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a b s t r a c t

Astronomical images are often plagued by unwanted artifacts that arise from a number of sources
including imperfect optics, faulty image sensors, cosmic ray hits, and even airplanes and artificial
satellites. Spurious reflections (known as ‘‘ghosts’’) and the scattering of light off the surfaces of
a camera and/or telescope are particularly difficult to avoid. Detecting ghosts and scattered light
efficiently in large cosmological surveys that will acquire petabytes of data can be a daunting task.
In this paper, we use data from the Dark Energy Survey to develop, train, and validate a machine
learning model to detect ghosts and scattered light using convolutional neural networks. The model
architecture and training procedure are discussed in detail, and the performance on the training and
validation set is presented. Testing is performed on data and results are compared with those from a
ray-tracing algorithm. As a proof of principle, we have shown that our method is promising for the
Rubin Observatory and beyond.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

When the Dark Energy Survey (DES) (DES Collaboration, 2005,
016) completed its mission in January 2019, it had mapped
5000 square degrees of the southern sky using the 570
egapixel Dark Energy Camera (DECam) (Flaugher et al., 2015)
ounted on the Blanco 4-m telescope at the Cerro Tololo Inter-
merican Observatory in the Chilean Andes. Over the course of
58 nights of data taking spread across 6 years, DES generated a
assive ∼2 PB of data. Due to the nature of the DECam optical
ystems, the DES data are subject to imaging artifacts caused
y spurious reflections (commonly referred to as ‘‘ghosts’’) and
cattered light (Kent, 2013) (see Fig. 1). While all astronomi-
al objects observed by DECam produce ghosts and scattered
ight at some level, this study specifically focuses on identifying
rtifacts from bright stars that are prominent enough to have
negative impact on object detection, background estimation,
nd photometric measurements. In particular, ghosts/scattered
ight present a major source of contamination for studies of low-
urface-brightness galaxies and present a major challenge for
recision photometry of faint objects (Tanoglidis et al., 2021).
hus, much effort has been devoted to the mitigation of such
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effects. For example, after the DES science verification data set
was collected, light baffles were installed around all the filters
to block a scattered-light path. After the first year of DES, the
cylindrical interior surfaces near the optical aperture of the filter
changer and shutter were painted with a black, anti-reflective
paint. This paint reduced the number of possible scattered-light
paths and improved the quality of subsequent data sets (Flaugher
et al., 2015; Kent, 2013). In this article, we seek to identify resid-
ual ghosts and scattered light artifacts in the DES data. We use
the term ‘‘ghosts/scattered light’’ to broadly refer to all artifacts
that result from spurious reflections and scattered light without
distinguishing between the various sources of these artifacts.

Due to the large volume of DES data, the identification of
ghosts and scattered light by eye is impractical. DES has au-
tomated the detection of these artifacts through the develop-
ment of a ray-tracing algorithm that combines a model of the
camera optics, the telescope pointing, and the known locations
and brightness of stars to predict the presence and location of
ghosts/scattered light in an exposure (Section 2). While this al-
gorithm correctly identifies and localizes a significant number of
ghosts/scattered light artifacts, it is limited by the accuracy of the
optical model, the telescope telemetry, and external catalogs of
bright stars. Because the ray-tracing algorithm does not use the
DES imaging data directly, it can miss a substantial number of
ghosts/scattered light artifacts. There is clearly a need for more
effective methods to address this problem, especially in light of
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Fig. 1. Example full focal plane DECam images that exhibit ghosts and scattered light artifacts.
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uture cosmic surveys like the Rubin Observatory Legacy Survey
f Space and Time (LSST), which will have a field of view three
imes as large as DECam and will acquire ∼20 TB of data per night
∼60 PB over ten years) (Ivezić et al., 2019).

