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Abstract. This paper discusses cone polygonal metric spaces. We analyze some 

characteristics derived from convergence and Cauchyness of sequences. Our result 

consists of some conditions on uniqueness of limit point and completeness in cone 

polygonal metric spaces. 
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I. INTRODUCTION 

The concept of metric spaces is a major subject in mathematical analysis. There had been 

introductions of generalized metric spaces within various forms. An interesting generalization 

was found in cone metric spaces [1]. Cone metric space is obtained by substituting the 

codomain of metric function with a partially ordered Banach space. The order in Banach spaces 

is defined by a subset called cone, similar to how ordering in the set of real numbers is defined 

by the set of positive real numbers.  

The concept of cone metric spaces was generalized further by replacing the property of 

triangular inequality with similar inequality which contains four or more elements. The results 

are cone rectangular metric spaces [2], cone pentagonal metric spaces [3], cone hexagonal 

metric spaces [4], cone heptagonal metric spaces [5], and so on. However, these spaces share 

similar characteristics. Therefore, they can be studied as one group, namely cone polygonal 

metric spaces. 

Some basic properties of metric spaces are not present in cone polygonal metric spaces. For 

example, a convergent sequence can have multiple limit points and is not necessarily Cauchy 

[6]. This motivates us to further analyze correlation between convergent sequences and Cauchy 

sequences. We discovered that simultaneous presence of convergence and Cauchyness would 

lead to uniqueness of limit point. 

We also analyze conditions that indicate completeness of a given space. We found 

sequential compactness to be a sufficient condition for completeness. Other than that, we 

establish a necessary and sufficient condition by expanding a nested closed-ball theorem [7] 

from cone metric spaces to cone polygonal metric spaces. 

Our result could be applied in other theories that use iterative sequences. For example, our 

sufficient conditions on completeness could be directly linked to fixed point theorems [1, 2, 8, 
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9]. It should be emphasized that we do not use the properties of normal cones in our work. 

Therefore, our result covers both normal and non-normal cones. 

II. PRELIMINARIES

We begin by stating the definition of cone and some related terms. Let 𝐸 be a real Banach 

space. A subset 𝑃 ⊂ 𝐸 is called cone if: (i) 𝑃 is a closed non-empty set and 𝑃 ≠ {0𝐸}; (ii) For

any positive real numbers 𝑘1, 𝑘2, and 𝑥, 𝑦 ∈ 𝑃 holds 𝑘1𝑥 + 𝑘2𝑦 ∈ 𝑃; (iii) 𝑃 ∪ (−𝑃) = {0𝐸}
[1]. Cone 𝑃 defines partial ordering in 𝐸 as follows: (i) 𝑥 ≼ 𝑦 if 𝑦 − 𝑥 ∈ 𝑃; (ii) 𝑥 ≪ 𝑦 if 𝑦 −
𝑥 ∈ 𝑖𝑛𝑡 𝑃, where 𝑖𝑛𝑡 𝑃 denotes interior of 𝑃 [1]. 

The following lemmas would be useful for later theorems: 

Lemma 1 [10] Let 𝑃 be a cone in 𝐸 and 𝑢, 𝑣, 𝑤 ∈ 𝐸, then 

(1) If 𝑢 ≼ 𝑣 and 𝑣 ≪ 𝑤, then 𝑢 ≪ 𝑤.

(2) If 0𝐸 ≼ 𝑢 ≪ 𝑐 for each 0𝐸 ≪ 𝑐, then 𝑢 = 0𝐸.

(3) If 𝑢 ≼ 𝑣 + 𝑐 for each 0𝐸 ≪ 𝑐, then 𝑢 ≼ 𝑣.

Lemma 2 [10] Let 𝑃 be a cone in 𝐸, and (𝑎𝑛) be a sequence in 𝑃 such that lim
𝑛→∞

‖𝑎𝑛‖ = 0.

Then, for any 𝑐 ∈ 𝐸 with 0𝐸 ≪ 𝑐, there exists 𝑁 such that 𝑎𝑛 ≪ 𝑐 for all 𝑛 > 𝑁.

