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ABSTRACT: This paper reviews a recent method to study electroencephalogram (EEG) data 
involving a combination of the surface Laplacian and tangential electric field on the scalp. The 
method was applied to problems in EEG classification, where it was effective in improving 
results using data from a variety of experiments. The most relevant result was a 13.3% 
improvement on the average classification rate of a visual perception task involving nine 
different two-dimensional images. It also improved performance in language-comprehension 
and mental-imagery tasks.  
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It is a pleasure to contribute to the Foundations of the Mind 2 conference proceedings 
with a paper presented at the special session in honor of Patrick Suppes (1922-2014). 
We were both long-term collaborators of Pat, who influenced not only this work, but 
our own views about nature, science, and the brain. In fact, this work is the 
continuation of our collaboration, and part of our ongoing research projects with Pat 
when he passed away. The authors wish to acknowledge his support, mentoring and 
friendship throughout the years we worked together.  

1  INTRODUCTION 

The joint use of the electroencephalogram’s (EEG) surface Laplacian1  (SL) and scalp 
electric fields (SEF) to study brain data was recently introduced by Carvalhaes, de 
Barros, Perreau-Guimaraes, and Suppes (2014). The basis for this approach is the local 
relationship between the electric field and current density. According to Ohm’s law, 
the electric field is locally related to the current density, which means that the field’s 

1For a review of the surface Laplacian technique see Carvalhaes and de Barros (2015). 
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value at a specific position is determined by the current density at that position only, 
and does not involve values at other locations. The same does not hold for the EEG. 
In fact, since the electric potential is the negative gradient of the electric field, its value 
at any position integrates the current density over the entire space (contributing to the 
ubiquitous blur effect observed on conventional EEG topography). Given that the 
electric field is also reference free, its analysis carries significant potential for 
improvement in spatial analysis.  

In conventional EEG the scalar potential, obtained from current measurements, is 
recorded, and not the electric field. Hence, the field components have to be estimated 
by means of numerical techniques to differentiate the potential distribution along each 
coordinate axis. However, the field component normal to the scalp surface cannot be 
obtained this way, because it requires the potential distribution perpendicularly to the 
scalp surface, which is not available. Based on geometrical and physical observations, 
Carvalhaes et al. (2014) circumvented this problem by applying the SL derivation to 
approximate the normal component of the SEF. 

Numerical differentiations to estimate the tangential components of the SEF and 
SL were carried out using spherical splines. One advantage of this procedure is that it 
provides a regularization mechanism to reduce spatial noise and improve estimates. 
Additionally, computations can be cast into a linear transformation fashion for 
efficiency and to facilitate interpretation. The transforming matrix in this case is data-
independent and has to be determined only once for each electrode configuration. 
More details about this procedure and a computer code are available in Carvalhaes 
et al. (2014)(see also Carvalhaes and Suppes, 2011; Carvalhaes and de Barros, 2015). 

The applicability of this technique was evaluated in the context of EEG 
classification. EEG classification is an important and challenging task in brain 
computer interface, and can also serve as a tool to infer brain functioning and support 
theories and models for the brain (Vallabhaneni, Wang, and He, 2005). The main goal 
in EEG classification is to extract relevant information from labeled trials in EEG and 
build a model to identify unlabeled trials presented to the same individual. 
Performance is usually measured in terms of classification rates, which correspond to 
the percentage of trials that are correctly classified by the model on a test dataset. This 
work employed a 10-fold cross-validation procedure to compute classification rates, 
thus generating 10 classification rates that were average to determine the final 
classification rate of an individual. In the following, it was adopted the abbreviations 
SL, EF, and SL-EF to stand for surface Laplacian, tangential scalp electric field (only 
two spatial components), and the combined surface Laplacian and tangential electric 
field derivation, respectively. 



 COSMOS AND HISTORY 156 

2  EXPERIMENTS AND RESULTS 

One of the classification problem on which the SL-EF technique was employed 
involved the recognition of two-dimensional images exhibited on a computer screen. 
Seven adults, four males, voluntarily participated in this experiment having the task of 
recognizing the images while EEG was recorded. The images were a red circle, a green 
circle, a blue circle, a red triangle, a green triangle, a blue triangle, a red square, a green square, and 
a blue square. Each image was randomly presented to the participant multiple times. 
Each presentation lasted 300 milliseconds and was followed by a 700-millisecond 
period of a blank screen, except for a fixation cross (’+’) showed at the center of the 
screen. The total interval of 1,000 milliseconds locked to image presentation is called a 
trial. Each participant responded to 2700 trials. There was a short break after each 
block of 20 trials and the participant was able to control the length of the break 
through a keyboard. EEG data was recorded at 1,000 Hz sampling rate, using a system 
of 32 electrodes distributed over the back part of the head and referenced to linked 
ears. 

