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Crystal structure of (E)-doxepin hydrochloride, C19H22NOCl
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The crystal structure of (E)-doxepin hydrochloride has been solved and refined using synchrotron X-
ray powder diffraction data, and optimized using density functional techniques. (E)-doxepin hydro-
chloride crystallizes in space group P21/a (#14) with a = 13.78488(7), b = 8.96141(7), c = 14.30886
(9) Å, β = 96.5409(5)°, V = 1756.097(12) Å3, and Z = 4. There is a strong discrete hydrogen bond
between the protonated nitrogen atom and the chloride anion. There are six C–H⋯Cl hydrogen
bonds between the methyl groups and the chloride, as well as additional hydrogen bonds from meth-
ylene groups and the vinyl proton. The hydrogen bonds are important in determining the solid-state
conformation of the cation. The compound is essentially isostructural to amitriptyline hydrochloride.
The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1613. © The Author
(s), 2021. Published by Cambridge University Press on behalf of International Centre for Diffraction
Data. [doi:10.1017/S0885715621000063]
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I. INTRODUCTION

Doxepin hydrochloride (brand names include Adapin,
Aponal, Curatin, Quintaxon, and Sinequan) is a tricyclic anti-
depressant (TCA). Its chemical structure features a tricyclic
ring system accompanied by an alkyl amine substituent.
TCAs such as doxepin are potent inhibitors of serotonin and
norepinephrine reuptake. Other medicinal uses for doxepin
hydrochloride include treating anxiety and insomnia, and as
a topical application for treating skin dermatitis. Both (E)- and
(Z)-isomers of doxepin hydrochloride are known, and available
commercially. (Z)-doxepin corresponds to cidoxepin. The
IUPAC name of doxepin hydrochloride is (3E)-3-(6H-benzo[c]
[1]benzoxepin-11-ylidene)-N,N-dimethylpropan-1-amine hydro-
chloride. The CAS Registry number for the mixed isomers of
doxepin HCl is 1229-29-4, and for the (E)-isomer is 4698-39-9.
A two-dimensional molecular diagram for the doxepin cation is
shown in Figure 1.

Low-precision powder patterns of doxepin hydrochloride
are contained in the ICDD® Powder Diffraction File (PDF®)
as entries 00-029-1697 (Haga, 1979) and 00-034-1704
(DeCamp, 1982). Higher quality patterns of trans-doxepin
hydrochloride and cis-doxepin hydrochloride are included as
entries 00-034-1706 (DeCamp, 1982) and 00-051-1920 (Jin,
2001), respectively. However, none of these entries contains
crystal structure data. Polymorphism in doxepin hydrochlo-
ride has been studied by Panda (2011).

This work was carried out as part of a project (Kaduk
et al., 2014) to determine the crystal structures of large-
volume commercial pharmaceuticals, and include high-quality

powder diffraction data for these pharmaceuticals in the
Powder Diffraction File (Gates-Rector and Blanton, 2019).

II. EXPERIMENTAL

Doxepin hydrochloride was a commercial reagent, pur-
chased from United States Pharmacopeial Convention (USP)
(Lot # J0M472), and was used as-received. It was unknown
if the sample was a mixture or single isomer. The white pow-
der was packed into a 1.5-mm diameter Kapton capillary and
rotated during the measurement at ∼50 Hz. The powder pat-
tern was measured at 295 K at beam line 11-BM (Lee et al.,
2008; Wang et al., 2008) of the Advanced Photon Source at
Argonne National Laboratory using a wavelength of

Figure 1. The molecular structure of the (E)-doxepin cation.

a)Author to whom correspondence should be addressed. Electronic mail:
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0.414157 Å from 0.5° to 50° 2θ with a step size of 0.001° and
a counting time of 0.1 s step−1. The observed diffraction pat-
tern was found to correspond to trans-doxepin hydrochloride
(Figure 2). The pattern was indexed on a primitive monoclinic
unit cell with a = 13.78472, b = 8.96160, c = 14.30891 Å, β =
96.540°, V = 1756.121 Å3, and Z = 4 using N-TREOR
(Altomare et al., 2013). Analysis of the systematic absences
using EXPO2014 (Altomare et al., 2013) suggested the
space group P21/a, which was confirmed by successful solu-
tion and refinement of the structure. A reduced cell search in
the Cambridge Structural Database (Groom et al., 2016)
yielded 7 hits, among which was amitriptyline hydrochloride
(Klein et al., 1994; YOVZEO). This molecule has the same
connectivity as doxepin, but without the oxygen atom in the

central ring. The structure was solved by direct methods,
including the COVMAP option.