This paper explores the use of modern machine learning
ML) methods as a potential solution to the problem of effi-
iently detecting ghosts/scattered light in large optical imaging
urveys. Though ML methods have been in use for over half
century (Samuel, 1959), we are referring specifically to the

dvances in computer vision made in the past two decades. These
dvances were made possible by the confluence of several key
actors that included (1) a deeper understanding of the internal
orkings of the visual cortex (Hubel and Wiesel, 1959), (2) the

ntroduction of convolutional neural networks (CNNs) inspired
y the visual cortex (Lecun et al., 1998), (3) the development of
ractical techniques to train such networks (Hinton et al., 2006),
nd (4) the availability of vastly increased computational power
rom devices like graphics processing units (GPUs).

Attempts have been made to apply such ML techniques to
he identification of telescope artifacts. In an unpublished re-
ort, a CNN was found to significantly outperform a classical
L algorithm (i.e., a support vector machine) when both were
pplied to DES images to identify artifacts belonging to 28 dif-
erent classes (DeRose and Morningstar, 2015). However, in this
tudy the CNN showed evidence of overfitting, which the authors
uggested could be mitigated with additional training data. In-
tead of dealing with multiple classes of artifacts at once, another
ffort relied on a CNN-based architecture to identify artifacts
aused by cosmic rays in Hubble Space Telescope images (Zhang
nd Bloom, 2020). These authors showed that a CNN-based ap-
roach could provide a significant improvement over the cur-
ent state-of-the-art method. In our work, we focus specifically
n ghosts/scattered light to demonstrate a proof-of-principle for
he viability of modern ML techniques for this purpose in large
osmological surveys.

. Conventional approach

The conventional approach to ghosts/scattered light artifact
dentification in DES uses optical ray tracing. A standard optical
esign program is used to perform sequential ray tracing to model
he performance of the telescope and optical corrector. Scattered
ight comes from grazing incidence scatters off of surfaces such as
he camera filter changer and shutter mechanism (Kent, 2013).
hosts are typically produced by reflections between two glass
urfaces within the corrector, and for each possible combina-
ion of surfaces, ghosts were modeled by introducing two extra
irrored surfaces at the appropriate positions into the optical
esign. The model is quite accurate at predicting the locations
f ghosts, but it has difficulty in predicting their intensities,
 e

2

since these depend on details of reflectivities from antireflection
coatings and filters, which in turn depend on the incidence angle
and wavelength of each ray. The reflectivities were calibrated
empirically from ∼100 DES images that contained bright stars
f known intensity. In making predictions for a validation image,
he locations of all known stars were determined in advance,
ntensities for all potential ghosts were estimated, and, if the
ntensity for a particular ghost exceeded a preset threshold, the
rea covered by the ghost was estimated by tracing about 2000
ays sampling the entrance pupil of the telescope, and all CCDs
lluminated by those rays were flagged as being affected.

While the ray tracing algorithm correctly identifies and lo-
alizes a significant number of ghosts/scattered light artifacts, it
s limited by the accuracy of the optical model and telescope
ointing telemetry. The ray tracing algorithm also depends on
redetermined fluxes of bright stars to predict the intensity of
hosts/scattered light artifacts. These fluxes are taken from ex-
ernal catalogs, where they are reported in bands that differ from
hose observed by DES. Furthermore, the fluxes of these stars
re assumed to be constant in time, while bright stars are often
ariable. Because of these factors, the ray tracing algorithm can
iss a substantial number of ghosts/scattered light artifacts. For

his reason, every image that was flagged by the ray-tracing
rogram was visually inspected, and in some cases, the list of
lagged CCDs was adjusted by hand.

. Machine learning approach

Construction, training, and testing of the CNN-based ML model
sed in this paper were all done using the Tensorflow and Keras
achine learning frameworks (Abadi et al., 2015; Chollet et al.,
015).