A second experiment involved the recognition of 32 English phonemes, uttered by 
a male native speaker and presented through a computer speaker. This experiment is 
explained in detail in Wang, Perreau-Guimaraes, Carvalhaes, and Suppes (2012). Each 
phoneme consisted of an initial consonant and a following vowel, selected from a 
group of eight initial consonants and four vowels. The initial consonants were /p/, 
/t/, /b/, /g/, /f/, /s/, /v/, /z/ and the vowels /a/ (as in cat), /a/ (spa), /i/ (as in 
meet), and /u/ (soon). Pairwise combination of these consonants and vowels formed 
the 32 phonemes. Four adults, one male, reporting no hearing problem participated in 
the experiment. The total number of trials changed from a participant to another as 
follows: 7,168 trials for the first participant, 3,584 for the second, 6,272 for the third, 
and 4,480 for the forth participant. Each trial lasted 1,000 milliseconds. Due to the 
large number of trials the experiment was divided into multiple sessions of 896 trials 
(approximately 15 min). Within each session the experiment was paused after each 
block of 56 trials and resumed after the participant hit the space key on the computer 
keyboard. EEG data were recorded at 1,000 Hz sampling rate on a 128-electrode 
system. 

A third application involved a mental imagery task that followed the presentation 
of visual and auditory stimuli2. The visual stimulus was an image of a “stop” sign 
displayed at the center of a computer screen, whereas the auditory stimulus 
corresponded to the sound of the English word “go”, uttered by a male native speaker 
of English and presented via computer speaker. Eleven adults voluntarily participated 

2See Carvalhaes, Perreau-Guimaraes, Grosenick, and Suppes (2009) for more detail. 
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in this experiment, responding to 600 trials on a single session each, with a regular 
break after each block of 20 trials. Stimulus presentations were separated by a 2,000-
millisecond interval, with the first 1,000 milliseconds been allocated to stimulus 
presentation and identification. The remaining 1,000 milliseconds were allocated to 
the mental task that consisted of the participant creating a vivid mental picture of the 
stimulus that had just been presented or its alternative. That is, if the previous stimulus 
was the “go” sound, the alternative stimulus was the “stop” sign, and vice versa. The 
first seven participants were instructed to perform the first task, whereas the other four 
participants were asked to imagine the alternative stimulus. EEG signals were 
recorded at 1,000 Hz sampling rate using a 62-electrode system. Only the second half 
of each trial, corresponding to stimulus imaginations, was analyzed in this study. For 
convenience, we will refer to this interval as a trial. 

The results showed below summarize Tables 1-5 of Carvalhaes et al. (2014). All 
classifications used temporal features from the waveform, after EEG signal was down 
sampled at 16:1 ratio. Only the first 500 milliseconds of each trial was used for 
classification. Classifications were performed using Fisher’s linear discriminant analysis 
(LDA) on individual EEG channels (Perreau Guimaraes, Wong, Uy, Grosenick, and 
Suppes, 2007). The average classification rate of the best channel across all participants 
was as follows: 61.9±5.9% (potential), 63.0±10.2% (SL), 70.2±7.1% (EF), and 75.2±6.7% 
(SL-EF). The rate for correctly classifying trials by chance (chance level) of this 
experiment was 11.1%. Hence, the null hypothesis could be safely rejected for the four 
waveforms. Clearly, the SL-EF method was the best performing method for this 
experiment. It also resulted in the highest classification rate for each participant in the 
experiment. 

In the second experiment classifications were carried out in three different ways: 
(i) using the eight initial consonants as labels; (ii) using the 32 syllables as labels; and 
(iii) using the four vowels as labels. Chance levels corresponded, respectively, to 12.5%, 
3.1%, and 25%. Similar to the first experiment, the method of using the scalar 
potential resulted in the lowest average classification rates among the four procedures. 
The rates for the potential were: (i) 35.9±7.4%; (ii) 10.0±2.5%, and (iii) 39.0±1.6%. 
Therefore, once again the null hypothesis could be rejected at high confidence level. 
The SL-EF method provided the highest classification rates in all tasks: (i) 46.5±12.5%; 
(ii) 14.0±6.7%; and (iii) 42.8±3.4%. 

The classification rates of the third experiment were also beyond the chance level 
(50%). Namely, the following average result was obtained across the 11 participants: 
82.8±7.3% (potential), 83.7±7.1% (SL), 86.7±6.1% (EF), and 86.4±6.1% (SL-EF). This 
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was, therefore, the only task in which the performance of the SL-EF was not superior 
to SL and EF methods, although it outperformed the potential. 

3  CONCLUSIONS 

This work discussed the method of combining the surface Laplacian of EEG and the 
estimated spatial components of the tangential electric field on the scalp’s surface to 
analyze brain waves. This method was applied in the context of EEG classification, 
where it demonstrated effectiveness to improve results of five distinct classification 
tasks, related to visual perception, language comprehension, and mental imagery. This 
shows that the method can be an effective tool for decomposing interlaced spatial 
information on the potential waveform, as suggested by theoretical analysis. It is 
import to remark that the results presented here can be improved significantly, for 
instance, by increasing electrode density, using magnetic resonance or other technique 
to reconstruct the scalp surface Babiloni, Babiloni, Carducci, Fattorini, Onorati, and 
Urbano (1996); Babiloni, Carducci, Babiloni, and Urbano (1998), and applying 
supplementary technology to determine the realistic electrode locations for accurate 
estimates of spatial derivatives (He, Lian, and Li, 2001). 
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