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Abstract

A kind of stage-structure Rosenzweig–MacArthur model with linear harvesting in prey and cannibalism in predator is investigated in this paper. By
analyzing the model, local stability of all possible equilibrium points is discussed. Moreover, the model undergoes a Hopf–bifurcation around the interior
equilibrium point. Numerical simulations are carried out to illustrate our main results.
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1. Introduction

In the recent decade, mathematics ecology has become one of the dominant analytical scopes [1, 2]. It studies the
reality of predator-prey interactions, including changes in population densities because of their interaction [3–5].
The famous modified one is a stage-structure Rosenzweig-MacArthur model defined by

dx1

dt
=rx2

(
1− x1

k

)
− αx1 −

βx1x3

x1 + n1
dx2

dt
=αx1 − δ1x2

dx3

dt
=

ϕβx1x3

x1 + n1
− δ2x3

(1)

where x1, x2 and x3 represents the densities of immature and mature prey as well as predator population at
time t, respectively. We assume that the immature prey grows logistically with constant intrinsic rate r and k
is the carrying capacity of the environment. β and n1 are maximum values which per capita reduction rate of
immature prey can attain and measure the extent to which enviroment provides protection to immature prey. α
and δ1 represent the surviving rate of immaturity to reach maturity and the per capita death rate of the mature
prey, respectively. We assume that the predator does not attack and eat the mature prey. A conversion rate of the
consumed prey into the predator birth is ϕ, and next, δ2 denotes the per capita death rate of the predator [6–8].

Now, we consider the harvesting and cannibalism processes to modify the stage-structure predator-prey model
in [6]. Theoretically, these two aspects can affect the existence of any populations in the system. For consumption
and commercial, the immature prey and mature prey are continually being harvested at a linear function rate
by various interested parties [9, 10]. The harvesting process changes the population density in the system [11–
13]. Although there are several harvesting scheme exist such as threshold harvesting [14–17] which assumes the
harvesting is stopped when the population density attains a constant level; and Michaelis-Menten (or nonlinear)
harvesting [18–20] which assumes the harvesting has a saturation level, we prefer to employ the linear harvesting
[3, 13] which is suitable for a large number of population density. This type of harvesting also fitted for some
cases of bioeconomic resources such as fisheries and plantation. On the other hand, many scientists study the
vigorous behaviors of the ecosystem with cannibalism. This circumstance represents the behavior of the species
which consumes each others and impacts to the decrease of the population density. [21–26]. Another impact
of the cannibalism process is to help provide a source of food in the system [21, 25, 26]. The combination of
harvesting and cannibalism aspects in the system (1) is very appealing to investigate. As long as we know, The
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stage-structure Rosenzweig-MacArthur model involving these two ecological component (linear harvesting in
prey and canibalism in predator) has never been previously studied. Thus, the local dynamics of this model is
the main novelty of our research.

Note that the local stability of the system (1) was investigated by Beay et al. [6]. Furthermore, dynamics of the
system (1) with prey refuge was studied by Beay and Saija [7]. Next, in [8] Beay et al. consider intraspecific
competition in the system. In this paper, we consider the immature prey and mature prey populations of model
(1) where both populations are subjected to a constant rate of harvesting, where h1 and h2 represents linear
harvesting rate of immature and mature preys, respectively. In addition, there is a process of cannibalism in the

predator population. σx3
2

x3+ω denotes the cannibalism of the predator, where σ is the rate of cannibalism. The model
with linear harvesting in prey and cannibalism in predator is

dx1

dt
=rx2

(
1− x1

k

)
− αx1 −

βx1x3

x1 + n1
− h1x1

dx2

dt
=αx1 − δ1x2 − h2x2

dx3

dt
=

ϕβx1x3

x1 + n1
− δ2x3 −

σx3
2

x3 + ω

(2)

Using the following transformation

(a, b, c, t)→
(

x1

k
,

x2

k
,

βx3

rk
, rt
)

the model in system (2) can be simplified as

da
dt

=b (1− a)− φa− ac
a + m

db
dt

=θa− δb

dc
dt

=
ξac

a + m
− ηc− µc2

c + ψ

(3)

where φ = α+h1
r , m = n1

k , θ = α
r , δ = δ1+h2

r , ξ = βϕ
r , η = δ2

r , µ = σ
r , and ψ = ωβ

rk .

