.10). In our model agents
are not forced to use some specific predictors, rather they are allowed to map the past return
history into the future investment choice, using whatever smooth function they like. Using
the terminology coined by Herbert Simon, the traders modeled here are procedurally rational.
Investment functions describe the outcome of an idiosyncratic procedures which can be defined
as the collective description of the preferences, beliefs and implied actions. As a consequence,
many behavioral specifications both from the classical framework with rational optimizers
and also from the agent-based models with boundedly rational agents can be represented by
suitable investment function. It opens a great space for applicability of our framework. Let
us briefly outline two examples. (See Anufriev (2005) for a thorough discussion.)
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Consider an agent who maximizes expected utility of his wealth and has power utility
U(W, γ) = W 1−γ/(1 − γ), where γ > 0 is the relative risk aversion coefficient. Solution of
this problem has a desirable property that investment share x∗ is wealth independent. This
property holds for any distribution of the next period return which agent is assumed to perceive
now. However, x∗ is unavailable in explicit form for continuous distributions. This technical
issue had two consequences for the agent-based modeling. On one hand, the majority of
elaborated analytic models were built in the CARA framework, which is less realistic than
the CRRA one. On the other hand, the models with CRRA expected utility maximizers were
based on the computer simulations, i.e. they lacked rigorous treatment. Now notice that one
can define a certain class of investment functions, describing solutions of the expected utility
maximization for different γn and the agent’s perceptions of the return distribution. In other
words, all such rational behaviors are covered by our framework. Furthermore, developed
below geometric representation of equilibria allows to perform comparative static exercises
within this class even without explicit knowledge of the investment functions from it.

The second example is inspired by the first analytical attempt to investigate a model with
heterogeneous agents in the CRRA framework. Chiarella and He (2001) consider the market
where all agents have mean-variance demand function, while their expectations about the
future return and variance are heterogeneous. Apparently, our framework incorporates such
agents’ behaviors for any type of the expectation formation, not only for those considered in
the original paper.

Under Assumption 1, the dynamics in terms of price return, wealth shares and investment
shares are described by (2.7), (2.9) and (2.10). In order to analyse a finite-dimensional system
we restrict each agent n to base his decision on the past Ln price returns. Without loss of
generality we can assume that the “memory span” is the same for all traders and denote it as
L. For the following discussion L must be finite, but can be arbitrarily large.

3 Single Agent Case

We start with the analysis of the very special situation in which a single agent operates on
the market. The main reason to perform this analysis rests in its relevance for the multi-agent
case, as we will see in the next Section. In particular, some type of the generic equilibrium
in the setting with N heterogeneous traders requires, as necessary condition for stability, the
stability of a suitably defined single agent equilibrium. Another application of the single agent
analysis is to provide a succinct description of the aggregate properties of a system with many
relatively homogeneous agents (Anufriev and Bottazzi, 2006).

This Section starts laying down the dynamics of the single agent economy as a multidi-
mensional dynamical system of difference equations of the first order. All possible equilibria
of the system are identified and the associated characteristic polynomial, which can be used
to analyze their stability, derived.

3.1 Dynamical system

In the case of one single agent the dynamical system describing the market evolution can be
considerably simplified since the explicit evolution of wealth shares in (2.8) is not needed. As
a consequence, the whole system can be described with only L + 1 variables representing one
investment choice and L pas returns. We denote the price return at time t− l as rt,l, so that
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the system reads





xt+1 = f
(
rt,0, rt,1, . . . , rt,L−1

)

rt+1,0 = R
(
f
(
rt,0, rt,1, . . . , rt,L−1

)
, xt, et

)

rt+1,1 = rt,0

...

rt+1,L−1 = rt,L−2

. (3.1)

Notice that we introduce function representing the right hand-side of (2.7):

R(x′, x, e) =
x′ − x + e x′ x

(1− x′) x
, (3.2)

with variables x′ and e denoting the current (contemporaneous with return) investment choice
and dividend yield, and variable x denoting the previous period investment choice.

Dynamical system (3.1) contains the noise component et which is i.i.d. random variable
according to Assumption 1. For the rigorous mathematical analysis we substitute the yield by
its mean value ē and consider the deterministic skeleton of (3.1). Resulting system gives, in a
sense, the “average” representation of the stochastic dynamics. It turns out that independent
of the agent’s behavior, all possible equilibria of the skeleton belong to the one-dimensional
geometric locus.

3.2 Equilibrium market line

Let us introduce the following

Definition 3.1. The Equilibrium Market Line (EML) is the function l(r) defined as

l(r) =
r

ē + r
. (3.3)

Let x∗ denote the agent’s wealth share invested in the risky asset at equilibrium and let
r∗ be the equilibrium return. In any fixed point the realized returns are constant, so that
r0 = r1 = · · · = rL−1 = r∗. One has the following

Proposition 3.1. Let x∗ = (x∗; r∗, . . . , r∗) be a fixed point of the deterministic skeleton of
(3.1). Then it is

(i) Equilibrium return r∗ satisfies

l(r∗) = f(r∗, . . . , r∗) , (3.4)

while the equilibrium investment share x∗ = f(r∗, . . . , r∗).

(ii) Equilibrium x∗ generates positive prices, if either x∗ < 1 or x∗ ≥ 1/(1− ē).

(iii) The equilibrium growth rate of the agent’s wealth is equal to price return r∗.

Proof. See appendix B.
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Figure 1: Left panel: Equilibria of system (3.1) are intersections of the EML with symmetrizations
of the agents’ investment functions (shown as thick lines and labeled as I and II). There are two
equilibria in both cases: S1 and U1 in the market with agent I, and S2 and U2 in the market with
agent II. Right panel: Investment function based on the last two realized returns f(rt−1, rt−2)
and its intersection (thick line) with the plane rt−1 = rt−2. Equilibria are found in this plane as
intersections with the EML.

This statement justifies the introduction of the Equilibrium Market Line in Definition 3.1.
Indeed, according to (3.4) all fixed points of the dynamics can be found as the intersections
of the EML with the symmetrization of function f , i.e. with the restriction of this function
to the one-dimensional subspace defined as r0 = r1 = · · · = rL−1. The main reason for such
simple characterization of equilibria is the underlying requirement of consistency between
fixed agent’s action and resulting dynamics. Thus, the EML is the locus of points where this
consistency condition is satisfied.

We illustrate condition (3.4) in Fig. 1. In the left panel the hyperbolic curve shown as
a thin line represents the EML (3.3), while two thick lines depict two investment functions.
More precisely, these lines are symmetrizations of some investment functions, so that the
diagram shows the section of many-dimensional graph by the hyper-plane r0 = · · · = rL−1.
E.g. the right panel shows two-dimensional investment function depending on the two last
realized returns, but only diagonal section, analogous to the left panel, is relevant for the
question of equilibria location. The intersections of the investment function with the EML
are all possible equilibria of the system. The ordinate of the intersection gives the value of
equilibrium investment share x∗, while the abscissa gives the equilibrium return r∗.

According to Proposition 3.1(ii), economically meaningful equilibria are characterized by
values of the investment share inside the intervals (−∞, 1) or [1/(1− ē), +∞). It amounts to
require r∗ > −1, which implies that part of the EML on the left from point E is meaningless.
On the remaining part of the Line one can distinguish between three qualitatively different
scenarios.

In equilibria with r∗ ∈ [−1,−ē) the return is negative and, hence, rescaled price pt of
the risky asset decreases to 0. Wealth of the agent is positive at any moment of time and
also vanishes4. The agent possesses total supply of the risky asset, while his amount of the
numéraire Bt < 0 as one can check writing the market clearing condition as x∗(Bt + Pt) = Pt.

4In general, to guarantee the positiveness of the price at the initial period one has to choose initial wealth
appropriately. Since p0 = x∗w0, for positive x∗ the initial (and consequent) agent’s wealth is positive, while
for negative x∗ the wealth is negative.
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Thus, the agent has to borrow money in order to keep his relatively high demand for the risky
asset. Due to the decrease in the agent’s wealth, this demand is unsufficient to provide high
(even positive) return.

If r∗ ∈ (−ē, 0) the capital gain on the risky asset is negative and price of the asset falls.
However, the contribution from the dividend makes the gross return r∗ + ē positive. Further-
more, agent has to be in debt and have negative wealth in order to guarantee the positiveness
of price. From Proposition 3.1(iii) it follows that his wealth increases to 0. The agent pos-
sesses total supply of the risky asset and negative amount of the numéraire Bt. In this case
agent has to borrow money in order to keep positive demand of the asset. Ultimately, the
dividend payment allows the agent’s wealth to increase. Equilibrium S2 for the agent II in the
left panel of Fig. 1 is of such kind.

Finally, if the rescaled return is positive, the price pt of the asset increases. Agent has a
positive amount of the numéraire and his total wealth is positive and increases. Such situation
will be observed in equilibria S1, U1 and U2.

What can be said about the dynamics of price Pt in all these three scenarios? To answer
this question it is important to bear in mind the following relation between the scaled return
rt and return Rt in terms of unscaled price:

1 + Rt = (1 + rt) (1 + rf ) .

Thus, in the third scenario where the rescaled price increases, the unscaled price also increases
with the higher rate. However, in the first and second scenarios where the rescaled price is
falling down, the price before scaling may increase for high enough risk-free interest rate.

To conclude our discussion about equilibrium properties notice that in all possible equilibria
there exists a non-zero equity premium, i.e. difference in the total return of the riskless and
risky asset. The equity premium is observed in the real markets (Mehra and Prescott, 1985).
It can be explained within the classical paradigm as a monetary incentive existing in the
equilibrium to encourage an optimizing risk-averse representative agent to hold a risky asset.
In our framework an equity premium in equilibrium can be easily computed as

Pt+1 − Pt + Dt+1

Pt
− rf =

ē (1 + rf )

1− x∗
.

In our framework the risk premium is endogenously generated due to the interplay of the total
wealth reinvesting and dynamics feedback of the return to the wealth level. Consequently,
equity premium increases with the dividend yield, risk-free interest rate and agent’s investment
share.

3.3 Stability of single-agent equilibria

As the next natural step we move to discuss the stability conditions of the equilibria. The
stability conditions are derived from the analysis of the roots of the characteristic polynomial
associated with the Jacobian of system (3.1) computed at equilibrium. The characteristic
polynomial does, in general, depend on the behavior of the individual investment function f
in an infinitesimal neighborhood of the equilibrium x∗. This dependence can be summarized
with the help of the following

Definition 3.2. The stability polynomial P (µ) of the investment function f in x∗ is

Pf (µ) =
∂f

∂r0
µL−1 +

∂f

∂r1
µL−2 + · · · + ∂f

∂rL−2
µ +

∂f

∂rL−1
, (3.5)

11



where all the derivatives are computed in point (r∗, . . . , r∗).

Using the previous definition the equilibrium stability conditions can be formulated in
terms of the equilibrium return r∗, and of the slope of the EML in equilibrium

l′(r∗) =
ē

(ē + r∗)2
.

The following applies

Proposition 3.2. The fixed point x∗ = (x∗; r∗, . . . , r∗) of system (3.1) is (locally) asymptoti-
cally stable if all the roots of the polynomial

Q(µ) = µL+1 − Pf (µ)

r∗ l′(r∗)

((
1 + r∗

)
µ− 1

)
, (3.6)

are inside the unit circle.
The equilibrium x∗ is unstable if at least one of the roots of Q(µ) lies outside the unit

circle.

Proof. The condition above is a direct consequence of the characteristic polynomial of the
Jacobian matrix at equilibrium. See appendix C for derivation.

Once investment function f is known, polynomial Pf (µ) and, in turn, polynomial Q(µ) are
explicitly derived. The analysis of L+1 roots of Q(µ), which are usually called multipliers, can
be performed in order to reveal the role of the different parameters in stabilization of a given
equilibrium. Such rigorous analysis is often unfeasible even for simple investment functions, so
one should rely on the computational approach, mostly. For illustrative purposes we present
below three special cases, where analytical results are available to a certain extent. The reader
is referred to Appendix D for justification of the results and further discussion.