.1. Model architecture

The choice of network architecture used in this work was
uided by our ultimate goal of investigating whether ML tech-
iques were feasible for detecting ghosts/scattered light arti-
acts, and if so, how they would compare with the conventional
echnique based on ray tracing. Since the main objective was a
roof-of-concept demonstration, we opted for a relatively simple
NN architecture that: (1) was straightforward to implement in a
ommon ML framework, (2) did not require significant computing
esources to train, and (3) had good performance on standard
mage classification data sets that would carry over to artifact
etection in DES exposures. The CNN architecture we settled on
as very similar to AlexNet (Krizhevsky et al., 2012), in its use of
tacked 2D convolutional layers with rectified linear unit (ReLU)
ctivation functions that alternate with max-pooling layers, and
ventually terminated in fully connected layers with SoftMax
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Fig. 2. Architecture of neural network with four convolutional+maxpool layers followed by two fully connected layers.
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utputs. It differed from AlexNet in terms of hyperparameters,
uch as the number of hidden layers, the number of kernels and
heir sizes, stride lengths, and dropout values.

The detailed design of the CNN we used is shown in Fig. 2. The
etwork is composed of four 2D convolutional layers, each fol-
owed by a maximum pooling layer (Lecun et al., 1998; Krizhevsky
t al., 2012). The number of output filters in the sequence of four
onvolutional layers is 16, 32, 32, and 64, respectively. Filters in
ll four convolutional layers have kernel sizes of 3 × 3, stride
engths of one, and use ReLU activation functions. The pool sizes
sed in the pooling layers are 4 × 4 for the first layer and
× 2 for all subsequent layers. Stride lengths for all pooling

ayers correspond to their pool sizes. The final two layers of the
etwork, following the fourth pooling layer, are fully connected
FC) layers. The first FC layer has 128 neurons with ReLU activa-
ion functions and the last FC layer has 2 output neurons using
oftMax activation functions. The larger of these two outputs,
hich sum to a value of one, was selected to determine the
odel prediction. ‘‘Dropouts’’ are performed prior to each FC

ayer in which a fraction (0.4 and 0.8 for the first and second
C layers, respectively) of the inputs are randomly ignored. This
ethod lessens the chances of overfitting by minimizing co-
daptations between layers that do not generalize well to unseen
ata (Srivastava et al., 2014). The total number of parameters in
he model is 1,212,578.

.2. Training the model

The images used for training the model were derived from
00 × 723 pixel, 8-bit grayscale images in the portable net-
ork graphics format, covering the full DECam focal plane. These

mages were produced with the STIFF program (Bertin, 2012),
ssuming a power-law intensity transfer curve with index γ =

.2. Minimum and maximum intensity values were set to the

.005 and 0.98 percentiles of the pixel value distribution, re-
pectively. The training set consisted, initially, of equal portions
f images that had ghosts/scattered light (positives) and images
hat did not (negatives). The positive sample consisted of 2389
mages that the ray-tracing program identified as likely to have
hosts/scattered light artifacts and was drawn from the full set
f ∼132k images from all DES observing periods. After excluding
he images flagged by ray-tracing program, an equal number of
mages were randomly selected from the remainder of the full
ata set to form the negative sample of the training set.
3

Prior to feeding the images to the network, they were first
ownsampled to 400 × 400 pixels, which is the input size of the
irst convolutional layer. The pixel values in each image were then
ormalized to a range whose minimum and maximum corre-
ponded, respectively, to the first quartile Q1(x) and third quartile
3(x) of the full distribution in the image, by multiplying each
ixel value, xi, by a factor si =

xi−Q1(x)
Q3(x)−Q1(x)

. To improve the model’s
ability to correctly identify images that contain ghosts/scattered
light artifacts, the training images were also randomly flipped
either along the horizontal axis by reversing the ordering of pixel
rows, or along the vertical axes by reversing the ordering of pixel
columns. This was done using the ImageDataGenerator class
in Keras, which does an in-place substitution of the input images
with the flipped versions, without changing the total size of the
data sample (Chollet et al., 2015).

