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Abstract
The join of null graph Om and complete graph Kn, denoted by S(m,n), is called a complete split graph.
In this paper, we characterize unique list colorability of the graph G = S(m,n). We shall prove that G
is uniquely 3-list colorable graph if and only if m ≥ 4, n ≥ 4 and m + n ≥ 10, m(G) ≤ 4 for every
1 ≤ m ≤ 5 and n ≥ 6.
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1. Introduction. All graphs considered in this paper are finite undirected graphs without loops or
multiple edges. If G is a graph, then V (G), E(G) (or V , E in short) and G will denote its vertex-set, its
edge-set and its complementary graph, respectively. The set of all neighbours of a subset S ⊆ V (G) is
denoted by NG(S) (or N(S) in short). Further, for W ⊆ V (G) the set W ∩NG(S) is denoted by NW (S).
If S = {v}, then N(S) and NW (S) are denoted shortly by N(v) and NW (v), respectively. For a vertex
v ∈ V (G), the degree of v (resp., the degree of v with respect toW ), denoted by deg(v) (resp., degW (v)), is
|NG(v)| (resp., |NW (v)|). The subgraph ofG induced byW ⊆ V (G) is denoted byG[W ]. The null graphs
and complete graphs of order n are denoted by On and Kn, respectively. Unless otherwise indicated, our
graph-theoretic terminology will follow [1].

Let G1 = (V1, E1), G2 = (V2, E2) be two graphs such that V1 ∩ V2 = ∅. Their union G = G1 ∪ G2

has, as expected, V (G) = V1 ∪ V2 and E(G) = E1 ∪ E2. Their join defined is denoted G1 + G2 and
consists of G1 ∪G2 and all edges joining V1 with V2.

A graph G = (V,E) is called a split graph if there exists a partition V = I ∪ K such that G[I] and
G[K] are null and complete graphs, respectively. We will denote such a graph by S(I ∪K,E). The join of
null graph Om and complete graph Kn, Om +Kn = S(m,n), is called a complete split graph.The notion
of split graphs was introduced in 1977 by Földes and Hammer [7]. A role that split graphs play in graph
theory is clarified in [7] and in [3], [4], [15], [17], [20], [21], [22]. These graphs have been paid attention
also because they have connection with packing and knapsack problems [5], with the matroid theory [8],
with Boolean functions [18], with the analysis of parallel processes in computer programming [11] and with
the task allocation in distributed systems [12]. Many generalizations of split graphs have been made. The
newest one is the notion of bisplit graphs introduced by Brandstädt et al. [2].

Let G = (V,E) be a graph and λ is a positive integer.
A λ-coloring of G is a bijection f : V (G) → {1, 2, . . . , λ} such that f(u) 6= f(v) for any adjacent

vertices u, v ∈ V (G). The smallest positive integer λ such that G has a λ-coloring is called the chromatic
number of G and is denoted by χ(G). We say that a graph G is n-chromatic if n = χ(G).

Let (Lv)v∈V be a family of sets. We call a coloring f of G with f(v) ∈ Lv for all v ∈ V is a list
coloring from the lists Lv . We will refer to such a coloring as an L-coloring. The graph G is called λ-list-
colorable, or λ-choosable, if for every family (Lv)v∈V with |Lv| = λ for all v, there is a coloring of G
from the lists Lv . The smallest positive integer λ such that G has a λ-choosable is called the list-chromatic
number, or choice number of G and is denoted by ch(G).
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Let G be a graph with n vertices and suppose that for each vertex v in G, there exists a list of k colors
Lv , such that there exists a unique L-coloring for G, then G is called a uniquely k-list colorable graph or
a UkLC graph for short. The idea of uniquely colorable graph was introduced independently by Dinitz and
Martin [6] and by Mahmoodian and Mahdian [16] (Mahmoodian and Mahdian have obtained some results
on the uniquely k-list colorable complete multipartite graphs).

The list coloring model can be used in the channel assignment. The fixed channel allocation scheme
leads to low channel utilization across the whole channel. It requires a more effective channel assignment
and management policy, which allows unused parts of channel to become available temporarily for other
usages so that the scarcity of the channel can be largely mitigated [24]. It is a discrete optimization problem.
A model for channel availability observed by the secondary users is introduced in [24].