Cone polygonal metric space is a generalization of cone metric spaces. It is obtained by 

replacing the property of triangular inequality with a similar property consisting of 𝑘 distinct 

elements. The formal definition is given as follows: 

Definition 1 Let 𝐸 be a Banach space with cone, 𝑋 be a non-empty set, and k be a natural 

number greater than three. A function 𝑑: 𝑋 × 𝑋 → 𝐸 is called cone k-gonal metric if for every 

𝑥, 𝑦 ∈ 𝑋: 

(1) 𝑑(𝑥, 𝑦) ≽ 0𝐸 and 𝑑(𝑥, 𝑦) = 0𝐸 if and only if 𝑥 = 𝑦
(2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)

(3) 𝑑(𝑥, 𝑦) ≼ 𝑑(𝑥, 𝑧1) + ∑ 𝑑(𝑧𝑖 , 𝑧𝑖+1)𝑘−3
𝑖=1 + 𝑑(𝑧𝑘−2, 𝑦) for all distinct 𝑧1, 𝑧2, … , 𝑧𝑘−2 ∈

𝑋 − {𝑥, 𝑦} 

The pair (𝑋, 𝑑) is then called a cone k-gonal metric space. 

As in cone metric spaces, we can define convergence and Cauchy-ness of sequences in cone 

polygonal metric spaces. 

Definition 2 Let (𝑋, 𝑑) be a cone k-gonal metric space, {𝑥𝑛} be a sequence in 𝑋, and 𝑥 ∈
𝑋. {𝑥𝑛} is called a Cauchy sequence if for every 𝑐 ∈ 𝐸 with 0𝐸 ≪ 𝑐, there exist 𝑁 such that

𝑑(𝑥𝑛, 𝑥𝑚) ≪ 𝑐 for all 𝑚, 𝑛 > 𝑁. {𝑥𝑛} is called convergent to 𝑥 if for every 𝑐 ∈ 𝐸 with 0𝐸 ≪ 𝑐,

there exist 𝑁 such that 𝑑(𝑥𝑛, 𝑥) ≪ 𝑐 for all 𝑛 > 𝑁.

A cone k-gonal metric space (𝑋, 𝑑) is called complete if every Cauchy sequence in 𝑋 is 

convergent. If for any sequence in 𝑋, there exists a convergent subsequence, then (𝑋, 𝑑) is 

called sequentially compact cone k-gonal metric space. 
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III. PROPERTIES IN CONE POLYGONAL METRIC SPACES 

3.1 Conditions on Uniqueness of Limit Point 

Previous works had found a condition that resulted in the uniqueness of sequences’ limit 

point in cone rectangular metric spaces [11]. While the same condition has been established in 

cone polygonal metric spaces [9], it was limited to spaces with normal cones only. We expand 

this condition to cover cone polygonal metric spaces in general (regardless of normality): 

Theorem 1 Let 𝑘 > 3, and (𝑋, 𝑑) be a cone k-gonal metric space. If a sequence (𝑥𝑛) in 𝑋 is 

both convergent and Cauchy simultaneously, then limit of (𝑥𝑛) is unique. 

Proof: Let (𝑥𝑛) be a sequence in (𝑋, 𝑑) that is both convergent and Cauchy, and let 𝑥 and 𝑦 

be limit points of (𝑥𝑛). For any 𝑐 ∈ 𝐸 with 0𝐸 ≪ 𝑐, there exist 𝑁 such that for every distinct 

𝑛1, 𝑛2, … , 𝑛𝑘−2 > 𝑁, these inequalities hold: 

𝑑(𝑥, 𝑥𝑛1
) ≪

𝑐

𝑘 − 1
 

𝑑(𝑥𝑛1
, 𝑥𝑛2

) ≪
𝑐

𝑘 − 1
 

⋮ 

𝑑 (𝑥𝑛(𝑘−3)
, 𝑥𝑛(𝑘−2)

) ≪
𝑐

𝑘 − 1
 

𝑑 (𝑥𝑛(𝑘−2)
, 𝑦) ≪

𝑐

𝑘 − 1
 

These lead us to 

𝑑(𝑥, 𝑦) ≼ 𝑑(𝑥, 𝑥𝑛1
) + ∑ 𝑑 (𝑥𝑛𝑖

, 𝑥𝑛(𝑖+1)
)

𝑘−3

𝑖=1

+ 𝑑 (𝑥𝑛(𝑘−2)
, 𝑦) ≪ 𝑐 

Since 𝑐 is arbitrary, by Lemma 1, we have 𝑑(𝑥, 𝑦) = 0𝐸 which implies 𝑥 = 𝑦.  