3.2.1. Model training procedure
The model was trained using 80% of the sample described in

the previous section and the remaining fraction was set aside
for validation. Apart from this training/validation sample was
a separate test sample used to evaluate the model, which is
described in Section 3.3. Optimal weights for the model were
obtained using Adam (Kingma and Ba, 2015), a version of the
mini-batch stochastic gradient method that uses dedicated learn-
ing rates for each parameter and adapts their values based on
their history. The weights were updated iteratively in randomly
picked batches of 32 images (batch size), completing a full pass
over the entire sample in one epoch. A total of 30 training epochs
were performed. The loss function used was categorical cross-
entropy, calculated according to L = −

∑N
i=1

∑M
j=1 yij · log(pij),

where the index i runs over the number of observations, N , and
the index j is taken over the number of classes, M . pij is the
probability and yij is either 0 or 1, depending on whether class j
is the correct classification for observation i. In our case, we have
two classes (M = 2) corresponding to whether or not an image
contains a ghost/scattered light artifact.

Upon visual examination of the false positives and false neg-
atives after training, it was found that some images were misla-
beled. This was because images labeled as lacking ghosts/
scattered light artifacts were initially selected based on the ray-
tracing program output. As it turned out, many ‘‘clean’’ images
actually contained ghosts/scattered light. When images that were
positively identified by the ray-tracing program were inspected,
the opposite case was also found to be true — some images

labeled as having ghosts/scattered light did not exhibit detectable
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Fig. 3. Evolution of the accuracy (left) and loss (right) as a function of epoch as evaluated on the training and validation samples.
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Fig. 4. ROC curves and the associated areas under the ROC curves (AUCs) are
hown separately for the training, validation, and independent test samples. The
reen dash-dotted line represents the reference case of no discriminating power
AUC=0.5).

rtifacts. Therefore, several iterations were required in order to fix
he mislabeled images and repeat the 30-epoch training process.

.2.2. Training and validation results
The final results of training are shown in Figs. 3, 4, and 5.

he two panels in Fig. 3 show the evolution of the training
ccuracy (left) and loss (right) over the epochs. The validation
urves follow the training curves closely, indicating no overfit-
ing. Accuracies of over 94% are achieved on both training and
alidation sets at the end of 30 epochs.
Fig. 4 plots the receiver operating characteristic curve (ROC)

or the trained model, showing the true positive rate versus the
alse positive rate. The curves resulting from the application of
his model to the training (light blue dotted line) and validation
solid blue line) samples are shown separately. The area under
he ROC curve (AUC) for the validation sample is 0.987, indicating
ood separation between the two classes of images. For compar-
son, the diagonal green dash-dotted line shows the case when
4

Table 1
Summary of performance metrics for each sample. Accuracy, precision, and recall
are calculated as described in Section 3.3 using the values in Fig. 5. The AUCs
are the areas under the ROC curves in Fig. 4.
Performance summary

Sample Accuracy Precision Recall AUC

Training 0.963 0.959 0.967 0.990
Validation 0.944 0.927 0.959 0.987
Test 0.861 0.837 0.897 0.917

a model has absolutely no discriminating power between classes
where AUC=0.5.

Fig. 5a and b plot the confusion matrices for the training and
alidation samples, respectively. In each matrix, the values in
he first row represent the number of true negatives in the first
olumn and the number of false positives in the second column.
he values in the second row represent the number of false
egatives in the first column and the number of true positives
n the second column.