There have been many interesting and insightful research results on these issues for different graph
classes (see [9], [13], [14], [16]). However, these are still issues that have not been resolved thoroughly,
so much more attention is needed. In this paper, we shall characterize unique list colorability of the graph
G = S(m,n). Namely, we shall prove that G is uniquely 3-list colorable graph if and only if m ≥ 4, n ≥ 4
and m+ n ≥ 10, m(G) ≤ 4 for every 1 ≤ m ≤ 5 and n ≥ 6.

2. Preliminaries. If a graph G is not uniquely k-list colorable, we also say that G has property M(k).
So G has the property M(k) if and only if for any collection of lists assigned to its vertices, each of size k,
either there is no list coloring for G or there exist at least two list colorings. The least integer k such that
G has the property M(k) is called the m-number of G, denoted by m(G). This conception was originally
introduced by Mahmoodian and Mahdian in [16].

Lemma 2.1 ([16]). Each UkLC graph is also a U(k − 1)LC graph.
Lemma 2.2 ([16]). The graph G is UkLC if and only if k < m(G).
Lemma 2.3 ([16]). A connected graphG has the propertyM(2) if and only if every block ofG is either

a cycle, a complete graph, or a complete bipartite graph.
Lemma 2.4 ([16]). For every graph G we have m(G) ≤ |E(G)|+ 2.
Lemma 2.5 ([16]). Every UkLC graph has at least 3k − 2 vertices.
For example, one can easily see that the graph S(2, 2) has the property M(3) and it is U2LC, so

m(S(2, 2)) = 3.
Proposition 2.1. Let G = S(m,n) be a UkLC graph with k ≥ 2. Then
(i) m ≥ 2;
(ii) k < m2−m+4

2 ;
(iii) k ≤

⌊
m+n+2

3

⌋
. Proof: (i) If m = 1 then G is a complete graph Kn+1. Lemma 2.3, G has the

property M(2), a contradiction.
(ii) It is not difficult to see that |E(G)| = m(m−1)

2 . By Lemma 2.4, we have

m(G) ≤ |E(G)|+ 2 =
m2 −m+ 4

2
.

By Lemma 2.2, we have k < m2−m+4
2 .

(iii) Assertion (iii) follows immediately from Lemma 2.5.
Let G = S(m,n) be a UkLC graph with V (G) = I ∪ K,G[I] = Om, G[K] = Kn,m ≥ 2, n ≥

1, k ≥ 3. Set

I = {u1, u2, . . . , um},K = {v1, v2, . . . , vn}.

Suppose that, for the given k-list assignment L:
Lui = {ai,1, ai,2, . . . , ai,k} for every i = 1, . . . ,m,
Lvi = {bi,1, bi,2, . . . , bi,k} for every i = 1, . . . , n,

there is a unique k-list color f :
f(ui) = ai,1 for every i = 1, . . . ,m,
f(vi) = bi,1 for every i = 1, . . . , n.
Proposition 2.2.
(i) |f(I)| ≥ 2;
(ii) |f(I)| ≤ m− 2, where m ≥ 4.
Proof: (i) For suppose on the contrary that |f(I)| = 1, then a1,1 = a2,1 = . . . = am,1 = a. Set

H = G − I , it is not difficult to see that H is a complete graph Kn. We assign the following lists L′v for
the vertices v of H:

If a ∈ Lv then L′v = Lv \ {a},
If a /∈ Lv then L′v = Lv \ {b}, where b ∈ Lv and b 6= f(v).

It is clear that |L′v| = k − 1 ≥ 2 for every v ∈ V (H). By Lemma 2.3, H has the property M(2). So by
Lemma 2.1, H has the propertyM(k−1). It follows that with lists L′v , there exist at least two list colorings
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for the vertices v of H . So it is not difficult to see that with lists Lv , there exist at least two list colorings
for the vertices v of G, a contradiction.

(ii) For suppose on the contrary that |f(I)| ≥ m− 1. We consider separately two cases.
Case 1: |f(I)| = m− 1.
Without loss of generality, we may assume that a1,1 = a2,1 and ai,1 6= aj,1 for every i, j ∈ {2, . . . ,m}, i 6=

j. Set graph G′ = (V ′, E′), with

V ′ = I ∪K,E′ = (E(G) ∪ {uiuj |i, j = 1, 2, . . . ,m; i 6= j}) \ {u1u2}.

It is clear that G′ is complete split graph S(2,m+ n− 2) with V (G′) = I ′ ∪K ′, where

I ′ = {u1, u2},K ′ = {u3, u4, . . . , um, v1, v2, . . . , vn}.