Rietveld refinement for (E)-doxepin HCl was carried out
using GSAS-II (Toby and Von Dreele, 2013). Only the 1.6–
25.0° portion of the pattern was included in the refinement
(dmin = 0.956 Å). All non-H bond distances and angles were
subjected to restraints, based on a Mercury/Mogul Geometry
Check ( Bruno et al., 2004; Sykes et al., 2011) of the mole-
cule. The results were exported to a .csv file. The Mogul aver-
age and standard deviation for each quantity were used as the
restraint parameters and were incorporated using the new fea-
ture Restraints/Edit Restraints/Add MOGUL Restraints,
which reads the bond distance and angle restraints from the .
csv file. The restraints contributed 3.8% to the final χ2. The

Figure 2. Comparison of the synchrotron powder pattern (green) of doxepin hydrochloride to the 2θ, intensity data for the two reported trans-doxepin PDF
entries (00-034-1704 (red), 00-034-1706 (blue)).

Figure 3. The Rietveld plot for the refinement of doxepin hydrochloride. The blue crosses represent the observed data points, and the green line is the calculated
pattern. The cyan curve is the normalized error plot. The vertical scale has been multiplied by a factor of 10× for 2θ > 10.0°.
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hydrogen atoms were included in calculated positions, which
were recalculated during the refinement using Materials
Studio (Dassault, 2019). The Uiso for each hydrogen atom
was constrained to be 1.3× that of the heavy atom to which
it is attached. The background was modeled using a 4-term
shifted Chebyshev polynomial, and an 8-term diffuse scatter-
ing function to model the Kapton capillary and any amorphous
component.

The final refinement of 104 variables using 23 402 obser-
vations and 54 restraints yielded the residuals Rwp = 0.0832
and GOF = 1.59. The largest peak (0.17 Å from Cl43) and
hole (1.59 Å from N34) in the difference Fourier map were
0.29 and −0.17(4) eÅ−3, respectively. The Rietveld plot is
included in Figure 3. The largest errors in the fit are in the
shapes of some of the strong low-angle peaks.

A density functional geometry optimization was carried
out using CRYSTAL14 (Dovesi et al., 2014). The basis sets
for the H, C, N, and O atoms were those of Gatti et al.
(1994), and the basis set for Cl was that of Peintinger et al.
(2013). The calculation was run on eight 2.1 GHz Xeon
cores (each with 6 GB RAM) of a 304-core Dell Linux cluster
at IIT, using 8 k-points and the B3LYP functional, and took
∼52 h.

III. RESULTS AND DISCUSSION

The refined atom coordinates of (E)-doxepin hydrochlo-
ride and the coordinates from the density functional theory
(DFT) optimization are reported in the CIFs attached in the
Supplementary Material. The root-mean-square (rms)
Cartesian displacement of the non-hydrogen atoms in the
Rietveld-refined and DFT-optimized structures is 0.122 Å

(Figure 4). The maximum difference is at the methyl group
C35. The agreement between the refined and optimized
structures is excellent and provides evidence that the experi-
mental structure is correct (van de Streek and Neumann,
2014). This discussion concentrates on the CRYSTAL-opti-
mized structure. The asymmetric unit (with atom numbering)
is illustrated in Figure 5, and the crystal structure is presented
in Figure 6.

All of the bond distances, bond angles, and torsion angles
fall within the normal ranges indicated by a Mercury/Mogul
Geometry check (Macrae et al., 2020). The N–H⋯Cl hydro-
gen bonds lie along the a-axis. As noted below, C–H⋯Cl
hydrogen bonds also occur, and lead to columns of hydrogen
bonds along this axis. The central ring of the cation is
bent, leading to a “butterfly” shape of the fused ring system.
The structure of the doxepin cation is essentially identical
with the cation in YOVZEO (changing the O14 to a carbon
and inverting one of the structures). The rms Cartesian
displacement is only 0.084 Å (Figure 7), and the maximum
displacement is 0.129 Å. The YOVZEO structure could
have been used as an initial model for the Rietveld refine-
ment, if we had not already solved the structure by direct
methods.