.3. Evaluating the model

The validation set was not used directly to train the model,
owever, it served as an early indicator of model performance
n the training process. In this respect, it could have influenced
he model and hyperparameter choices. The performance of the
ully trained model was therefore evaluated in an unbiased way
sing an independent test data sample. This sample was con-
tructed by visually selecting an equal number of images contain-
ng ghosts/scattered light artifacts and those without them, and
abeling them according to their true class. It consisted of 1761
ECam images spread across all DES data taking periods. It also
xcluded all the images used for training and validation, and was
37% of that sample in size. The fully trained model was applied

o this sample to predict which class they belonged to. The ROC
urve for the test data sample is represented by the dashed red
ine in Fig. 4 with AUC=0.917, indicating good discrimination
etween the two classes. From the confusion matrix shown in
ig. 5c, one calculates accuracy =

TP+TN
Total = 0.861, precision = p =

TP
TP+FP = 0.837, recall = r =

TP
TP+FN = 0.897, and F1 = 2 ·

p·r
p+r =

0.866, where TP, FP, TN, and FN are, respectively, the number of
true positives, false positives, true negatives and false negatives.
These results are summarized in Table 1 together with those for
the training and validation samples.
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Fig. 5. The confusion matrices are shown separately for the (a) training, (b) validation, and (c) independent test samples. In each matrix, the number of true negatives
and positives are shown, respectively, in the upper left and right boxes, while the number of false positives and negatives are shown, respectively, in the upper
right and lower left boxes.
Fig. 6. Example false positives found by the trained model in the test set described in Section 3.3. The exposures shown in panels (a), (b), and (c) have poor data
uality due to heavy cloud cover which contributes to misclassification by the CNN. The barred spiral NGC 1365 in the Fornax galaxy cluster (d), Galactic cirrus (e),
nd the Omega Centauri globular cluster in (f), exhibit features similar to those found in ghosting artifacts. The faint resolved stars in the periphery of the LMC in
g), and the artificial earth-orbiting satellite track in (h), have features found in scattered light artifacts. There is a barely visible ghost artifact in columns 4 & 5 of
he middle two rows of CCDs in (i).
Typical examples of misclassified images from the test sample,
n the form of false positives and false negatives, are shown in
5

Figs. 6 and 7, respectively. Although the images in the first class
of false positives represented by Fig. 6a–c do not bear an obvious
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Fig. 7. Selected examples of false negatives found by the trained model in the test set described in 3.3. Faint ghosts/scattered light artifacts are visible in the upper
left corner of (a), rightmost column CCD in the 5th row from the top of (b), and rightmost column CCDs in the 8th and 9th rows from the top of (c).
resemblance to those containing ghosting/scattered light artifacts,
they all exhibit poor data quality from nearly a magnitude of
extinction due to clouds that may be confusing the CNN. These
images do not pass the high-level DES data quality criteria. The
second class of false positives contains objects that exhibit fea-
tures similar to those found in ghosting artifacts (Fig. 6d–f) and
scattered light artifacts (Fig. 6g & h), making them intuitively
easier to appreciate. The third class of false positives, represented
by Fig. 6i, is in some sense true positives, because they contain
faint artifacts close to the human detection threshold. In this
image, there is a ghost artifact faintly visible in the 4th and 5th
columns from the left, in the two middle rows of CCDs. The
false negatives in Fig. 7 are easier to understand because they
all contain ghost artifacts that are not too difficult to see (their
locations are described in the figure caption).

Our application involves a large data set where images with
hosts/scattered light constitute a relatively small fraction of the
ntire sample. False negatives carry a high cost due to their detri-
ental effects on astronomical measurement and the difficulty
f manual identification in a data set of this size. On the other
and, false positives are less of a problem since they are easier
o identify from the smaller sample predicted by the model to
e ghosts/scattered light. Our model’s true positive rate or recall
f ∼90% shows it is able to identify a significant fraction of
ll images with ghosts/scattered light, and its precision of ∼84%
ndicates that false positives are also kept under control, both
f which are favorable characteristics for this application. As
ndicated by the AUC, our model performs better on the training
nd validation set than on the test set. This may be an indication
f biases introduced in the construction of the former set, which
s based on images identified by the ray-tracing program.