Example 1. Agent with short memory, L = 1.

Consider an agent with single memory lag, i.e. with investment share depending only on the
past return, xt+1 = f(rt). This is satisfied, e.g. for any agent with näıve forecast of the next
period return. The stability polynomial is simple in this case, Pf = f ′(r∗), and multipliers are
roots of the second-degree polynomial

Q(µ) = µ2 − f ′(r∗)

l′(r∗) r∗

((
1 + r∗

)
µ− 1

)
. (3.7)

Using general results reproduced in Propositions D.1 and D.2, one gets

Proposition 3.3. The fixed point x∗ = (x∗; r∗) of system (3.1) with L = 1 is (locally)
asymptotically stable if

f ′(r∗)

l′(r∗)

1

r∗
< 1 ,

f ′(r∗)

l′(r∗)
< 1 and

f ′(r∗)

l′(r∗)

2 + r∗

r∗
> −1 . (3.8)

Fixed point exhibits Neimark-Sacker, fold or flip bifurcation if the first, second or third in-
equality in (3.8) turns to equality, respectively.
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The stability region defined by inequalities in (3.8) is shown in the upper left panel of
Fig. 2 in coordinates r∗ and f ′(r∗)/l′(r∗). The second coordinate is the relative slope of the
investment function at equilibrium with respect to the slope of the Equilibrium Market Line.
Notice that if the slope of f at the equilibrium increases, the system tends to lose its stability.
In particular, the second inequality in (3.8) requires the slope of investment function to be
smaller than the slope of function l(r).

Let us come back to the example in the left panel of Fig. 1 and assume that L = 1 for
each agent. Both equilibrium U1 for agent I and U2 for agent II are unstable, since the second
inequality in (3.8) is violated. On the contrary, equilibrium S1 is (presumably) stable, since
the slope of the investment function in S1 is very small. From Fig. 2 it follows that if the
slope of function I in S1 increases, this equilibrium loses stability through a Neimark-Sacker
bifurcation, implying smooth cyclical return trajectory for parameters close to bifurcation
value. The increase of the slope of the second function in S2 would, instead, lead to flip
bifurcation and return time series close to 2-cycle.

Example 2. EWMA forecasting rule

In agreement with the two-step procedure mentioned in Section 2.3, we now assume that
agent formulates at time t + 1 forecast yt for the next period return and then invests fraction
xt+1 = f(yt) of his wealth. Furthermore, we assume the following forecasting rule

yt = CL(λ)
(
rt + λ rt−1 + · · · + λL−1 rt−L+1

)
, (3.9)

where the normalization coefficient CL(λ) = (1− λ)/(1− λL). Thus, agent uses an Exponen-
tially Weighted Moving Average (EWMA) of the past returns as forecast. The decay factor
λ ∈ [0, 1) determines how the relative weights in the average yt are distributed across more
recent and older observations. The last available observation rt has the highest weight.

To explore stability of the system with a single EWMA-forecaster, notice that at equilib-
rium the forecast coincides with return, yt = r∗, and the stability polynomial reads

Pf (µ) = f ′(r∗)
1− λ

1− λL

µL − λL

µ− λ
. (3.10)

Substitution of the last polynomial into (3.6) gives characteristic polynomial Q(µ). Let us
denote as Sλ,L the stability region drawn in the coordinates of Fig. 2, i.e. area where all L + 1
multipliers lie inside the unit circle. We are interested in the dependence of the shape of this
region on the decay factor λ and memory span L.

Let us, first, fix λ. When L = 1 we find ourselves in the limits of the previous example
(independently of λ). On the other extreme, when L = ∞, one can prove the following

Proposition 3.4. The fixed point x∗ = (x∗; r∗) of system (3.1) with L = ∞ is (locally)
asymptotically stable if

f ′(r∗)

l′(r∗)

1

r∗
<

1

1− λ
,

f ′(r∗)

l′(r∗)
< 1 and

f ′(r∗)

l′(r∗)

2 + r∗

r∗
> − 1 + λ

1− λ
. (3.11)

This fixed point exhibits Neimark-Sacker, fold or flip bifurcation if the first, second or third
inequality in (3.11) turns to equality, respectively.

Proof. The result can be obtained rigorously through reduction of infinite-dimensional system
(3.1) to the two-dimensional one, using the recursive relation available for the EWMA estima-
tor in case L = ∞. See Anufriev, Bottazzi, and Pancotto (2006). In Appendix D we sketch
an alternative proof.
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Figure 2: Stability regions and types of bifurcations for system (3.1) in special cases. Upper Left
Panel: Example 1, L = 1. Fixed point is stable if (r∗, f ′/l′) belongs to the dark gray area. Upper
Right Panel: Example 2, EWMA estimator for different λ and L = ∞. For λ = 0 the stability
region is the same as in example 1, shown as the dark gray area. If λ = 0.2 it expands and becomes
the union of the dark and semi-dark gray areas. When λ = 0.6 the region expands further and
contains the light gray areas in addition. Lower Left Panel: Example 2, EWMA estimator with
λ = 0.6 for different L. When L = 1 the stability region is the same as in example 1, shown as
the dark gray area. If L = 2 the region expands and contains the light gray areas in addition. The
boundaries for L = ∞ are shown as dotted lines. Lower Right Panel: Example 3, CWA estimator
for different L. When L = 1 the stability region is the same as in example 1, shown as the dark gray
area. For L = 2 the region expands and becomes the union of the dark and light gray areas. The
bifurcation loci for the EWMA case with L = 2 and λ = 0.6 are shown as dotted lines for comparison.

The regions S0,∞, S0.2,∞ and S0.6,∞ defined by (3.11) for different values of λ are depicted
on the upper right panel of Fig. 2.

For the intermediate case, when L > 1 but finite, analytic results are limited. In Ap-
pendix D we derive the relations between parameters when one of the multipliers crosses the
unit circle for the case L = 2. The corresponding curves are shown, when λ = 0.6, in the
lower left panel of Fig. 2. They are labeled as “N-S”, “flip” and “fold” depending on where
this crossing happens exactly (e.g. ”N-S” curve corresponds to those points where two com-
plex conjugated multipliers cross the circle). Since all equilibria generated by the horizontal
investment functions are stable, the points on the horizontal axes should lie in the stability
region. The construction of this region can now be finalized using the argument of continuous
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dependence of the roots of polynomial on its coefficients. Notice that investment functions
with negative slope and r∗ > 0 generate now the Neimark-Sacker (and not flip) bifurcations.

For larger L one can show that the set of those parameters where one multiplier is equal to
1, is invariant and given by line f ′/l′ = 1. The locus of parameters where a multiplier is equal
to −1 depends on whether L even or odd. For even L the locus is invariant and coincides with
the corresponding boundary of region Sλ,∞. When L is odd, the locus changes and point-wise
converges to the boundary of Sλ,∞. We can make a conjecture, therefore, that the expansion of
stability region is not monotone with L. However, as Proposition 3.4 guarantees, the increase
in the memory span ultimately brings the stability to all fixed points belonging to region Sλ,∞.
Since for given λ this region does not cover the whole parameter space (r∗, f ′/l′), not all fixed
points can be stabilized by change of L.

Can still unstable points become stable by appropriate choice of the decay factor λ? The
general answer to this question is no, since condition f ′/l′ < 1 has to be satisfied. However, all
fixed points for which this condition holds can be stabilized through the increase of λ. Indeed,
from (3.11) it follows that region Sλ,∞ enlarges with λ and for λ → 1 contains all equilibria
with f ′(r∗)/l′(r∗) < 1. (See also the upper right panel of Fig. 2.)

Let us summarize our findings, referring again on the EML plot in Fig. 1. For behavior
based on the EWMA estimator, equilibria U1 and U2 cannot be stabilized neither by increase
of the memory span L, nor by increase of the decay factor λ. Instead, both equilibria S1 and
S2 will become stable if, first, one chooses large enough λ and, second, appropriate L.

Example 3. Sample average forecasting rule

In our final example we modify the forecasting rule (3.9) in order to use the simple sample
average as a forecast, as e.g. in Levy, Levy, and Solomon (2000) and Chiarella and He (2001).
Such Constant Weighted Average (CWA) is given as follows

yt =
1

L
(rt + rt−1 + · · · + rt−L+1) . (3.12)

When L = 1 we are again in the situation of the first example. What happens if L increases?
The line where a multiplier crosses the unit circle in point µ = 1 is still given as f ′/l′ = 1.
The locus of parameters such that a multiplier is equal to −1 does not exist for even L. Thus,
the system can lose stability only through Neimark-Sacker or fold bifurcation. Example with
L = 2 is depicted in the lower right panel of Fig. 2. Thus, the stability region enlarges with
increase of L, analogously to the previous case. There is one important difference, however.
Namely, the increase of memory span L leads now to the stabilization of any fixed point of
the system with f ′/l′ < 1.

4 Economy with Many Agents

This Section extends the previous results to the case of a finite, but arbitrarily large, number
of heterogenous agents. Each agent n possesses his own investment function fn based on a
finite number L of past market realizations. We start this section with the derivation of the
2N + L − 1 dimensional stochastic dynamical system which describes the evolution of the
economy and, then, identify all possible equilibria of the associated deterministic skeleton and
analyze their stability.
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4.1 Dynamical system

The evolution of agents’ wealths is not any longer decoupled from the system and, conse-
quently, all equations in (2.9) are relevant for the dynamics. The first-order dynamical system
will be defined in terms of the following 2N + L− 1 independent variables

xt,n ∀n ∈ {1, . . . , N} ; ϕt,n ∀n ∈ {1, . . . , N − 1} ; rt,l ∀l ∈ {0, . . . , L− 1} , (4.1)

where rt,l denotes the price return at time t−l. Notice that only N−1 wealth shares are needed.
Indeed, since wealth shares are summed up to 1 at any time step t, ϕt,N = 1 −

∑N−1
n=1 ϕt,n.

The dynamics of the system is provided by the following

Lemma 4.1. The 2N+L−1 dynamical system defined by (2.7) and (2.9) under Assumptions 1
and 2 reads

X :




xt+1,1 = f1

(
rt,0, . . . , rt,L−1

)

...
...

...
xt+1,N = fN

(
rt,0, . . . , rt,L−1

)

W :





ϕt+1,1 = Φ1

(
xt,1, . . . , xt,N ; ϕt,1, . . . , ϕt,N−1; et+1;

R
(
f1(rt,0, . . . , rt,L−1), . . . , fN(rt,0, . . . , rt,L−1);

xt,1, . . . , xt,1; ϕt,1, . . . , ϕt,N−1; et+1

))

...
...

...

ϕt+1,N−1 = Φt,N−1

(
xt,1, . . . , xt,N ; ϕt,1, . . . , ϕt,N−1; et+1;

R
(
f1(rt,0, . . . , rt,L−1), . . . , fN(rt,0, . . . , rt,L−1);

xt,1, . . . , xt,N ; ϕt,1, . . . , ϕt,N−1; et+1

))

(4.2)

R :





rt+1,0 = R
(
f1(rt,0, . . . , rt,L−1), . . . , fN(rt,0, . . . , rt,L−1);

xt,1, . . . , xt,N ; ϕt,1, . . . , ϕt,N−1; et+1

)

rt+1,1 = rt,0
...