Since a1,1 = a2,1, it is not difficult we have got a contradiction.
Case 2: |f(I)| = m.
In this case, ai,1 6= aj,1 for every i, j ∈ {1, 2, . . . ,m}, i 6= j. Set graph G′′ = (V ′′, E′′), with

V ′′ = I ∪K,E′′ = E(G) ∪ {uiuj |i, j = 1, 2, . . . ,m; i 6= j}.

It is clear that G′′ is a complete graph Km+n. By Lemma 2.3, G′′ has the property M(2), so with lists Lv ,
there exist at least two list colorings for the vertices v of G′′. Since V (G) = V (G′′), it is not difficult to
see that with lists Lv , there exist at least two list colorings for the vertices v of G, a contradiction.

3. Main Results. We need the following Lemmas 3.1–3.9 to prove our results.
Lemma 3.1. (i) m(S(1, n)) = 2 for every n ≥ 1;
(ii) m(S(r, 1)) = 2 for every r ≥ 1;
(iii) m(S(2, n)) = 3 for every n ≥ 2. Proof: (i) It is clear that S(1, n) is a complete graph for every

n ≥ 1, by Lemma 2.3, m(S(1, n)) = 2 for every n ≥ 1.
(ii) It is clear that S(r, 1) is a complete bipartite graph for every r ≥ 1, by Lemma 2.3, m(S(r, 1)) = 2

for every r ≥ 1.
(iii) By Lemma 2.3, G = S(2, n) is U2LC for every n ≥ 2.
It is not difficult to see that |E(G)| = 1. By Lemma 2.4, m(S(2, n)) ≤ 3 for every n ≥ 2.
Thus, m(S(2, n)) = 3 for every n ≥ 2.
Lemma 3.2 ([9]). m(S(3, n)) = 3 for every n ≥ 2;
Lemma 3.3 ([9]). For every r ≥ 2, m(S(r, 3)) = 3.
Lemma 3.4 ([10]). Graphs S(5, 4) and S(4, 4) have property M(3).
Lemma 3.5 ([19]). The graph S(4, 5) has property M(3).
Lemma 3.6. G = S(4, n) has the property M(4) for every n ≥ 2; Proof: Let G = S(4, n) is a

complete split graph with V (G) = I ∪K,G[I] = O4, G[K] = Kn, n ≥ 2. Set

I = {u1, u2, u3, u4},K = {v1, v2, . . . , vn}.

For suppose on the contrary that graph G = S(4, n) is U4LC. So there exists a list of 4 colors Lv for
each vertex v ∈ V (G), such that there exists a unique L-coloring f for G. By (i) and (ii) of Proposition
2.2, |f(I)| = 2.

Let f(I) = {a, b}. Set graph H = G− I , it is not difficult to see that H is a complete graph Kn. We
assign the following lists L′v for the vertices v of H:

(a) If a, b ∈ Lv then L′v = Lv \ {a, b},
(b) If a ∈ Lv, b /∈ Lv then L′v = Lv \ {a, c}, where c ∈ Lv and c 6= f(v),
(c) If a /∈ Lv, b ∈ Lv then L′v = Lv \ {b, c}, where c ∈ Lv and c 6= f(v),
(d) If a, b /∈ Lv then L′v = Lv \ {c, d}, where c, d ∈ Lv, c 6= d and c, d 6= f(v).

It is clear that |L′v| = 2 for every v ∈ V (H). By Lemma 2.3, H has the property M(2). It follows that with
lists L′v , there exist at least two list colorings for the vertices v of H . So it is not difficult to see that with
lists Lv , there exist at least two list colorings for the vertices v of G, a contradiction.

Lemma 3.7 ([25]). (i) For every n ≥ 2, S(5, n) has the property M(4);
(ii) If n ≥ 5 then m(S(5, n)) = 4.
Lemma 3.8 ([23]). For every m ≥ 1, k ≥ 2, S(m, 2k − 3) has the property M(k).
Lemma 3.9 ([23]). For every n ≥ 1, k ≥ 2, S(2k − 3, n) has the property M(k).
Now we prove our results.
Theorem 3.1. The graph G = S(m,n) is uniquely 3-list colorable graph if and only if m ≥ 4, n ≥ 4

and m+ n ≥ 10.
Proof: Firrst we prove the necessity. Suppose that G = S(m,n) is U3LC. If m < 4 or n < 4 then

by Lemma 3.8 and Lemma 3.9, it is not difficult to see that G has the property M(3), a contradiction.
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Therefore, m ≥ 4 and n ≥ 4. It follows that m+ n ≥ 8. If m+ n = 8 then m = 4 and n = 4, by Lemma
3.4, G has property M(3), a contradiction. If m+ n = 9 then (m,n) ∈ {(4, 5), (5, 4)}, by Lemma 3.4 and
Lemma 3.5, G has property M(3), a contradiction. Thus, m+ n ≥ 10.