. Applying the trained model on DES data and comparing
ith the traditional method

The CNN trained according to the details described in Sec-
ion 3.2 was used to perform inference on the DES Year-5 data
et consisting of 23,755 full focal plane DECam images with
xposure numbers ranging from 666747 to 724364, which were
repared using the procedure described in Section 3.2. This set
lso included the Year-5 images that were used in the train-
ng+validation and testing stages. For each image, the model was
sed to predict whether it contained ghosts/scattered light or
hether it was free from such artifacts. The model identified
,285 images as positives, containing ghosts/scattered light arti-
acts. Several examples of these images are shown in Fig. 8. Only
16 images in this set of positives were false positives, exhibiting
early imperceptible or no sign of ghosts/scattered light artifacts.
he precision achieved was therefore p = 2569/3285 = 0.782.
6

For comparison, the ray-tracing program described in Sec-
tion 2 classified 259 DES Year-5 images as containing artifacts.
Out of these, 241 were in common with the set of positives
identified by the ML model, and all of the images in this overlap
region were true positives. The remaining 18 that were positively
classified only by the ray-tracing program were all true positives
except for 8. The precision achieved by the ray tracing model was
therefore p =

241+10
259 = 0.969.

The difference in precision from the two methods may be due
to the more limited range of image types dealt with by the ray-
tracing program, and the issue raised in Section 3.3 about the
training and validation set being based on the images identified
by that program.

5. Computer resource utilization

The conventional ray tracing algorithm takes on the order of a
few ms per image for actual ray tracing. Additional time is spent
querying the bright star catalog around each exposure as a pre-
processing step. This algorithm was run on a yearly basis as input
to the DES data processing.

For the CNN-based approach, training the model over 30
epochs using the procedure described in Section 3.2.1 on a laptop
with an Intel Xeon E-2176M CPU, 32 GB RAM, and a mid-
range 4GB Nvidia Quadro P2000 Mobile GPU took 8.8 min (18
s/epoch) to complete. Utilizing the 16 GB Nvidia P100 GPUs
available in the Google Cloud Colaboratory Jupyter notebook
environment (Google LLC, 2021), reduces the training time by a
factor of 4× (4.4 s/epoch).

The process of performing inference with the CNN on the
23,755 image DES Year-5 data set described in Section 4 took
50 s (2 ms/image) on the Quadro-equipped laptop described
above. Such short inference times are indeed promising for real-
time artifact identification on future large-scale cosmic surveys,
especially since the network model has not even been optimized
for speed yet. Furthermore, there now exist practical high-level
synthesis tools that can implement these network models on
FPGA hardware for critical real-time applications (Duarte et al.,
2018).

6. Conclusion

We have successfully applied a machine learning based
method to identify DES images containing ghosts/scattered light
artifacts. This method positively identified ∼97% of all images
that had been previously identified as containing artifacts by a
traditional ray-tracing method. Overall, it also identified ∼10×
more images with actual artifacts, with a precision of ∼78%. This
serves as a proof-of-principle demonstrating the effectiveness of
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Fig. 8. The images above are examples of DES Year 5 images predicted by the
NN described in this paper to exhibit ghosts/scattered light artifacts, but which
ere not identified by the ray-tracing algorithm as such. Figures (a) to (d) show
xamples that have actual artifacts, representing true positives. Figures (e) and
f) are examples of the ∼23% described in the text that either do not exhibit
rtifacts or have negligible levels, representing false positives.

sing modern ML methods in identifying ghosts/scattered light
n optical telescope images from a cosmic survey. It lays the
oundation for possible future refinements. The scope of this
ork was limited to detecting the presence of these artifacts in
n image without identifying their location within the image.
n future work, we will take advantage of recent developments
n object detection and semantic segmentation to expand the
apability of our method to include the identification of the
ndividual pixels associated with each artifact (He et al., 2018).
uch enhancements, coupled with the results presented in this
ork, will benefit future cosmic surveys like the LSST, which will
e faced with the challenge of even larger data sets.
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