 

A direct implication of Theorem 1 is presented in Corollary 1: 

 

Corollary 1 In complete cone polygonal metric spaces, every Cauchy sequence has a unique 

limit point. 

 

Furthermore, it is found that the convergence condition in Theorem 1 could be loosened 

by substituting it with the existence of convergent subsequence, as shown in Theorem 2: 

 

Theorem 2 Let 𝑘 > 3, and (𝑋, 𝑑) be a cone k-gonal metric space. If a sequence (𝑥𝑛) in 𝑋 is 

Cauchy and has a convergent subsequence, then (𝑥𝑛) is convergent and has a unique limit. 

Proof: Let (𝑥𝑛) be a Cauchy sequence in (𝑋, 𝑑), (𝑥𝑚𝑖
) be a convergent subsequence of (𝑥𝑛), 

and 𝑥 be the limit point of (𝑥𝑚𝑖
). For any 𝑐 ∈ 𝐸 with 0𝐸 ≪ 𝑐, there exists 𝑁 such that for every 

distinct 𝑛, 𝑚𝑖1
, 𝑚𝑖2

, … , 𝑚𝑖𝑘−2
> 𝑁, these following inequalities hold: 

𝑑 (𝑥𝑛, 𝑥𝑚𝑖1
) ≪

𝑐

𝑘 − 1
 

𝑑 (𝑥𝑚𝑖1
, 𝑥𝑚𝑖2

) ≪
𝑐

𝑘 − 1
 

⋮ 

𝑑 (𝑥𝑚𝑖(𝑘−3)
, 𝑥𝑚𝑖(𝑘−2)

) ≪
𝑐

𝑘 − 1
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𝑑 (𝑥𝑚𝑖(𝑘−2)
, 𝑥) ≪

𝑐

𝑘 − 1
 

It follows that 

𝑑(𝑥𝑛, 𝑥) ≼ 𝑑 (𝑥𝑛, 𝑥𝑚𝑖1
) + ∑ 𝑑 (𝑥𝑚𝑖𝑗

, 𝑥𝑚𝑖(𝑗+1)
)

𝑘−3

𝑗=1

+ 𝑑 (𝑥𝑛𝑖(𝑘−2)
, 𝑥) ≪ 𝑐 

which confirms that (𝑥𝑛) is indeed convergent to 𝑥. Since (𝑥𝑛) is both convergent and Cauchy, 

by Theorem 1, limit of (𝑥𝑛) is unique.    

3.2 Completeness Conditions 

We found a condition that guarantees the completeness of cone polygonal metric spaces 

as follows: 

 

Theorem 3 Let 𝑘 > 3 and (𝑋, 𝑑) be a cone k-gonal metric space. If (𝑋, 𝑑) is sequentially 

compact, then (𝑋, 𝑑) is complete. 

Proof: Let (𝑥𝑛) be an arbitrary Cauchy sequence in (𝑋, 𝑑). Since (𝑋, 𝑑) is sequentially 

compact, then (𝑥𝑛) has a convergent subsequence. By Theorem 2, (𝑥𝑛) is convergent. 

Therefore, (𝑋, 𝑑) is complete.  

 

Theorem 3 implies that finite cone polygonal metric spaces are complete, as stated in the 

following theorem: 

 

Theorem 4 Let 𝑘 > 3 and (𝑋, 𝑑) be a cone k-gonal metric space. If 𝑋 is a finite set, then (𝑋, 𝑑) 

is sequentially compact and complete. 

Proof: Let (𝑥𝑛) be an arbitrary sequence in (𝑋, 𝑑). Since 𝑋 is finite, there must be an element 

𝑦 ∈ 𝑋 that appears infinite times in (𝑥𝑛). Pick a subsequence of (𝑥𝑛) where each element is 𝑦. 

This subsequence is obviously convergent to 𝑦. Therefore, (𝑋, 𝑑) is sequentially compact. By 

Theorem 3, we conclude that (𝑋, 𝑑) is complete.   

 

A previous result had established a nested closed-ball theorem that provides a necessary 

and sufficient condition for completeness of cone metric spaces [7]. We expand the theorem to 

cone polygonal metric spaces. 