...
...

rt+1,L−1 = rt,L−2

,

where

R
(
y1, y2, . . . , yN ; x1, x2, . . . , xN ; ϕ1,ϕ2, . . . , ϕN−1; e

)
=

=

∑N−1
n=1 ϕn

(
yn (1 + e xn)− xn

)
+

(
1−

∑N−1
n=1 ϕn

) (
yN (1 + e xN)− xN

)

∑N−1
n=1 ϕn xn (1− yn) + (1−

∑N−1
n=1 ϕn) xN (1− yN)

(4.3)

and

Φn

(
x1, x2, . . . , xN ; ϕ1,ϕ2, . . . , ϕN−1; e; R

)
=

= ϕn
1 + xn (R + e)

1 + (R + e)
(∑N−1

m=1 ϕm xm +
(
1−

∑N−1
m=1 ϕm

)
xN

) ∀n ∈ {1, . . . , N − 1} .
(4.4)
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Proof. We ordered the equations to obtain three separated blocks: X, W and R. In block
X there are N equations defining the investment choices of agents. Block W contains N − 1
equations describing the evolution of the wealth shares. Finally, block R is composed by
L equations which describe the evolution of the return. In the last block equations are in
ascending order with respect to the time lag.

The set X is immediately obtained from the definition of the investment functions. The
first equation of block R is (2.7) rewritten in terms of variables (4.1) using (4.3) and (2.5),
while the remaining equations are just the result of a “lag” operation. Notice that (4.3) reduces
to (3.2) in the case of a single agent. Finally, the evolution of wealth shares described in block
W is obtained from (2.9) once the notation introduced in (2.5) is explicitly expanded. Notice
that, due to the presence of function R in the last expression, all functions Φn depend on the
same set of variables as R.

The rest of this Section is devoted to the analysis of the deterministic skeleton of (4.2):
we replace the yield realizations {et} by their mean value ē and analyze the equilibria of the
resulting deterministic system.

4.2 Determination of equilibria

The characterization of fixed points of system (4.2) is in many respects similar to the single
agent case discussed above. Let x∗ = (x∗1, . . . , x

∗
N ; ϕ∗

1, . . . ,ϕ
∗
N−1; r

∗, . . . , r∗) denotes a fixed
point where r∗ is the equilibrium return, and x∗n and ϕ∗

n stay for the equilibrium value of
the investment function and the equilibrium wealth share of agent n, respectively. Let us
introduce the following

Definition 4.1. Agent n is said to survive in x∗ if his equilibrium wealth share is different
from zero, ϕ∗

n (= 0. Agent n is said to dominate the economy if he is the only survivor,
i.e. ϕ∗

n = 1.

One can recognize the parallel between our definition above and the frameworks in DeLong,
Shleifer, Summers, and Waldmann (1991) and Blume and Easley (1992). We adopt here the
deterministic version of the concepts of survival and dominance used in that papers. The
following statement characterizes all possible equilibria of system (4.2).

Proposition 4.1. Let x∗ be a fixed point of the deterministic skeleton of system (4.2). Then
equilibrium investment shares are defined according to

x∗n = fn(r∗, . . . , r∗) ∀n ∈ {1, . . . , N} , (4.5)

and three mutually exclusive cases are possible:

(i) Single agent survival. In x∗ only one agent survives and, therefore, dominates the
economy. Without loss of generality we can assume this agent to be agent 1 so that
ϕ∗

1 = 1 and all other equilibrium wealth shares are equal to zero.

The equilibrium return r∗ is determined as the solution of

l(r∗) = f1(r
∗, . . . , r∗) , (4.6)

and equal to the wealth growth rate of the survivor.
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(ii) Many agents survival. In x∗ more than one agent survives. Without loss of gener-
ality one can assume that the agents with non-zero wealth shares are the first k agents
(with k > 1) so that the equilibrium wealth shares satisfy

ϕ∗
n = 0 if n > k and

k∑

n=1

ϕ∗
n = 1 . (4.7)

The equilibrium return r∗ must simultaneously satisfy the following set of k equations

l(r∗) = fn(r∗, . . . , r∗) ∀n ∈ {1, . . . , k} , (4.8)

implying that the first k agents have the same investment share x∗1%k at equilibrium. The
wealth growth rates of all survivors are equal to r∗.

(iii) Absence of Equity Premium. In x∗ the equilibrium return r∗ = −ē. The wealth
shares of agents satisfy to

N∑

n=1

x∗nϕ
∗
n = 0 and

N∑

n=1

ϕ∗
n = 1 . (4.9)

The wealth growth rates of all agents are equal to 0.

Proof. See appendix E.

Strictly speaking, we could distinguish between only two situations in this Proposition.
The first situation is described by item (ii) with arbitrary k, so that when k = 1 item (i)
becomes a particular case. We show below that, asymptotically, such situation is equivalent
to the single-agent scenario. The second situation is described in item (iii) and differs from
the previous one, because of the absence of the risk premium which can not happen in the
single agent market.

Notice the difference between items (i) and (ii). In the first case, when a single agent
survives, Proposition 4.1 defines a precise value for each component (x∗, ϕ∗ and r∗) of the
equilibrium x∗, so that a single point is uniquely determined. In the second case, on the
contrary, there is a residual degree of freedom in the definition of the equilibrium: while r∗ and
investment shares x∗’s are uniquely defined, the only requirement on the equilibrium wealth
shares of the surviving agents is the fulfillment of the second equality in (4.7). Consequently
we have

Corollary 4.1. Consider the deterministic skeleton of system (4.2). If it possesses one equilib-
rium x∗ with k survivors, it possesses a k−1-simplex of equilibria with k-survivors constituted
by all the points obtained from x∗ through a change in the relative wealths of the survivors. If
the first k agents survive as in (4.7), this set can be written as






(
x∗1, . . . , x

∗
N ; ϕ1, . . . , ϕk, 0, . . . , 0︸ ︷︷ ︸

N−1−k

; r∗, . . . , r∗︸ ︷︷ ︸
L

;
) ∣∣∣∣

k∑

j=1

ϕj = 1




 .

The differences among the first two cases of Proposition 4.1 does not only regard the
geometrical nature of the locus of equilibria. Indeed, while in the first case no requirements
are imposed on the behavior of the investment function of the different agents, in the second
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Figure 3: Left panel: Non-generic situations in which in S2 agents II and II survive, while in U1

agents I and II survive. Right panel: No-equity-premium equilibria with three survivors, who invest
in points A1, A2 and A3.

type of solutions all the investment shares x∗1, . . . , x
∗
k must at the same time be equal to a

single value x∗1%k. The equilibrium with k > 1 survivors exists only in the particular case in
which the k investment functions f1, . . . , fk satisfy this restriction. Consequently, an economy
composed by N agents having generic, so to speak “randomly defined”, investment functions,
has probability zero of displaying any equilibrium with multiple survivors. In other terms,
such many survivors equilibria are non-generic.

Both types of multi-agent equilibria derived in Proposition 4.1(i) and (ii) are strictly
related to “special” single-agent equilibria. As in the single agent case, the growth rate of the
total wealth is equal to the equilibrium price return and is determined by the growth rate of
those agents who survive in the equilibrium. Moreover, the determination of the equilibrium
return level r∗ for the multi-agent case in (4.6) or (4.8) is identical to the case where the agent,
or one of the agents, who would survive in the multi-agent equilibrium, is present alone in the
market. An useful consequence of this fact is that the geometrical interpretation of market
equilibria presented in Section 3.2 can be extended to illustrate how equilibria with many
agents are determined.

As an example let us consider the left panel of Fig. 1 and suppose that agents with two
investment functions shown in the left panel simultaneously operate in the market. According
to Proposition 4.1(i) all possible equilibria can be found as intersections of one of the functions
with the EML (c.f. (4.6)). In this case there are four possible equilibria. In two of them (S1

and U1) the agent I survives such that ϕ∗
1 = 1. In the other two equilibria (S2 and U2) the

agent II survives and ϕ∗
1 = 0. In each equilibrium, the intersection of the investment function

of the surviving agent with the EML gives both the equilibrium return r∗ and the equilibrium
investment share of the survivor. The equilibrium investment share of the other agent can
be found, accordingly to (4.5), as the intersection of his own investment function with the
vertical line passing through the equilibrium return. Since two investment functions shown in
the left panel of Fig. 1 do not possess common intersections with the EML, the equilibria with
more than one survivors are impossible. An example of investment functions which allow for
multiple survivors equilibria is reported in the left panel of Fig. 3. The common intersection
of different investment functions with the EML define the manifold of the multiple survivors
equilibria.
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Let us now turn to the “no-equity-premium” equilibria identified in Proposition 4.1(iii).
In these equilibria many agents survive, and their investment and wealth shares are balanced
in such a way that the capital gain and the dividend yield offset each other so that the riskless
and the risky assets have the same expected return. As opposite to the situation described in
Proposition 4.1(ii), these are generic equilibria with many survivors. Furthermore, if N > 2
then definition of any no-arbitrage equilibrium has additional degrees of freedom corresponding
to a change in the relative wealths of the survivors. Namely, there exist the following N − 2-
dimensional manifold of equilibria






(
x∗1, . . . , x

∗
N ; ϕ1, . . . , ϕN−1−k;−ē, . . . ,−ē︸ ︷︷ ︸

L

) ∣∣∣∣
N∑

j=1

ϕj = 1 ,
N∑

j=1

ϕjx
∗
j = 0




 .

Geometrically, the “no-equity-premium” equilibria can be represented by the vertical asymp-
tote of the EML. Points A1, A2 and A3 in the right panel of Fig. 3 represents corresponding
investment shares of the agents, while the wealth shares are defined from (4.9).

4.3 Stability of multi-agents equilibria

This Section presents the stability analysis of the equilibria defined in Proposition 4.1. The
three Propositions below provide the stability region in the parameter space for the cases
enumerated in Proposition 4.1, i.e. for generic case of a single survivor, for non-generic case
of many survivors and for generic case with many survivors and without the equity premium.
The derivation of these Propositions requires quite cumbersome algebraic manipulations and
we refer the reader to Appendix F for the intermediate lemmas and final proofs.

For the generic case of a single survivor equilibrium we have the following

Proposition 4.2. Let x∗ be a fixed point of (4.2) associated with a single survivor equilibrium.
Without loss of generality we can assume that the survivor is the first agent. Let Pf1(µ) denote
the (L − 1)-dimensional stability polynomial associated with the investment function of the
survivor.

Equilibrium x∗ is (locally) asymptotically stable if the two following conditions are met:
1) all the roots of polynomial

Q1(µ) = µL+1 − (1 + r∗) µ− 1

r∗ l′(r∗)
Pf1(µ) , (4.10)

are inside the unit circle.
2) the equilibrium investment shares of the non-surviving agents satisfy to

−2− r∗ < x∗n
(
r∗ + ē

)
< r∗ , 1 < n ≤ N . (4.11)

The equilibrium x∗ is unstable if at least one of the roots of polynomial in (4.10) is outside
the unit circle or if at least one of the inequalities in (4.11) holds with the opposite (strict)
sign.

In particular, the system exhibits a fold bifurcation if one of the N−1 right-hand inequalities
in (4.11) becomes an equality and a flip bifurcation if one of the N − 1 left-hand inequalities
becomes an equality.
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Figure 4: Left Panel: Four equilibria in the market with two agents. The region where condition
(4.11) is satisfied is shown gray. Right Panel: Non-linear investment function leading to multiple
equilibria. SH and SL are stable while U is unstable. A second linear investment function always
lays below the first.

Thus, the stability condition for a generic fixed point in the multi-agent economies is
twofold. First, equilibrium should be “self-consistent”, i.e. remain stable even if any non-
surviving agent would be removed from the economy. This very intuitive result strictly follows
from the comparison between Q1(µ) and polynomial Q(µ) in (3.6). This is however not enough.
A further requirement comes from the inequalities in (4.11). In particular, according to the
left-hand inequality, the wealth growth rate of those agents who do not survive in the stable
equilibrium should be strictly less than the wealth growth rate of the survivors r∗. Thus, in
those equilibria where r∗ > −ē the surviving agent must be the most aggressive and invest a
higher wealth share in the risky asset. On the other hand, in those equilibria where r∗ < −ē
the survivor has to be the least aggressive.