Quantum chemical geometry optimizations (DFT/
B3LYP/6-31G*/water) of the (E)-doxepin cation using
Spartan ‘18 (Wavefunction, 2018) indicated that the observed
conformation is 2.9 kcal mol−1 higher in energy than the local
minimum, and thus that the cation is in a low-energy confor-
mation. The minimum-energy conformation (molecular
mechanics) is much more compact and distorted, with the
two aromatic rings parallel to each other and the side chain
also folded toward the ring system. Intermolecular interactions

Figure 4. Comparison of the Rietveld-refined (red) and VASP-optimized (blue) structures of doxepin hydrochloride. The rms Cartesian displacement is 0.122 Å.
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Figure 5. The asymmetric unit of doxepin hydrochloride, with the atom numbering. The atoms are represented by 50% probability spheroids/ellipsoids.

Figure 6. The crystal structure of doxepin hydrochloride, viewed down the b-axis.
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thus play a role in determining the observed solid-state
conformation.

Analysis of the contributions to the total crystal energy
using the Forcite module of Materials Studio (Dassault,
2019) suggests that bond, angle, and torsion distortion terms
are significant in the intramolecular deformation energy, as
might be expected for a fused ring system. The intermolecular
energy is small and dominated by electrostatic attractions,
which in this force-field-based analysis includes hydrogen
bonds. The hydrogen bonds are better analyzed using the
results of the DFT calculation.

Hydrogen bonds are prominent in the crystal structure
(Table I). As expected, there is a strong discrete hydrogen
bond between the protonated nitrogen N34 and the chloride
anion. Perhaps less expected are the six C–H⋯Cl hydrogen
bonds between the methyl groups and the chloride, as well
as additional hydrogen bonds from methylene groups and
the vinyl proton H27. Most of these interactions are captured
by Mogul in its list of short contacts (Figure 8). The hydrogen
bonds are important to determining the solid-state conforma-
tion of the cation.

The volume enclosed by the Hirshfeld surface (Figure 9;
Hirshfeld, 1977; Turner et al., 2017) is 431.69 Å3, 98.33% of
1/4 the unit cell volume. The molecules are thus not tightly
packed. All of the significant close contacts (red in Figure 9)
involve the hydrogen bonds. The volume/non-hydrogen
atom is relatively large, at 19.9 Å3.

The Bravais–Friedel–Donnay–Harker (Bravais, 1866;
Friedel, 1907; Donnay and Harker, 1937) morphology sug-
gests that we might expect platy morphology for
(E)-doxepin hydrochloride, with {001} as the principal
faces. A second-order spherical harmonic model was included
in the refinement. The texture index was 1.010, indicating that
preferred orientation was not significant in this rotated capil-
lary specimen. The powder pattern of (E)-doxepin hydrochlo-
ride from this synchrotron data set is included in the Powder
Diffraction File™ 00-066-1613.

DEPOSITED DATA

The supplementary material for this article, which
includes Crystallographic Information Framework (CIF) files

Figure 7. Comparison of the structure of doxepin hydrochloride (green) to that of amitriptyline hydrochloride (Klein et al., 1994; YOVZEO; orange). The rms
Cartesian displacement of the cations is 0.084 Å.

TABLE I. Hydrogen bonds (CRYSTAL14) in (E)-doxepin hydrochloride.

H-bond D-H (Å) H⋯A (Å) D⋯A (Å) D-H⋯A (°) Overlap (e)

N34–H44⋯Cl43 1.058 1.977 3.030 172.7 0.118
C31–H33⋯Cl43 1.093 2.481 3.532 160.8 0.042
C39–H41⋯Cl43 1.092 2.579 3.634 162.2 0.040
C31–H32⋯Cl43 1.094 2.949 3.926 148.9 0.022
C35–H36⋯Cl43 1.090 2.877 3.847 148.3 0.021
C39–H42⋯Cl43 1.091 2.913 3.841 143.0 0.019
C35–H38⋯Cl43 1.090 2.896 3.831 144.0 0.018
C11–H13⋯Cl43 1.098 2.990 4.017 155.8 0.022
C28–H29⋯Cl43 1.097 3.109 3.817 122.9 0.010
C26–H27⋯Cl43 1.089 3.081 4.062 150.1 0.018
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containing the results of the Rietveld refinement (including the
raw data) was deposited with the ICDD. The data can be
requested at info@icdd.com.
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