 

Theorem 5 Let 𝑘 > 3 and (𝑋, 𝑑) be a cone k-gonal metric space. Let (𝑟𝑛) be an arbitrary 

sequence in 𝑃 ⊂ 𝐸 such that for every 𝑐 ∈ 𝐸 with 0𝐸 ≪ 𝑐, there exists 𝑁 satisfying 𝑟𝑛 ≪ 𝑐 for 

every 𝑛 > 𝑁. For any sequence (𝑥𝑛) in 𝑋, we define closed ball neighborhood 𝑆𝑛 =
{𝑥 ∈ 𝑋|𝑑(𝑥, 𝑥𝑛) ≼ 𝑟𝑛}. (𝑋, 𝑑) is complete if and only if 𝑆1 ⊇ 𝑆2 ⊇ ⋯ ⊇ 𝑆𝑛 ⊇ ⋯ implies there 

is a point 𝑦 ∈ ⋂ 𝑆𝑛
∞
𝑛=1 . 

Proof: Suppose that (𝑋, 𝑑) is complete and 𝑆1 ⊇ 𝑆2 ⊇ ⋯ ⊇ 𝑆𝑛 ⊇ ⋯ holds. For any 𝑛1 < 𝑛2, 

we have 𝑥𝑛2
∈ 𝑆𝑛2

⊆ 𝑆𝑛1
, which implies 𝑑(𝑥𝑛1

, 𝑥𝑛2
) ≼ 𝑟𝑛1

. Therefore, for any 𝑐 ∈ 𝐸 with 

0𝐸 ≪ 𝑐, there is 𝑁 such that 𝑑(𝑥𝑛1
, 𝑥𝑛2

) ≼ 𝑟𝑛1
≪ 𝑐 for every 𝑛2 > 𝑛1 > 𝑁. This suggests that 

(𝑥𝑛) is a Cauchy sequence. Based on the completeness of (𝑋, 𝑑), there exists a point 𝑦 ∈ 𝑋 

such that (𝑥𝑛) converges to 𝑦. Take any 𝑛3, we will show that 𝑦 ∈ 𝑆𝑛3
. Since (𝑥𝑛) is Cauchy 

and convergent to 𝑦, for every 𝑐 ∈ 𝐸 with 0𝐸 ≪ 𝑐, there is 𝑁 such that for distinct 

𝑚1, 𝑚2, … , 𝑚𝑘−2 > max{𝑁, 𝑛3} these inequalities hold: 
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𝑑(𝑥𝑚1
, 𝑥𝑚2

) ≪
𝑐

𝑘 − 2
 

𝑑(𝑥𝑚2
, 𝑥𝑚3

) ≪
𝑐

𝑘 − 2
 

⋮ 

𝑑 (𝑥𝑚(𝑘−3)
, 𝑥𝑚(𝑘−2)

) ≪
𝑐

𝑘 − 2
 

𝑑 (𝑥𝑚(𝑘−2)
, 𝑦) ≪

𝑐

𝑘 − 2
 

Since 𝑚1 > 𝑛3, we have 𝑥𝑚1
∈ 𝑆𝑚1

⊆ 𝑆𝑛3
 which implies 𝑑(𝑥𝑛3

, 𝑥𝑚1
) ≼ 𝑟𝑛3

. Therefore, 

𝑑(𝑥𝑛3
, 𝑦) ≼ 𝑑(𝑥𝑛3

, 𝑥𝑚1
) + ∑ 𝑑 (𝑥𝑚𝑖

, 𝑥𝑚(𝑖+1)
)

𝑘−3

𝑖=1

+ 𝑑 (𝑥𝑚(𝑘−2)
, 𝑦) ≼ 𝑟𝑛3

+ 𝑐 

By Lemma 1, we have 𝑑(𝑥𝑛3
, 𝑦) ≼ 𝑟𝑛3

 which confirms that 𝑦 ∈ 𝑆𝑛3
. Since 𝑛3 is arbitrary, we 

have 𝑦 ∈ ⋂ 𝑆𝑛
∞
𝑛=1 . 