The EML plot can be used to obtain a geometric illustration of the previous Proposition.
In Fig. 4 we draw again the two investment functions discussed in Section 3. Let us now
suppose that they are both present on the market at the same time. The region where
the additional condition (4.11) is satisfied is reported in gray. In Section 4.2 we found four
possible equilibria: S1, S2, U1 and U2. Proposition 4.2 states that, first, the dynamics cannot
be attracted by an equilibrium which was unstable in the respective single-agent cases. And,
second, it cannot be attracted by an equilibrium in which non-surviving agent invests in the
point belonging to a white region. Points U1 and U2 will be unstable if an agent uses EWMA
or CWA forecast (cf. examples 2 and 3 in Section 3.3). Therefore, they are unstable also in
the multi-agents market. From item 2) of Proposition 4.2 it follows that S1 is the only stable
equilibrium of the system with two agents. Notice, indeed, that in the abscissa of S1, i.e. for
the equilibrium return, the linear investment function of the non-surviving agent II passes
below the investment function of the surviving agent and belongs to the gray area. On the
contrary, in the abscissa of S2, the investment function of the non-surviving agent I has greater
value and does not belong to the gray area. Consequently, this equilibrium is unstable.

Let us move now to consider the non-generic case, when k different agents survive in the
equilibrium. The following applies

Proposition 4.3. Let x∗ be a fixed point of (4.2) with k survivors defined by (4.5), (4.7) and
(4.8).
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The fixed point x∗ is never hyperbolic and, consequently, never (locally) asymptotically sta-
ble. Its non-hyperbolic submanifold is the k−1-dimensional manifold defined in Corollary 4.1.

Let Pfn(µ) be the stability polynomial of investment function fn. The equilibrium x∗ is
(locally) stable if the two following conditions are met:

1) all the roots of polynomial

Q1%k(µ) = µL+1 − (1 + r∗) µ− 1

r∗ l′(r∗)

k∑

n=1

ϕ∗
n Pfn(µ) , (4.12)

are inside the unit circle.
2) the equilibrium investment shares of the non-surviving agents satisfy to

−2− r∗ < x∗n (r∗ + ē) < r∗ , k < n ≤ N . (4.13)

The equilibrium x∗ is unstable if at least one of the roots of polynomial in (4.12) is outside
the unit circle or if at least one of the inequalities in (4.13) holds with the opposite (strict)
sign.

The non-hyperbolic nature of the equilibria with many survivors turns out to be a direct
consequence of their non-unique specifications. The motion of the system along the k − 1
dimensional subspace consisting of the continuum of equilibria leaves the aggregate properties
of the system invariant so that all these equilibria can be considered equivalent. Proposition 4.3
also provides the stability conditions for perturbations in the hyperplane orthogonal to the non-
hyperbolic manifold formed by equivalent equilibria. The polynomial Q1%k(µ) is quite similar
to the corresponding polynomial in Proposition 4.2, except that one has to weight the stability
polynomial of the different investment functions Pfk

(µ) with the weights corresponding to the
relative wealth of survivors in the equilibrium. At the same time, the constraint on the
investment shares in (4.13) is identical to the one obtained in (4.11). In particular, similar to
the case with a single survivor, in those equilibria where r∗ > −ē all surviving agents must be
more aggressive than those who do not survive, and vice versa.

Finally, let us analyse those equilibria where r∗ = −ē and, therefore, there is no equity
premium. We consider general situation and allow some agents to have zero wealth shares.
Without loss of generality, we assume that first k ≤ N agents survive in the equilibrium. The
following result characterizes the stability of such equilibria

Proposition 4.4. Let x∗ be a fixed point of system (4.2) belonging to a N − 2-dimensional
manifold of k-survivors equilibria defined by (4.5) and (4.9).

If N ≥ 3, the fixed point x∗ is non-hyperbolic and, consequently, is not (locally) asymptot-
ically stable. The equilibrium x∗ is (locally) stable if all the roots of the following polynomial
are inside the unit circle

µL+1 +
µ− 1〈

x2
〉

k∑

j=1

ϕ∗
j Pfj(µ) , (4.14)

where Pfj(µ) is the stability polynomial of investment function fj computed in point (−ē, . . . ,−ē),

and
〈
x2

〉
=

∑k
n=1 ϕ∗

n x∗n
2 .

The equilibrium x∗ is unstable if at least one of the roots of polynomial in (4.14) is outside
the unit circle.
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As in the case of Proposition 4.3, the “no-equity-premium” equilibria can be non-hyperbolic,
due to possibility to change wealth between agents without changing the aggregate properties
of the dynamics. For the complete stability analysis, the roots of polynomial (4.14) should
be analyzed for specific investment functions, analogously to our analysis in Section 3.3. In
particular, when all investment functions are horizontal in point −ē, the equilibrium (if it
exists) is always stable.

4.4 Optimal selection and multiple equilibria

In this Section, using the geometric interpretation based on the EML we discuss some relevant
implications of Proposition 4.2 about the asymptotic behavior of the model and its global
properties. We confine the discussion to the generic case of equilibria with a single survivor.

The first implication concerns the aggregate dynamics of the economy. Let us consider
a stable many-agent equilibrium x∗. Let us suppose that r∗ is the equilibrium return in x∗

and that the first agent survives. Then his wealth return is equal to r∗ and this is also the
asymptotic growth rate of the total wealth. Then, we can interpret the second requirement of
Proposition 4.2 as saying that, in the dynamic competition, those agent survives who allows
the economy to have the highest possible rate of growth. Indeed, if any other agent n (= 1
survived, the economy would have grown with rate x∗n (r∗ + ē), which is less than r∗ according
to (4.11). This result can be called an optimal selection principle since it clearly states the
market endogenous selection toward the best aggregate outcome.

To be a bit more specific, notice that in equilibria with r∗ > −ē the overall wealth of the
economy grows (in particular for r∗ < 0 the negative wealth grows to 0), while in equilibria
with r∗ < −ē the wealth of the economy falls. Thus, according to the optimal selection
principle the surviving agent must be the most aggressive in equilibria where the economy
grows and must be the least aggressive investor in equilibria where the economy shrinks.

Notice, however, that this selection does not apply to the whole set of equilibria, but only
to the subset formed by equilibria associated with stable fixed points in the single agent case
(c.f. (4.12)). For instance, with the investment functions shown in the left panel of Fig. 4,
the dynamics will never end up in U2, even if this is the equilibrium with the highest possible
return. Furthermore, the variety of possible investment functions implies that the optimal
selection principle has a local character. Indeed, even if we exclude all unstable single-agent
equilibria, the market will not choose the equilibrium with the highest growth rate. Sometimes
it can be the case like in the left panel of Fig. 4. However, it is often not the case and a
simple counter-example is provided by a single investment function possessing multiple stable
equilibria as shown in the right panel of Fig. 4. For this investment function both SL and
SH are stable equilibria. Now suppose that an agent possessing this function competes on
the market with other agents which are more risk averse than him and always invest smaller
shares of wealth in the risky asset. An example of more risk averse behavior is provided by
the linear investment function in the same plot. In this situation, these two equilibria of the
nonlinear function remain stable and the riskier agent will ultimately dominate the market.
The resulting market equilibrium will only depend on the initial conditions.

Possible presence of the equilibria without equity premium, identified for the multi-agent
market in Proposition 4.1(iii), is another source of multiple equilibria. For example, in the
situation depicted in the right panel of Fig. 3 there is a stable equilibrium where agent I survives
alone (point S1) and many no-equity-premium stable equilibria where all three agents survive
and agent I possesses high enough wealth share ϕ∗

1 (cf. polynomial (4.14) in Proposition 4.4).
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5 Conclusion

This paper introduces novel results concerning the characterization and stability of equilibria
in speculative pure exchange economies with heterogeneous CRRA traders. The framework
is relatively general in terms of agents’ behaviors and differs from most of the models with
heterogeneous agents in two important respects.

First, we analyze the aggregate dynamics and asymptotic behavior of the market when
an arbitrary large number of traders participate to the trading activity. Second, we do not
restrict in any way the procedure used by agents in order to build their forecast about future
prices, nor the way in which agents can use this forecast to obtain their present asset demand.
In our terms, agent with any smooth investment function mapping the information set to the
present investment choice can present in the model.

Even if consideration of an arbitrary number of generic agents’ behaviors leads us to
study dynamical systems of an arbitrarily large dimension, we are able to provide a complete
characterization of market equilibria and a description of their stability conditions in terms of
few parameters characterizing the traders investment strategies. In particular, we find that,
irrespectively of the number of agents operating in the market and of the structure of their
demand functions, only three types of equilibria are possible:

• generic equilibria, associated with isolated fixed points, where a single agent asymptot-
ically possesses the entire wealth of the economy,

• non-generic equilibria, associated with continuous manifolds of fixed points, where many
agents possess a finite shares of the total wealth,

• generic equilibria associated with many survivors, where the economy does not possess
the equity premium.

Furthermore, we show in total generality that a simple function, the “Equilibrium Market
Line”, can be used to obtain a geometric characterization of the location of all these types of
equilibria. Furthermore, some results about stability conditions can also be inferred from the
same EML.

Our general results provide, we believe, a simple and clear description of the principles
governing the asymptotic market dynamics resulting from the competition of different trad-
ing strategies. The optimizing agents may dominate non-optimizing agents but may also be
dominated by them. In general, the ultimate result of competition between agents depends
on the whole market ecology. The EML is a handy and useful tool for demonstration such
phenomena as absence of equilibrium, presence of multiple equilibria, and also for comparative
statics exercises. From this plot (and results of stability analysis of Section 4.3) the following
two “impossibility theorems” follow in an obvious way. First, there exist no “best” strategy,
independently of what “best” means exactly, since any possible market equilibrium can be
destabilized by some investment function. Second, it is impossible to build a dominance order
relation inside the space of trading strategies, since two strategies may generate multiple sta-
ble equilibria with different survivors in them, so that the outcome will depend on the initial
conditions or noise.

The present analysis can be extended in many directions. First of all, one may raise the
question of the robustness of the results with respect to Assumption 1 about constant dividend
yield. Our preliminary results of the analytic investigation in this direction show that some
results (like presence of equity premium in equilibria and possibility to represent the equilibria
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by the EML) are actually robust and do not depend on the exact dividend specification.
Second, in the limits of our framework, one can wonder about other possible dynamics. For
instance, we have shown that there is a theoretical possibility do not have any equilibrium at
all. The dynamics in this case remain unknown. Also the dynamics after bifurcations, which
is the key question in many heterogeneous agent models, were not investigated. Probably
numerical methods can be effectively applied to study these questions and also clarify the role
of initial conditions and the determinants of the relative size of the basins of attraction for
multiple equilibria scenarios. Third, our general CRRA-framework led us in Proposition 2.1 to
the system in terms of returns and wealth shares. There are numerous behavioral specifications
which were not analyzed here and still consistent with such framework. These specifications
range from the evaluation of the “fundamental” value of the asset, possibly obtained from
a private source of information, to a strategic behavior that try to keep in consideration the
reaction of other market participants to the revealed individual choices. Furthermore, one may
ask what are the consequences of the optimal selection principle for a market in which the set
of strategies is not “frozen”, but instead is evolving in time, plausibly following some adaptive
process. For instance, one can assume that agents imitate the behavior of other traders (see
e.g. Kirman (1991)) or that they update strategies according to recent relative performances
(see e.g. Brock and Hommes (1998)). The analysis of the consequences of the introduction of
such strategies on the optimal selection principle may, ultimately, refute the statement about
the impossibility of defining a dominance relation among strategies.