Now we prove the sufficiency. Suppose thatm ≥ 4, n ≥ 4 andm+n ≥ 10. Let V (G) = I∪K,G[I] =
Om, G[K] = Kn, I = {u1, u2, . . . , um},K = {v1, v2, . . . , vn}. We prove G is U3LC by induction on
m+ n. If m+ n = 10, then we consider separately three cases.

(i) m = 4 and n = 6.
We assign the following lists for the vertices of G:
Lu1

= {1, 3, 4}, Lu2
= {1, 7, 8}, Lu3

= {2, 5, 6}, Lu4
= {2, 7, 8};

Lv1 = {1, 2, 3}, Lv2 = {1, 2, 4}, Lv3 = {1, 2, 5}, Lv4 = {1, 2, 6}, Lv5 = {1, 2, 7}, Lv6 = {1, 2, 8}.
A unique coloring f of G exists from the assigned lists:

f(u1) = 1, f(u2) = 1, f(u3) = 2, f(u4) = 2;
f(v1) = 3, f(v2) = 4, f(v3) = 5, f(v4) = 6, f(v5) = 7, f(v6) = 8.
(ii) m = 5 and n = 5.
We assign the following lists for the vertices of G:
Lu1 = {1, 4, 5}, Lu2 = {1, 3, 6}, Lu3 = {2, 3, 7}, Lu4 = {2, 4, 5}, Lu5 = {2, 6, 7};
Lv1 = {1, 2, 3}, Lv2 = {1, 2, 4}, Lv3 = {1, 2, 5}, Lv4 = {1, 2, 6}, Lv5 = {1, 2, 7}.

A unique coloring f of G exists from the assigned lists:
f(u1) = 1, f(u2) = 1, f(u3) = 2, f(u4) = 2, f(u5) = 2;
f(v1) = 3, f(v2) = 4, f(v3) = 5, f(v4) = 6, f(v5) = 7.
(iii) m = 6 and n = 4.
We assign the following lists for the vertices of G:
Lu1

= {1, 3, 5}, Lu2
= {1, 4, 5}, Lu3

= {2, 3, 6}, Lu4
= {2, 3, 4}, Lu5

= {2, 4, 6}, Lu6
= {2, 5, 6};

Lv1 = {1, 2, 3}, Lv2 = {1, 2, 4}, Lv3 = {1, 2, 5}, Lv4 = {1, 2, 6}.
A unique coloring f of G exists from the assigned lists:

f(u1) = 1, f(u2) = 1, f(u3) = 1, f(u4) = 2, f(u5) = 2, f(u6) = 2;
f(v1) = 3, f(v2) = 4, f(v3) = 5, f(v4) = 6.
Now let m + n > 10 and assume the assertion for smaller values of m + n. We consider separately

two cases.
Case 1: m ≥ 5.
Set G′ = G− um = S(m− 1, n). By the induction hypothesis, for each vertex v in G′, there exists a

list of 3 colors L′v , such that there exists a unique f ′ for G′. We assign the following lists for the vertices of
G:

Lum = L′um−1
, Lv = L′v if v ∈ V (G′).

A unique coloring f of G exists from the assigned lists:
f(um) = f ′(um−1), f(v) = f ′(v) if v ∈ V (G′).
Case 2: n ≥ 5.
Set G′ = G − vn = S(m,n − 1). By the induction hypothesis, for each vertex v in G′, there exists a

list of 3 colors L′v , such that there exists a unique f ′ for G′. We assign the following lists for the vertices of
G:

Lvn = {f ′(vn−1), f ′(vn−2), t} with t /∈ f ′(G′), Lv = L′v if v ∈ V (G′).
A unique coloring f of G exists from the assigned lists:

f(vn) = t, f(v) = f ′(v) if v ∈ V (G′).
Corollary 3.1. m(S(4, n)) = 4 for every n ≥ 6. Proof: It follows from Theorem 3.1 and Lemma

3.6.
Theorem 3.2. m(S(r, n)) ≤ 4 for every 1 ≤ r ≤ 5 and n ≥ 6. Proof: It follows from Lemma 3.1 to

Lemma 3.7.
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