The paper is arranged as follows. In the next section, we analyze the existence and local stability of the all
equilibrium points of system (3). In Section 3, we explore the existence of Hopf–bifurcation. Numerical
simulations are performed in Section 4. We end this work with a conclusion.

2. Existence and stability analysis of equilibrium points

It is easy to show that system (3) has three non-negative equilibrium points as follows.

• The extinction equilibrium E0 = (0, 0, 0), which there is no population in the habitat.
• The predator–free equilibrium E1 = (a1, b1, 0), which exists if

θ > φδ, (4)

where a1 = θ−φδ
θ and b1 = θ−φδ

δ .
• The interior equilibrium E∗ = (a∗, b∗, c∗), i.e. all of species coexist, where a∗ in the equilibrium point E∗ is

the positive solution of the cubic equation

A1a∗3 + A2a∗2 + A3a∗ + A4 = 0,

where

A1 =θ(η + µ− ξ),
A2 =(δφ− θ)(η + µ− ξ) + mθ(2η + 2µ− ξ),

A3 =m(δφ− θ)(2η + 2µ− ξ) + m2θ(η + µ) + δψ(ξ − η),

A4 =m2(δφ− θ)(η + µ)−mηδψ.
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The existence of positive root a∗ of a cubic equation can be easily derived by Cardano’s criteria. The detail
of Cardano’s criteria can be seen, for example, in [27] and is not discussed here. Furthermore, the values of
b∗ and c∗ are respectively given by

b∗ =
θ

δ
a∗ and c∗ =

1
δ
[θ(a∗ + m)− (mδφ + a∗(θa∗ + δφ + mθ))] .

Theorem 1. For system (3), we have the following stability properties of its equilibrium points:

(i) The equilibrium point E0 is locally asymptotically stable if θ < φδ.
(ii) The equilibrium point E1 is locally asymptotically stable if η < ξ + v.

(iii) The coexistence equilibrium point E∗ is locally asymptotically stable if τ1 > 0, τ3 > 0 and τ1τ2 > τ3 where τ1, τ2
and τ3 are defined as in the proof.

proof. Now to study the local stability of these equilibrium points, the Jacobian matrix from system (3) is
determined as

J =


−b− φ− ac−a(a+m)

(a+m)2 1− a − a
a+m

θ −δ 0
ξcm

(a+m)2 0 ξa
a+m − µ + µc2−2µc(c+ψ)

(c+ψ)2

 (5)

By analyzing the eigenvalues of the Jacobian matrix (5) at each equilibrium point, we have the following stability
properties.

(i) The Jacobian matrix of the system (3) at E0 has eigenvalues λ1 = −η and λ2,3 = − 1
2 B1± 1

2

√
B2

1 − 4(φδ− θ),
where B1 = δ + φ > 0. If

θ < φδ, (6)

then λ2,3 < 0. This causes the equilibrium point E0 to be locally asymptotically stable.
(ii) The Jacobian matrix of the system (3) at E1 has eigenvalues λ1 = δφ[(η−ξ)−v]

(1+m)
(

θ− δφ
1+m

) , and λ2,3 = − 1
2δ B1 ±

1
2δ

√
B2

1 − 4δ2(θ − φδ), where B1 = δ2 + θ. If

η < ξ + v, (7)

then λ1 < 0, where v = θ(η(1+m)+ξ)
δφ . This causes the equilibrium point E1 to be locally asymptotically

stable.
(iii) The characteristic equation of the Jacobian matrix of the system (3) at E∗ is given by the following cubic

equation
λ3 + τ1λ2 + τ2λ + τ3 = 0, (8)

where

τ1 =δ− (ϑ1 + ϑ5),
τ2 =ϑ1ϑ5 − [δ(ϑ1 + ϑ5) + θϑ2 + ϑ3ϑ4] ,
τ3 =ϑ5(δϑ1 + θϑ2)− δϑ3ϑ4,