APPENDIX

A Proof of Proposition 2.1
Plugging the expression for wt+1,n from the second equation in system (2.4) into the right-hand side of the first
equation of the same system, and assuming that pt > 0 and, consistently with (2.6), pt (=

∑
xt+1,n xt,n wt,n

one gets

pt+1 =

(
1− 1

pt

N∑

n=1

xt+1,n xt,n wt,n

)−1 (
N∑

n=1

xt+1,n wt,n +
(
et+1 − 1

) N∑

n=1

xt+1,n wt,n xt,n

)
=

= pt

∑
n xt+1,n wt,n + (et+1 − 1)

∑
n xt+1,n wt,n xt,n∑

n xt,n wt,n −
∑

n xt+1,n xt,n wt,n
=

= pt

〈
xt+1

〉
t
−

〈
xt xt+1

〉
t
+ et+1

〈
xt xt+1

〉
t〈

xt

〉
t
−

〈
xt xt+1

〉
t

,

where we used the first equation of (2.4) rewritten for time t to get the second equality. Condition (2.6) is
obtained imposing pt+1 > 0, and the dynamics of price return in (2.7) are immediately derived. From the
second equation of (2.4) it follows that

wt+1,n = wt,n

(
1 + xt,n (rt+1 + et+1)

)
∀n ∈ {1, . . . , N} , (A.1)
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leading to (2.8). To obtain the wealth share dynamics, divide both sides of (A.1) by wt+1 to have

ϕt+1,n =
wt,n∑

m wt+1,m

(
1 + xt,n (rt+1 + et+1)

)
=

=
wt,n∑

m wt,m + (rt+1 + et+1)
∑

m xt,mwt,m

(
1 + xt,n (rt+1 + et+1)

)
=

=
ϕt,n

1 + (rt+1 + et+1)
∑

m xt,mϕt,m

(
1 + xt,n (rt+1 + et+1)

)
,

where (A.1) has been used to get the second line and we divided both numerator and denominator by the
total wealth at time t to get the third.

B Proof of Proposition 3.1
Plugging the equilibrium values of the variables in the first equation of (3.1), one gets x∗ = f(r∗, . . . , r∗).
Now using R(x∗, x∗, e) = e x∗/(1 − x∗) one can invert the second equation to get (3.4). Item (ii) follows
directly from condition (2.6) written at equilibrium. Finally, from (2.8) using the previous relations one has
ρ∗ = x∗(r∗ + ē) = l(r∗)(r∗ + ē) = r∗.

C Proof of Proposition 3.2
The (L + 1)× (L + 1) Jacobian matrix J of system (3.1) reads

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 ∂f
∂r0

∂f
∂r1

∂f
∂r2

. . . ∂f
∂rL−2

∂f
∂rL−1

Rx Rf ∂f
∂r0

Rf ∂f
∂r1

Rf ∂f
∂r2

. . . Rf ∂f
∂rL−2

Rf ∂f
∂rL−1

0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 0
0 0 0 0 . . . 1 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

, (C.1)

where the derivatives of function R defined in (3.2) can be computed as follows

Rx =
∂R(x∗, x∗)

∂x
= − 1

x∗ (1− x∗)
, Rf =

∂R(x∗, x∗)
∂x′

=
1 + r∗

x∗ (1− x∗)
. (C.2)

The stability condition of equilibrium are provided by the following

Lemma C.1. The characteristic polynomial PJ(µ) of system (3.1) in the equilibrium x∗ is

PJ(µ) = (−1)L−1

(
µL+1 − (1 + r∗)µ− 1

x∗(1− x∗)
Pf (µ)

)
(C.3)

where Pf (µ) denotes the stability polynomial of function f introduced in (3.5).

Proof. Consider (C.1) and introduce (L+1)×(L+1) identity matrix I. Expanding the determinant of J−µ I
by the elements of the first column and using Lemma F.1 one has

det
(
J − µ I

)
= (−µ) (−1)L−1

((
Rf ∂f

∂r0
− µ

)
µL−1 + Rf ∂f

∂r1
µL−2 + · · · + Rf ∂f

∂rL−1

)
−

−Rx (−1)L−1

(
∂f

∂r0
µL−1 +

∂f

∂r1
µL−2 + · · · + ∂f

∂rL−2
µ +

∂f

∂rL−1

)
=

= (−1)L−1

(
µL+1 −

(
µRf + Rx

) L−1∑

k=0

∂f

∂rk
µL−1−k

)
,

which, using relations in (C.2) and definition of stability polynomial in (3.5) reduces to (C.3).
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Using the relationship l′(r∗) = x∗(1− x∗)/r∗ it is immediate to see that, apart from irrelevant sign, (C.3)
is identical to (3.6).

D Analysis of stability of single agent equilibrium
For the extensive theory of the stability and bifurcation analysis of the autonomous dynamical systems see
e.g. Guckenheimer and Holmes (1983) or Kuznetsov (1995). We start below with two general results for
two-dimensional non-linear dynamical systems.

Stability of 2-dimensional system and proof of Proposition 3.3
Consider a general 2-dimensional non-linear dynamical system

{
x1,t+1 = f1(x1,t, x2,t)
x2,t+1 = f2(x1,t, x2,t)

, (D.1)

and suppose that (x∗1, x∗2) is a fixed point of the system. Moreover, let J(x∗1, x∗2) denote the Jacobian matrix
of the system (D.1) computed in this fixed point:

J(x∗1, x
∗
2) =

∥∥∥∥
J1,1 J1,2

J2,1 J2,2

∥∥∥∥ . (D.2)

Let t = J1,1 + J2,2 and d = J1,1 J2,2−J1,2 J2,1 be, respectively, the trace and the determinant of matrix (D.2).
Then the following result takes place:

Proposition D.1 (Sufficient conditions for the local stability). The fixed point (x∗1, x∗2) of system (D.1)
is locally asymptotically stable if the following conditions are satisfied

d < 1 , t < 1 + d , t > −1− d . (D.3)

Proof. The characteristic polynomial computed in a fixed point in our notations reads: µ2− t µ+d = 0. Thus,
stability analysis reduces to the analysis of region in (t, d) space, where the modulus of both roots

µ± =
t ±

√
t2 − 4 d

2

are less than 1. There are two cases.
If t2 ≥ 4 d there are two real roots µ− ≤ µ+ (coinciding when t2 = 4 d) and for the local stability we need

that both µ+ < 1 and also µ− > −1. It is straightforward to see that it leads to the following conditions on
the trace and determinant:

t < 2 , 1− t + d > 0 and t > −2 , 1 + t + d > 0 .

Area S2 in Fig. 5 contains those points where these conditions are satisfied and both roots are real.
Instead, if t2 < 4 d there are two complex conjugate roots and the stability condition reads

|λ| =
√

λ+λ− =
√

d < 1

Corresponding region is labeled S1 in Fig. 5. All points corresponding to stable fixed point lie, therefore, in
the triangle shaped by the union of S1 and S2. This triangle is described by conditions (D.3).

According to Proposition D.1, if all 3 inequalities in (E.2) hold, the fixed point is stable. The fixed point
will be unstable if at least one of the roots of characteristic polynomial lies outside the unit circle, i.e. when at
least one of the inequalities in (E.2) has an opposite sign. The situation in which the change of one or more
parameters of a system leads to the cross of the unit circle by a root of characteristic polynomial is called a
bifurcation. Three types of generic bifurcations are usually considered, depending on where exactly the root
of the polynomial crosses the unit circle. Bifurcation is called Neimark-Sacker (fold, flip) if a root crosses the
unit circle being non-real (equal to 1, equal to −1), respectively. The following Proposition summarizes the
information about types of bifurcations.
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Proposition D.2. The fixed point of the system (D.1) looses its stability when one of the inequalities in
conditions (D.3) is changing its sign. Moreover, the system exhibits

• Neimark-Sacker bifurcation, if d = 1,

• fold bifurcation, if t = 1 + d,

• flip bifurcation, if t = −1− d.

Proof. From the proof of the previous proposition it is clear that when the parameters cross the line separating
region S1 from I1 at Fig. 5 (when d = 1), the modulus of the complex eigenvalues become larger than 1. Thus
the system exhibits a Neimark-Sacker bifurcation. When the line between S2 and I2 is crossed (and so t = 1+d)
the largest real eigenvalue becomes greater than 1, so that a fold bifurcation is observed. Finally, if the line
between S2 and I3 is crossed (i.e. t = −1− d) the smallest real eigenvalue becomes less than −1, and the flip
bifurcation is observed.

Proposition 3.3 follows straight-forwardly from the last two Propositions applied to polynomial (3.7).

Stability for the system with EWMA forecast
Using stability polynomial (3.10), the characteristic polynomial for this case can be written as follows:

Q(µ) = µL−1

(
µ2 − 1− λ

1− λL

1− (λ/µ)L

1− λ/µ

Y

X

(
(1 + X)µ− 1

))
, (D.4)

where variables X = r∗ and Y = l′(r∗)/f ′(r∗) correspond to the abscissa and ordinate of the stability region
diagrams in Fig. 2.

Bifurcations Loci

Unfortunately, for the polynomials of degree higher than 2, conditions on the roots analogous to (D.3) are
unavailable. One can, however, characterize the loci of different types of bifurcations, where by locus of, say,
flip bifurcation we mean the set of those pairs (X,Y ) under which one of the roots of (D.4) is equal to −1.
Notice that, in general, not any point on such locus corresponds to flip bifurcation, since bifurcation happens
only if all other roots are inside the unit circle. With this remark in mind, we formulate
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Lemma D.1. Consider polynomial (D.4) for arbitrary λ and L. The locus of fold bifurcations is given by
Y = 1, while the locus of flip bifurcations is provided as follows:

1 + Y
2 + X

X

1− λ

1 + λ

1 + λL

1− λL
= 0 for L odd and 1 + Y

2 + X

X

1− λ

1 + λ
= 0 for L even .

Proof. The computations are pretty straight-forward: one has to let µ = 1 and µ = −1 in (D.4).

We illustrate the last result in Fig. 6, where we show the locus of fold bifurcations, and loci of flip
bifurcations when λ = 0.6 for L = 1, 3, 5 and for even L (coinciding with the case L = ∞). Notice that the
central interval in the locus of fold bifurcations does not correspond, in reality, to any bifurcation.

The last possible boundary of the stability region is a locus of Neimark-Sacker bifurcation. Plugging
µ = eiψ, where ψ is arbitrary angle and i is the imaginary unit, into equation Q(µ) = 0 one can derive
corresponding locus. For high L the corresponding curve may have high dimension, so we confine ourselves on
the example with L = 2.

Lemma D.2. Consider polynomial (D.4) for L = 2 and arbitrary λ. The locus of Neimark-Sacker bifurcations
is given by the following curve of the second order

Y 2 λ
(
X + 1 + λ

)
+ Y X (1 + λ)

(
1− λ− λX

)
−X2 (1 + λ)2 = 0 , (D.5)

subject to constraint 4(1 + λ2)X2 − (1 + λ + X)2Y 2 > 0.

Proof. One has to solve the following equation

(1 + λ)Xe3iψ − (1 + X)Y e2iψ +
(
1− λ(1 + X)

)
Y eiψ + λY = 0 . (D.6)

Using the Euler formula and equalizing the real and imaginary parts of the left- and right-hand sides, one gets
the system of two equations. From the equation for the imaginary parts it follows that

sin ψ
(
(1 + λ)X(3− 4 sin2 ψ)− 2(1 + X)Y cos ψ + Y − λ(1 + X)Y

)
= 0 .

Since, we are interested in the pure complex roots of the characteristic polynomial, let us assume that sinψ (= 0.
Thus, the expression in the big parenthesis is equal to 0. Then, we substitute the resulting expression for
3− 4 sin2 ψ in the equation of the real parts of (D.6) and, using relation cos 3ψ = cos ψ(1− 4 sin2 ψ), obtain

cos ψ =
Y (1 + X) + Y λ

2 (1 + λ)X
.

