再録 報文

Front Genet. 2020 Jun 16;11:595. doi: 10.3389/fgene.2020.00595.

Genome-Wide Association Study Reveals a Novel Association Between MYBPC3 Gene Polymorphism, Endurance Athlete Status, Aerobic Capacity and Steroid Metabolism

Fatima Al-Khelaifi^{1,2}, Noha A Yousri^{3,4}, Ilhame Diboun⁵, Ekaterina A Semenova^{6,7}, Elena S Kostryukova⁶, Nikolay A Kulemin⁶, Oleg V Borisov^{6,8}, Liliya B Andryushchenko⁹, Andrey K Larin⁶, Edward V Generozov⁶, Eri Miyamoto-Mikami¹⁰, Haruka Murakami¹¹, Hirofumi Zempo^{10,12}, Motohiko Miyachi¹¹, Mizuki Takaragawa¹⁰, Hiroshi Kumagai^{10,13}, Hisashi Naito¹⁰, Noriyuki Fuku¹⁰, David Abraham², Aroon Hingorani², Francesco Donati¹⁴, Francesco Botrè¹⁴, Costas Georgakopoulos¹, Karsten Suhre¹⁵, Ildus I Ahmetov^{6,9,16,17}, Omar Albagha^{5,18}, Mohamed A Elrayess¹⁹

¹Anti-Doping Laboratory, Qatar. ²UCL-Medical School, UK. ³Weill Cornell Medicine, Qatar. ⁴Alexandria University, Egypt. ⁵Hamad Bin Khalifa University, Qatar. ⁶Federal Medical Biological Agency, Russia. ⁷Kazan Federal University, Russia. ⁸University Hospital Bonn, Germany. Additional author information available on the last of the article.

Abstract

Background: The genetic predisposition to elite athletic performance has been a controversial subject due to the underpowered studies and the small effect size of identified genetic variants. The aims of this study were to investigate the association of common single-nucleotide polymorphisms (SNPs) with endurance athlete status in a large cohort of elite European athletes using GWAS approach, followed by replication studies in Russian and Japanese elite athletes and functional validation using metabolomics analysis.

Results: The association of 476,728 SNPs of Illumina DrugCore Gene chip and endurance athlete status was investigated in 796 European international-level athletes (645 males, 151 females) by comparing allelic frequencies between athletes specialized in sports with high (n = 662) and low/moderate (n = 134) aerobic component. Replication of results was performed by comparing the frequencies of the most significant SNPs between 242 and 168 elite Russian high and low/moderate aerobic athletes, respectively, and between 60 elite Japanese endurance athletes and 406 controls. A meta-analysis has identified rs1052373 (GG homozygotes) in Myosin Binding Protein (MYBPC3; implicated in cardiac hypertrophic myopathy) gene to be associated with endurance athlete status ($P = 1.43 \times 10^8$, odd ratio 2.2). Homozygotes carriers of rs1052373 G allele in Russian athletes had significantly greater VO2 max than carriers of the AA + AG (P = 0.005). Subsequent metabolomics analysis revealed several amino acids and lipids associated with rs1052373 G allele (1.82×10^{-5}) including the testosterone precursor androstenediol (3beta,17beta) disulfate.

Conclusions: This is the first report of genome-wide significant SNP and related metabolites associated with elite athlete status. Further investigations of the functional relevance of the identified SNPs and metabolites in relation to enhanced athletic performance are warranted.

Additional author information: ⁹Plekhanov Russian University of Economics, Russia. ¹⁰Juntendo University. ¹¹National Institutes of Biomedical Innovation, Health and Nutrition. ¹²Tokyo Seiei College. ¹³Japanese Society for the Promotion of Science. ¹⁴Federazione Medico Sportiva Italiana, Italy. ¹⁵Weill Cornell Medicine-Qatar, Qatar. ¹⁶Liverpool John Moores University, United Kingdom. ¹⁷Kazan State Medical University, Russia. ¹⁸The University of Edinburgh, UK. ¹⁹Qatar University, Qatar.