 

Conversely, suppose that 𝑆1 ⊇ 𝑆2 ⊇ ⋯ ⊇ 𝑆𝑛 ⊇ ⋯ implies there is a point 𝑦 ∈ ⋂ 𝑆𝑛
∞
𝑛=1 , we’ll 

show that (𝑋, 𝑑) is complete. Let (𝑥𝑛) be a Cauchy sequence and pick a fixed 𝑐0 ∈ 𝐸 with 

0𝐸 ≪ 𝑐0. We could take 𝑛1 < 𝑛2 < ⋯ < 𝑛𝑖 < ⋯ such that 𝑑(𝑥𝑛, 𝑥𝑚) ≪
𝑐0

(𝑘−1)𝑖+1 for every 

𝑛, 𝑚 > 𝑛𝑖. Consider the subsequence (𝑥𝑛𝑖
), and let 𝑆𝑖

′ = {𝑥 ∈ 𝑋|𝑑 (𝑥, 𝑥𝑛𝑖
≼

𝑐0

(𝑘−1)𝑖)}. We will 

show that 𝑆𝑖
′ ⊇ 𝑆𝑖+1

′  for any 𝑖. For distinct 𝑛(𝑖+1), 𝑗1, 𝑗2, … , 𝑗𝑘−3 > 𝑛𝑖, we have 

𝑑 (𝑥𝑛(𝑖+1)
, 𝑥𝑗1

) ≪
𝑐0

(𝑘 − 1)𝑖+1
 

𝑑(𝑥𝑗1
, 𝑥𝑗2

) ≪
𝑐0

(𝑘 − 1)𝑖+1
 

⋮ 

𝑑 (𝑥𝑗(𝑘−4)
, 𝑥𝑗(𝑘−3)

) ≪
𝑐0

(𝑘 − 1)𝑖+1
 

𝑑 (𝑥𝑗(𝑘−3)
, 𝑥𝑛𝑖

) ≪
𝑐0

(𝑘 − 1)𝑖+1
 

For any 𝑧 ∈ 𝑆𝑖+1
′ , we have 𝑑 (𝑧, 𝑥𝑛(𝑖+1)

) ≼
𝑐0

(𝑘−1)𝑖+1, which resulted in 

𝑑(𝑧, 𝑥𝑛𝑖
) ≼ 𝑑 (𝑧, 𝑥𝑛(𝑖+1)

) + 𝑑 (𝑥𝑛(𝑖+1)
, 𝑥𝑗1

) + ∑ 𝑑 (𝑥𝑗𝑝
, 𝑥𝑗(𝑝+1)

)

𝑘−4

𝑝=1

+ 𝑑 (𝑥𝑗(𝑘−3)
, 𝑥𝑛𝑖

) ≼
𝑐0

(𝑘 − 1)𝑖
 

which implies 𝑆𝑖
′ ⊇ 𝑆𝑖+1

′ . Therefore, there is a point 𝑦 ∈ ⋂ 𝑆𝑖
′∞

𝑖=1 . Since 𝑦 ∈ 𝑆𝑖
′ for all 𝑖 ∈ ℕ, we 

have 𝑑(𝑦, 𝑥𝑛𝑖
) ≼

𝑐0

(𝑘−1)𝑖. Observing that lim
𝑖→∞

‖
𝑐0

(𝑘−1)𝑖‖ = lim
𝑖→∞

1

(𝑘−1)𝑖
‖𝑐0‖ = 0, by Lemma 2 we 

have that for every 𝑐 ∈ 𝐸 with 0𝐸 ≪ 𝑐, there is 𝑁 such that 

𝑑(𝑦, 𝑥𝑛𝑖
) ≼

𝑐0

(𝑘 − 1)𝑖
≪ 𝑐 

for every 𝑛𝑖 > 𝑁. Thus, (𝑥𝑛𝑖
) is convergent to 𝑦. By Theorem 2, (𝑥𝑛) is convergent to 𝑦. We 

conclude that (𝑋, 𝑑) is complete.   

IV. CONCLUSION 

We have analyzed some properties in cone polygonal metric spaces. We showed that in cone 

polygonal metric spaces, a Cauchy sequence that is convergent or has a convergent 
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subsequence must have a unique limit. We proved that a sequentially compact cone polygonal 

metric space must be complete, thus all finite cone polygonal metric spaces are complete. 

Finally, we established a necessary and sufficient condition of completeness in cone polygonal 

metric spaces by using nested-closed ball property. 
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