Plugging this expression into both the equation for the real and for imaginary parts of (D.6), we get the
following system

(1 + λ + X) Y
(
− λ(1 + λ)Y 2 + (1 + λ)(1 + λ + λY )X2 − (1− λ2 + λY )XY

)
= 0

√
4(1 + λ)2X2 − (1 + λ + X)2Y 2

(
− λ(1 + λ)Y 2 + (1 + λ)(1 + λ + λY )X2 − (1− λ2 + λY )XY

)
= 0 .

In any solution of this system, the common expression in the parenthesis must be equal to zero, which gives
(D.5). Additional constraint guarantees that the squared root in the second equation is defined.

We depict curve (D.5) in the lower left panel of Fig. 2 and complete the construction of the stability regions
applying the property of the continuity of the roots of polynomial on its coefficients.

Limiting case, L →∞
Finally, we sketch here heuristic proof of Proposition 3.4, concerning the stability region of the system when
L → ∞. Consider the region outside of the unit circle of complex plane (including the circle itself) and fix
µ = µ0. Since |µ0| ≥ 1, the first term in (D.4) cannot be equal to zero. Therefore, in order µ0 would be a root
of the characteristic polynomial Q(µ), it should be the case that the expression in the parenthesis of (D.4)
cancels out. But when L → ∞, since λ < 1, it is (λ/µ0)L → 0. Therefore, the zeroes of the Q(µ) lie in the
neighborhoods of solutions of the following quadratic equation

µ2 − (1− λ)
1

1− λ/µ

Y

X

(
(1 + X)µ− 1

)
= 0 . (D.7)
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Applying conditions derived in Proposition D.1 to the last equation we find out that its roots are inside of the
unit circle if and only if conditions (3.11) are satisfied. Now, if the values of the parameters are such that the
roots µ1,2 of this equation are inside of the unit circle, it means that for large enough L the polynomial (D.4)
cannot have roots outside of the unit circle or on it.

Stability for the system with Constant Weighted forecast
We proceed through the same steps as in the previous Section. The characteristic polynomial for this case can
be written as follows:

Q(µ) = µL−1

(
µ2 − 1

L

1− (1/µ)L

1− 1/µ

Y

X

(
(1 + X)µ− 1

))
, (D.8)

where, like before, variables X = r∗ and Y = l′(r∗)/f ′(r∗) correspond to the abscissa and ordinate of the
stability region diagrams in Fig. 2.

Bifurcations Loci

We characterize the loci of fold and flip bifurcations. Recall, that by locus of some bifurcation we mean those
pairs (X, Y ) under which a root of (D.8) crosses the unit circle in the corresponding points (in 1 for fold and
in −1 for flip).

Lemma D.3. Consider polynomial (D.8) for arbitrary L. The locus of fold bifurcations is given by Y = 1,
while the locus of flip bifurcations does not exist for even L and is provided by following expression for odd L:

Y = − LX

2 + X
.

Proof. The direct substitution of µ = 1 and µ = −1 to (D.8) leads to the conclusion.

The flip bifurcations loci are shown as thin curves in Fig. 6 for L = 1 (boundary of the dark region), L = 3
(unlabeled thin curve) and L = 5 (labeled thin curve). For higher L the curves rotate clock-wise and approach
vertical axes with L →∞.

For the locus of Neimark-Sacker bifurcations we consider the case L = 2 and prove the following

Lemma D.4. Consider polynomial (D.8) for L = 2. The locus of Neimark-Sacker bifurcations is given by the
following curve of the second order

Y 2 (2 + X)− 2Y X (2 + X) + 4 X2 = 0 , (D.9)

subject to constraint 16 X2 − (2 + X)2Y 2 > 0.

Proof. It is completely analogous to proof of Lemma D.4.

The stability region implied by the last two lemmas for the case L = 2 is depicted in the lower right panel
of Fig. 2.

Limiting case, L →∞
The behavior of the locus of flip bifurcations with increasing L may suggest that any point of the system (apart
from those where f ′/l′ > 1) can be stabilized. Indeed, let us consider the region outside of the unit circle
(including the circle itself), fix µ = µ0 and let L →∞. Since |µ0| ≥ 1, the first term in (D.8) cannot be equal
to zero. Therefore, in order µ0 would be a root of the characteristic polynomial Q(µ), it should be the case
that the expression in the parenthesis of (D.4) cancels out. However, when L → ∞ it leads to µ0 = 0 which
contradicts to our choice of µ0. Therefore with high L all zeroes of Q(µ) are inside the unit circle independent
of X and Y , and any point is stable.
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E Proof of Proposition 4.1
From block X one immediately has (4.5). From the first row of block R it is

r∗ = ē

∑N−1
n=1 ϕ∗

nx∗n
2 +

(
1−

∑N−1
n=1 ϕ∗

n

)
x∗N

2

∑N−1
n=1 ϕ∗

n x∗n (1− x∗n) +
(
1−

∑N−1
n=1 ϕ∗

n

)
x∗N (1− x∗N )

. (E.1)

Let us, first, assume that r∗ + ē (= 0. Then, from block W using (4.4) one obtains

ϕ∗
n = 0 or

∑N−1

m=1
ϕ∗

m x∗m +
(

1−
∑N−1

m=1
ϕ∗

m

)
x∗N = x∗n ∀n ∈ {1, . . . , N − 1} . (E.2)

Together with (E.1) this equation admits two types of solutions, depending on whether one or many equilibrium
wealth shares are different from zero.

If only one of the wealth shares is zero, we assume that ϕ∗
1 = 1. In this case (E.2) is satisfied for all agents.

From (E.1) one has x∗1 = r∗/(ē + r∗) which together with (4.5) leads to (4.6).
If, instead, many agents survive we assume (4.7). In this case, the second equality of (E.2) must be satisfied

for any n ≤ k. Since its left-hand side does not depend on n, a x∗1$k must exist such that x∗1 = · · · = x∗k = x∗1$k.
Substituting ϕ∗

n = 0 for n > k and x∗n = x∗1$k for n ≤ k in (E.1) one gets x∗1$k = r∗/(ē + r∗). The equilibrium
return r∗ is implicitly defined combining this last relation with (4.5) for n ≤ k.

Consider now the case when r∗ + ē = 0. Then all equations in block W are satisfied, while (E.2) straight-
forwardly leads to (4.9).

The equilibrium wealth growth rates of the survivors are immediately obtained from (2.8) and (4.5).

F Proofs of Propositions of Section 4.3
We start with the simple result which will be useful in what follows

Lemma F.1.
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 x2 x3 . . . xn−1 xn

1 −µ 0 . . . 0 0
0 1 −µ . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −µ 0
0 0 0 . . . 1 −µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)n+1
n∑

k=1

xk µn−k , (F.1)

Proof. Consider this determinant as a sum of elements from the first row multiplied on the corresponding
minor. The minor of element xk, whose corresponding sign is (−1)k+1, is a block-diagonal matrix consisting of
two blocks. The upper-left block is an upper-diagonal matrix with 1’s on the diagonal. The lower-right block
is a lower-diagonal matrix with −µ’s on the diagonal. The determinant of this minor is equal to (−µ)n−k and
the relation above immediately follows.

Before proving Propositions 4.2, 4.3 and 4.4 we need some preliminary results. The Jacobian matrix of
the deterministic skeleton of system (4.2) is a

(
2N + L− 1

)
×

(
2N + L− 1

)
matrix. Using the block structure

introduced in Section 4.1 it is separated in 9 blocks

J =

∥∥∥∥∥∥∥∥

∂X
∂X

∂X
∂W

∂X
∂R

∂W
∂X

∂W
∂W

∂W
∂R

∂R
∂X

∂R
∂W

∂R
∂R

∥∥∥∥∥∥∥∥
, (F.2)

The block ∂X/∂X is a N ×N matrix containing the partial derivatives of the agents’ present investment
choices with respect to the agents’ past investment choices. According to (2.10) the investment choice of any
agent does not explicitly depend on the investment choices in the previous period, therefore

[
∂X

∂X

]

n,m

=
∂fn

∂xm
= 0 , 1 ≤ n,m ≤ N ,
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and this block is a zero matrix.
The block ∂X/∂W is a N × (N − 1) matrix containing the partial derivatives of the agents’ investment

choices with respect to the agents’ wealth shares. According to (2.10) this is a zero matrix and
[

∂X

∂W

]

n,m

=
∂fn

∂ϕm
= 0 , 1 ≤ n ≤ N , 1 ≤ m ≤ N − 1 .

The block ∂X/∂R is a N × L matrix containing the partial derivatives of the agents’ investment choices
with respect to the past returns. We use the following notation

[
∂X

∂R

]

n,l

=
∂fn

∂rl−1
= frl−1

n , 1 ≤ n ≤ N , 1 ≤ l ≤ L .

The definitions of the next blocks will make use of the functions R and Φn which have been defined in
(4.3) and (4.4), respectively. Function R depends on the agents’ contemporaneous investment choices given
by the investment functions fm, the agents’ previous investment choices xt,m and the agents’ wealth shares
ϕt,m. We denote the corresponding derivatives as Rfm , Rxm and Rϕm . Function Φn depends on the agents’
previous investment choices xt,m, the agents’ wealth shares ϕt,m and the value of return given by function R.
The corresponding derivatives are denoted as Φxm

n , Φϕm
n and ΦR

n .
The block ∂W/∂X is (N − 1) × N matrix containing the partial derivatives of the agents’ wealth shares

with respect to the agents’ investment choices. It is
[
∂W

∂X

]

n,m

=
∂ϕn

∂xm
= Φxm

n + ΦR
n · Rxm , 1 ≤ n ≤ N − 1 , 1 ≤ m ≤ N . (F.3)

The block ∂W/∂W is a (N − 1)× (N − 1) matrix containing the partial derivatives of the agents’ wealth
shares with respect to the agents’ wealth shares. It is

[
∂W

∂W

]

n,m

=
∂ϕn

∂ϕm
= Φϕm

n + ΦR
n · Rϕm , 1 ≤ n, m ≤ N − 1 . (F.4)

The block ∂W/∂R is a (N − 1) × L matrix containing the partial derivatives of the agents’ wealth share
with respect to lagged returns. It is

[
∂W

∂R

]

n,l

=
∂ϕn

∂rl−1
= ΦR

n ·
N∑

m=1

Rfmfrl−1
m , 1 ≤ n ≤ N − 1 , 1 ≤ l ≤ L . (F.5)

The block ∂R/∂X is the L×N matrix containing the partial derivatives of the lagged returns with respect
to the agents’ investment choices. Its structure is simple, since only the first line can contain non-zero elements.
It reads

[
∂R

∂X

]

l,n

=

{
Rxn l = 1
0 otherwise

, 1 ≤ l ≤ L , 1 ≤ n ≤ N .

The block ∂R/∂W is the L× (N − 1) matrix containing the partial derivatives of the lagged returns with
respect to the agents’ wealth shares. It also has L− 1 zero rows and reads

[
∂R

∂W

]

l,n

=

{
Rϕn l = 1
0 otherwise

, 1 ≤ l ≤ L , 1 ≤ n ≤ N − 1 .

The block ∂R/∂R is the L×L matrix containing the partial derivatives of the lagged returns with respect
to themselves.

[
∂R

∂R

]
=

∥∥∥∥∥∥∥∥∥∥∥

Rr0 Rr1 . . . RrL−2 RrL−1

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

∥∥∥∥∥∥∥∥∥∥∥

,

where we introduce a notation for Rrl =
∑N

m=1 Rfmfrl
m .

With the previous definitions and differentiating the correspondent functions, one obtains
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Lemma F.2. Let x∗ be an equilibrium of system (4.2). The corresponding Jacobian matrix, J(x∗), has the
following structure, where the actual values of non-zero elements vary dependently on whether there exist an
equity premium in x∗.

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 fr0
1 . . . frL−2

1 frL−1
1

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 fr0
N . . . frL−2

N frL−1
N

' . . . ' 0 . . . 0 ' . . . ' ' . . . ' ' . . . ' !
[ Φx ]

...
. . .

... [ Φϕ
1,k ] [ Φϕ

k+1,N ] [ Φr ]
...

' . . . ' 0 . . . 0 ' . . . ' ' . . . ' ' . . . ' !
0 . . . 0 0 . . . 0 0 . . . 0 " . . . 0 0 . . . 0 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . " 0 . . . 0 0

Rx1 . . . Rxk 0 . . . 0 Rϕ1 . . . Rϕk Rϕk+1 . . . RϕN−1 Rr0 . . . RrL−2 RrL−1

0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 0 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 1 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Namely, the “varying” elements belong to 4 blocks filled by '’s and denoted as [Φx], [Φϕ
1,k], [Φϕ

k+1,N ] and [Φr]. In
particular, all the elements of the latter block are zeros in the equilibrium with equity premium. Furthermore, in
such equilibrium the elements labeled as !’s are also 0’s. Finally, the elements labeled as "’s on the diagonal
of the central block are all equal to 1 in the no-equity-premium equilibria.

Proof. For the computation of the elements in the second big row-block, it will be useful to establish the values
of relevant derivatives in equilibrium. In general, for corresponding m and n, it is

Φxm
n = ϕ∗

n
(δn,m − ϕ∗

m)(r∗ + ē)
1 + (r∗ + ē)

〈
x∗

〉 , Rxm = ϕ∗
m

x∗m(r∗ + ē)− 1− r∗〈
x∗(1− x∗)

〉 ,

ΦR
n = ϕ∗

n

x∗n −
〈
x∗

〉

1 + (r∗ + ē)
〈
x∗

〉 , Rfm = ϕ∗
m

1 + x∗m(r∗ + ē)〈
x∗(1− x∗)

〉 ,

Φϕm
n =

δn,m

(
1 + x∗n(r∗ + ē)

)
− ϕ∗

n(r∗ + ē)(x∗m − x∗N )
1 + (r∗ + ē)

〈
x∗

〉 ,

Rϕm =
(ē + r∗)(x∗

2

m − x∗
2

N )− r∗(x∗m − x∗N )〈
x∗(1− x∗)

〉 .

Consider equilibrium with r∗ (= −ē, i.e. one described in Proposition 4.1(i) and (ii). All survivors invest the
same in such an equilibrium. It immediately implies that ΦR

n = 0 for any agent n, so that

[
∂W

∂X

]

n,m

=

{
/m, n ≤ k/ = ϕ∗

n

(
δn,m − ϕ∗

m

)
(ē + r∗)/(1 + r∗)

/otherwise/ = 0
[
∂W

∂W

]

n,m

=

{
/n > k , n (= m/ = 0
/otherwise/ =

(
δn,m

(
1 + x∗n(r∗ + ē)

)
− ϕ∗

n(r∗ + ē)(x∗m − x∗N )
)/

(1 + r∗)
[
∂W

∂R

]

n,m

= 0 , ∀n,m .

(F.6)

On the other hand, in equilibrium with r∗ = −ē, i.e. one described in Proposition 4.1(iii), it is Φxm
n = 0,
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Φϕm
n = δn,m and ΦR

n = ϕ∗
nx∗n for all possible n and m. Thus, one has

[
∂W

∂X

]

n,m

=

{
/for m,n ≤ k/ = (1− ē)ϕ∗

n ϕ∗
m x∗n

/〈
x2

〉

/otherwise/ = 0
;

[
∂W

∂W

]

n,m

=

{
/for n ≤ k/ = δn,m − ēϕ∗

n x∗n(x∗m − x∗N )/
〈
x2

〉

/otherwise/ = δn,m
;

[
∂W

∂R

]

n,m

=

{
/for n ≤ k/ = −ϕ∗

nx∗n
∑N

m=1 ϕ∗
mf

rl−1
m

/〈
x2

〉

/otherwise/ = 0
.

(F.7)

Lemma F.3. Consider equilibrium x∗ with r∗ (= −ē. The characteristic polynomial PJ of the matrix J(x∗)
reads

PJ(µ) = (−1)N+L µN−1 (1− µ)k−1
N∏

j=k+1

(1 + x∗j (r∗ + ē)
1 + r∗

− µ

)



µL+1 − (1 + r∗)µ− 1
x∗1$k(1− x∗1$k)

k∑

j=1

ϕ∗
j Pfj (µ)



 (F.8)

where Pfn is the stability polynomial associated to the n-th investment function as defined in (3.5).

Proof. The following proof is constructive: we will identify in succession the factors appearing in (F.8). At
each step, a set of eigenvalues is found and the problem is reduced to the analysis of the residual matrix
obtained removing the rows and columns associated with the relative eigenspace.

Consider the Jacobian matrix in Lemma F.2. The last N − k columns of the left blocks contain only zero
entries so that the matrix possesses eigenvalue 0 with (at least) multiplicity N − k. Moreover, in each of the
last N − 1− k rows in the central blocks the only non-zero entries belong to the main diagonal. Consequently,
Φ

ϕj

j for k + 1 ≤ j ≤ N − 1 are eigenvalues of the matrix, with multiplicity (at least) one. A first contribution
to the characteristic polynomial is then determined as

(−µ)N−k
N−1∏

j=k+1

(Φϕj

j − µ) = (−µ)N−k
N−1∏

j=k+1

(1 + x∗j (r∗ + ē)
1 + r∗

− µ

)
(F.9)

where we used (F.6) to compute Φ
ϕj

j at equilibrium.
In order to find the remaining part of the characteristic polynomial we eliminate the rows and columns

associated to the previous eigenvalues to obtain

L =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 . . . 0 0 . . . 0 fr0
1 . . . frL−2

1 frL−1
1

...
. . .

...
...

. . .
...

...
. . .

...
...

0 . . . 0 0 . . . 0 fr0
k . . . frL−2

k frL−1
k

Φx1
1 . . . Φxk

1 Φϕ1
1 . . . Φϕk

1 0 . . . 0 0
...

. . .
...

...
. . .

...
...

. . .
...

...
Φx1

k . . . Φxk
k Φϕ1

k . . . Φϕk

k 0 . . . 0 0

Rx1 . . . Rxk Rϕ1 . . . Rϕk Rr0 . . . RrL−2 RrL−1

0 . . . 0 0 . . . 0 1 . . . 0 0
...

. . .
...

...
. . .

...
...

. . .
...

...
0 . . . 0 0 . . . 0 0 . . . 1 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(F.10)

This quadratic matrix has 2k + L rows when k < N . If k = N , representation (F.10) is, strictly speaking, not
correct. Indeed, there exist only N − 1 wealth shares ϕ’s in the original system, therefore the central block of
the matrix has maximal dimension (N−1)×(N−1). Therefore, in this case, the correct matrix has dimension
(2N + L − 1) × (2N + L − 1) and can be obtained from (F.10) through the elimination of the last row and
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the last column in the central blocks. We will compute now the characteristic polynomial, i.e. determinant
det(L− µI), where I denotes an identity matrix of the corresponding dimension. We consider separately the
following two cases: when k < N and when k = N .

If k < N , then from (F.6) it follows that for n,m ≤ k it is

Φϕm
n =

{
1− ϕ∗

n v if n = m

−ϕ∗
n v otherwise

, where v =
(
x∗1$k − x∗N

) ē + r∗

1 + r∗
. (F.11)

Moreover, since all survivors invest share x1$k, it follows that for m ≤ k

Rϕm = v b , where b = x∗N
1 + r∗

x∗1$k (1− x∗1$k)
. (F.12)

The central column block in the determinant det(L− µI) can be represented as
∥∥ v b + b1 | . . . | v b + bk

∥∥,
where the following column vectors have been introduced

b =
∥∥∥ 0 . . . 0

∣∣ −ϕ∗
1 . . . −ϕ∗

k

∣∣ b 0 . . . 0
∥∥∥ ,

b1 =
∥∥∥ 0 . . . 0

∣∣ 1− µ . . . 0
∣∣ 0 0 . . . 0

∥∥∥ ,

...
bk =

∥∥∥ 0 . . . 0
∣∣ 0 . . . 1− µ

∣∣ 0 0 . . . 0
∥∥∥ .

We consider each of the columns in the central block as a sum of two terms and, applying the multilinear
property of the discriminant, end up with a sum of 2k determinants. Many of them are zeros, since they contain
two or more columns proportional to vector b. There are only k + 1 non-zero elements in the expansion. One
of them has the following structure of the central column block:

∥∥ b1 | . . . . . . . . . | bk

∥∥, while k others
possess similar structure in the central column block, with column v b on the ν’th place instead of bν , i.e. for
all ν ∈ {1, . . . , k} the blocks look like

∥∥ b1 | . . . | v b | . . . | bk

∥∥.
The central matrix in the one obtained from the former block is diagonal and, therefore, its determinant

is equal to (1− µ)k det M(k), where

M(k) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

−µ . . . 0 fr0
1 . . . frL−2

1 frL−1
1

...
. . .

...
...

. . .
...

...
0 . . . −µ fr0

k . . . frL−2
k frL−1

k

Rx1 . . . Rxk Rr0 − µ . . . RrL−2 RrL−1

0 . . . 0 1 . . . 0 0
...

. . .
...

...
. . .

...
...

0 . . . 0 0 . . . 1 −µ

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(F.13)

Other k determinants can be simplified in analogous way, so that

det(L− µI) = (1− µ)k det M(k) + (1− µ)k−1
k∑

ν=1

det Mν(k) , (F.14)

where for all ν ∈ {1, . . . , k} we define the following matrix

Mν(k) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

−µ . . . 0 0 fr0
1 . . . frL−2

1 frL−1
1

...
. . .

...
...

...
. . .

...
...

0 . . . −µ 0 fr0
k . . . frL−2

k frL−1
k

Φx1
ν . . . Φxk

ν −v ϕ∗
ν 0 . . . 0 0

Rx1 . . . Rxk v b Rr0 − µ . . . RrL−2 RrL−1

0 . . . 0 0 1 . . . 0 0
...

. . .
...

...
...

. . .
...

...
0 . . . 0 0 0 . . . 1 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

. (F.15)
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We expand the last matrix on the minors of the elements of the central column. For this purpose we for each
ν ∈ {1, . . . , k} introduce yet another matrix

Nν(k) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

−µ . . . 0 fr0
1 fr1

1 . . . frL−2
1 frL−1

1
...

. . .
...

...
...

. . .
...

...
0 . . . −µ fr0

k fr1
k . . . frL−2

k frL−1
k

Φx1
ν . . . Φxk

ν 0 0 . . . 0 0
0 . . . 0 1 −µ . . . 0 0
0 . . . 0 0 1 . . . 0 0
...

. . .
...

...
...

. . .
...

...
0 . . . 0 0 0 . . . 1 −µ

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

.

Then it is:

detMν(k) = v
(
− ϕ∗

ν detM(k)− b detNν(k)
)

. (F.16)

Let us compute the determinant of matrix M(k) in a recursive way. Consider the expansion by the minors
of the elements from the first column. The minor of the first element −µ is a matrix with a structure similar
to M(k), whose determinant we denote as M(k − 1). The minor associated with Rx1 has a left upper block
with k − 1 entries equal to −µ below the main diagonal. This block generates a contribution µk−1 to the
determinant and once its columns and rows are eliminated, one remains with a matrix of the type in (F.1).
Applying Lemma F.1 one then has

detM(k) = (−µ) detM(k − 1) + (−1)kRx1µk−1 (−1)L−1 Pf1(µ) ,

where Pf1 is the stability polynomial associated with the first investment function. Applying recursively the
relation above, the dimension of the determinant is progressively reduced. At the end the lower right block of
the original matrix remains, which is again a matrix similar to (F.1). Applying once more Lemma F.1 one has
for M(k) the following

detM(k) = (−1)L−1+k µk−1
k∑

j=1

Rxj Pfj (µ) + (−1)L−1+k µk




L−1∑

j=0

Rrj µL−1−j − µL



 . (F.17)

The determinant of matrix Nν(k) can be computed using the similar strategy. The only difference is that in
the last recursive step one of the matrix has zero determinant. Therefore, we have:

detNν(k) = (−µ) detNν(k − 1) + (−1)kΦx1
ν µk−1 (−1)L−1 Pf1(µ) = (−1)L−1+k µk−1

k∑

j=1

Φxj
ν Pfj (µ) ,

which, taking into account (F.16), implies

k∑

ν=1

detMν(k) = v

(
−det M(k)− b

k∑

ν=1

det Nν(k)

)
=

= −v detM(k) + v b (−1)L+k µk−1
k∑

ν=1

k∑

j=1

Φxj
ν Pfj (µ) = −v detM(k) .

(The last equality above follows directly from expression for Φ
xj
ν .) Let us now substitute the last relation into

(F.14). Then using the expression for detM(k) from (F.17) where the corresponding values of the derivatives
of function R are computed in accordance with results of Lemma F.2, the last contribution into characteristic
polynomial follows:

det(L− µI) = (1− µ)k−1 (1− µ− v) det M(k) =

= (−1)L−1+k µk−1 (1− µ)k−1

(
1 + x∗N (r∗ + ē)

1 + r∗
− µ

) 

 (1 + r∗)µ− 1
x∗1$k(1− x∗1$k)

k∑

j=1

ϕ∗
j Pfj (µ)− µL+1



 .
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If k = N , i.e. all agents survive, then all investment shares are the same. In this case, from (F.6), all
elements in the central column block of matrix (F.10) are zeros apart from the 1’s on the diagonal in the
central matrix. It contributes to the characteristic polynomial by the factor (1− µ)N−1. The remaining part
is the determinant of matrix M in this case. This is consistent with the expression above.

The product of the det(L− µI) and (F.9) gives (F.8), what completes the proof.

Lemma F.4. Consider no-equity-premium equilibrium x∗ with r∗ = −ē. The characteristic polynomial PJ of
the matrix J(x∗) reads

PJ(µ) = (−1)L+N (1− µ)N−2 µN−1
(
µ + ē− 1

)


µL+1 +
µ− 1〈
x2

〉
k∑

j=1

ϕ∗
j Pfj (µ)



 (F.18)

Proof. Since the proof is analogous to the proof of Lemma F.3. some details are omitted. In particular, we
confine analysis on the case k < N . From the Jacobian matrix in Lemma F.2 we can immediately identify that
in each of the N − 1 − k last rows belonging to the central row clock of the matrix the only non-zero entries
belong to the main diagonal of [∂W/∂W] and equal to 1. In addition, the last N − k columns of the leftmost
blocks contain only zero entries. Together, it gives the first entry in the characteristic polynomial:

(−µ)N−k (1− µ)N−1−k , (F.19)

while the rows and columns associated to the previous eigenvalues can be eliminated. We obtain

L =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 . . . 0 0 . . . 0 fr0
1 . . . frL−2

1 frL−1
1

...
. . .

...
...

. . .
...

...
. . .

...
...

0 . . . 0 0 . . . 0 fr0
N . . . frL−2

N frL−1
N

ΦR
1 Rx1 . . . ΦR

1 Rxk 1 + ΦR
1 Rϕ1 . . . ΦR

1 Rϕk Φr0
1 . . . ΦrL−2

1 ΦrL−1
1

...
. . .

...
...

. . .
...

...
. . .

...
...

ΦR
k Rx1 . . . ΦR

k Rxk ΦR
k Rϕ1 . . . 1 + ΦR

k Rϕk Φr0
k . . . ΦrL−2

k ΦrL−1
k

Rx1 . . . Rxk Rϕ1 . . . Rϕk Rr0 . . . RrL−2 RrL−1

0 . . . 0 0 . . . 0 1 . . . 0 0
...

. . .
...

...
. . .

...
...

. . .
...

...
0 . . . 0 0 . . . 0 0 . . . 1 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(F.20)

To compute det(L−µI), where I is an identity matrix of the corresponding dimension, we apply the multilinear
property of the determinant to the central block of columns in matrix L. In order to implement this idea, we
introduce the following column vectors of the length 2k + L:

d =
∥∥∥ 0 . . . 0

∣∣ ΦR
1 . . . ΦR

k

∣∣ 1 0 . . . 0
∥∥∥ ,

d1 =
∥∥∥ 0 . . . 0

∣∣ 1− µ . . . 0
∣∣ 0 0 . . . 0

∥∥∥ ,

...
dk =

∥∥∥ 0 . . . 0
∣∣ 0 . . . 1− µ

∣∣ 0 0 . . . 0
∥∥∥ .

The central column block in the determinant det(L−µI) can be represented as
∥∥ Rϕ1 d+d1 | . . . | Rϕk d+dk

∥∥.
We consider each of the columns in the central block as a sum of two terms and end up with a sum of
2k determinants. Notice, however, that many of them are zeros, since they contain two or more columns
proportional to vector d. There are only k + 1 non-zero elements in the expansion. The determinant of the
matrix with the structure

∥∥ d1 | . . . . . . . . . | dk

∥∥ in the central part is equal to (1 − µ)k det N(k),
where matrix N(k) is identical to the matrix M(k) defined in (F.13). (We use here another notation in order
to stress that the partial derivatives Rxj and Rfj used in these two matrices have different values in different
equilibria.) Using (F.17) together with (F.7) it is immediate to see that

detN(k) = (−1)L+k µk−1



µL+1 +
µ + ē− 1〈

x2
〉

k∑

j=1

ϕ∗
j Pfj (µ)



 . (F.21)
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Other non-zero elements possess similar structure in the central column block, with column Rϕν d on the
ν’th place instead of dν for all ν ∈ {1, . . . , k}. Their determinants can be represented as (1−µ)k−1 det Nν(k),
where for all ν ∈ {1, . . . , k} we define matrix

Nν(k) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

−µ . . . 0 0 fr0
1 . . . frL−2

1 frL−1
1

...
. . .

...
...

...
. . .

...
...

0 . . . −µ 0 fr0
k . . . frL−2

k frL−1
k

ΦR
ν Rx1 . . . ΦR

ν Rxk Rϕν ΦR
v Φr0

ν . . . ΦrL−2
ν ΦrL−1

ν

Rx1 . . . Rxk Rϕν Rr0 − µ . . . RrL−2 RrL−1

0 . . . 0 0 1 . . . 0 0
...

. . .
...

...
...

. . .
...

...
0 . . . 0 0 0 . . . 1 −µ

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

.

This matrix can be simplified, since its central row is (almost) proportional to the next row (the first row in
the bottom block). Applying multilinear property of the determinant, and computing the determinant of the
resulting matrix we get

detNν(k) = (−µ)L+kRϕν ΦR
v .

Using the corresponding expressions from Lemma F.2, one can check that
∑k

ν=1 ΦR
ν Rϕν = −ē. Therefore,

det(L− µI) = (1− µ)k det N(k) + (1− µ)k−1
k∑

ν=1

detNν(k) =

= (1− µ)k det N(k)− (1− µ)k−1(−µ)L+kē =

= (1− µ)k−1(−1)L+k µk−1



(1− µ)µL+1 + (1− µ)
µ + ē− 1〈

x2
〉

k∑

j=1

ϕ∗
j Pfj (µ)− µL+1ē



 =

= (1− µ)k−1(−1)L+k µk−1 (µ + ē− 1)



µL+1 +
µ− 1〈
x2

〉
k∑

j=1

ϕ∗
j Pfj (µ)





Combining now the last expression with (F.19) we get polynomial (F.18).

Using the characteristic polynomial of the Jacobian matrix in the corresponding equilibrium, it is straight-
forward to derive the equilibrium stability conditions of Section 4.3.

The case of one survivor: Proof of Proposition 4.2

If k = 1 the characteristic polynomial (F.8) reduces to

PJ(µ) = (−1)N+L µN−1
N∏

j=2

(1 + x∗j (r∗ + ē)
1 + r∗

− µ

) (
µL+1 − (1 + r∗)µ− 1

x∗1(1− x∗1)
Pf1(µ)

)
.

From the expression of the derivative of the EML at equilibrium l′(r∗) one can see that last factor corresponds
to the polynomial Q1 in (4.10). The conditions in (4.11) are derived from the requirement

∣∣∣∣
1 + x∗j (r∗ + ē)

1 + r∗

∣∣∣∣ < 1 j ≥ 2 ,

and the Proposition is proved.
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The case of many survivors: Proof of Proposition 4.3

In the case of k > 1 survivors the characteristic polynomial in (F.8) possesses a unit root with multiplicity
k − 1. Consequently, the fixed point is non-hyperbolic.

To find the eigenspace associated with the eigenvalue 1 we subtract from the initial Jacobian matrix (F.2)
computed at equilibrium the identity matrix of the corresponding dimension and analyze the kernel of the
resulting J − I matrix. This can be done through the analysis of the kernel of the matrix obtained by the
substitution of the identity matrix from matrix L given in (F.10). Let us consider the k < N and the k = N
cases separately.

When k < N , as we showed in the proof of Lemma F.3, in the matrix obtained as a result of subtraction
of an identity matrix from (F.10), the central k − 1 columns are identical, see (F.11) and (F.12). Therefore,
the kernel of the matrix J − I can be generated by a basis containing the following k − 1 vectors

un =
(

0, . . . , 0︸ ︷︷ ︸
N

; 0, . . . , 0︸ ︷︷ ︸
n−1

, 1, 0, . . . , 0︸ ︷︷ ︸
k−n−1

,−1; 0, . . . , 0︸ ︷︷ ︸
N−1−k

; 0, . . . , 0︸ ︷︷ ︸
L

)
, 1 ≤ n ≤ k − 1 . (F.22)

Notice that the direction of vector un corresponds to a change in the relative wealths of the n-th and k-th
survivor.

If, instead, k = N , then the last k− 1 columns in the resulting (from (F.10)) matrix are zero vectors, and
then the kernel of the matrix J − I can be generated with the N − 1 vectors of the canonical basis

vn =
(

0, . . . , 0︸ ︷︷ ︸
N

; 0, . . . , 0︸ ︷︷ ︸
n−1

, 1, 0, . . . , 0︸ ︷︷ ︸
N−n−1

; 0, . . . , 0︸ ︷︷ ︸
L

)
, 1 ≤ n ≤ N − 1 . (F.23)

whose direction corresponds to a change in the relative wealths of the n-th and N -th survivors.
If the system is perturbed away from equilibrium x∗ along the directions defined in (F.22) or (F.23), a

new fixed point is reached. Then, the system is stable, but not asymptotically stable, with respect to these
perturbations.

Moreover, since the eigenspaces identified above do not depend on the system parameters, it is immediate
to realize that they do constitute not only the tangent spaces to the corresponding non-hyperbolic manifolds,
but the manifolds themselves.

The polynomial (4.12) is the last factor in (F.8), while conditions (4.13) are obtained by imposing
∣∣∣∣
1 + x∗j (r∗ + ē)

1 + r∗

∣∣∣∣ < 1 j > k + 1 ,

which completes the proof.

The case of “no-equity-premium” equilibria. Proof of Proposition 4.4

Independently of the number of survivors, the characteristic polynomial in (F.18) possesses a unit root with
multiplicity N − 2. Consequently, the fixed point x∗ is never hyperbolic, when N ≥ 3. It is easy to see that
in this case all equilibria belong to the manifold of dimension N − 2 and that this is exactly a non-hyperbolic
manifold of x∗. For the stability of equilibrium x∗ with respect to the perturbations in the directions orthogonal
to this manifold, it is sufficient to have all other eigenvalues inside the unit circle. If this condition is satisfied,
then equilibrium x∗ of the system is stable, but not asymptotically stable. Since ē > 0, this sufficient condition
can be expressed through the roots of the last term in (F.18). This term is exactly polynomial (4.14).
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