ϑ1 =− b∗ − φ− a∗c∗ − a∗(a∗ + m)

(a∗ + m)2 ,

ϑ2 =1− a∗,

ϑ3 =− a∗

a∗ + m
,

ϑ4 =
ξc∗m

(a∗ + m)2 ,

ϑ5 =
ξa∗

a∗ + m
− µ +

µc∗2 − 2µc∗(c∗ + ψ)

(c∗ + ψ)2 .
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(a) For θ = 0.3 (b) For θ = 0.4

Figure 1. Phase-portraits of the system (3) with parameter values: φ = 0.6, m = 0.9, δ = 0.6, ξ = 0.5, η = 0.2, µ =

0.1, ψ = 0.09. The red and green circles represent unstable and stable equilibrium point, respectively.

The stability of E∗ can be determined by the Routh-Hurwitz criterion, i.e. E∗ is locally asymptotically stable
if τi > 0, i = 1, 3 and

τ1τ2 − τ3 = (ϑ1 + ϑ5)
[
ϑ3ϑ4 + δ(ϑ1 + ϑ5 − δ2)

]
+ θϑ2(ϑ1 − δ)− (ϑ2

1ϑ5 + ϑ1ϑ2
1) > 0.

�

3. Existence of Hopf-bifurcation

In this part, we study the Hopf-bifurcation around the interior equilibrium point E∗ = (a∗, b∗, c∗) of the system
(3). We consider ξ, η, and µ as the bifurcation parameters. ξ = βϕ

r , η = δ2
r , and µ = σ

r are chosen as the
bifurcation parameters because r is strongly related to the growth of immature prey, which controls energy input
in the predator-prey system. Furthermore β, ϕ, σ, and δ2 are important parameters governing the exchange of
energy from prey to predator as well as towards the extinction of predator.

Theorem 2. System (3) undergoes a Hopf-bifurcation around coexistence equilibrium E∗ = (a∗, b∗, c∗) when parameter
ξ passes through ξ∗, where ξ∗ satisfies τ4(ξ

∗) = τ1(ξ
∗)τ2(ξ

∗)− τ3(ξ
∗) = 0 provided that δ > (ϑ1 + ϑ5) and ϑ1ϑ5 >

[δ(ϑ1 + ϑ5) + θϑ2 + ϑ3ϑ4].

proof. For ξ = ξ∗, by the condition τ4 = 0, the characteristic equation (8) from Theorem 1 can be written as

(λ2 + τ2)(λ + τ1) = 0. (9)

If δ > (ϑ1 + ϑ5) and ϑ1ϑ5 > [δ(ϑ1 + ϑ5) + θϑ2 + ϑ3ϑ4], then from the proof of Theorem 1, we have that τ1 > 0
and τ2 > 0. The roots of equation (9) are λ1 = −τ1, and λ2,3 = i

√
τ2. For any ξ, the characteristic roots are

λ1(ξ) = −τ1(ξ) and λ2,3(ξ) = κ(ξ)± iχ(ξ). Substituting λ(ξ) = κ(ξ)± iχ(ξ) into equation (9) and calculating
the derivative, we get

M1κ′ −M2χ′ + M3 =0,

M2κ′ + M2χ′ + M4 =0.
(10)

where

M1 =3(κ2 − χ2) + 2τ1κ + τ2,
M2 =6κχ + 2τ1χ,

M3 =τ′1(κ
2 − χ2) + τ′2κ + τ′3,

M4 =2τ′1κχ + τ′2χ.
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(a) For ξ = 0.301 (b) For ξ = 0.3015

Figure 2. Phase-portraits of the system (3) with parameter values: φ = 0.6, m = 0.9, δ = 0.6, ξ = 0.5, η = 0.2, µ =

0.1, ψ = 0.09. The red and green circles represent unstable and stable equilibrium point, respectively.
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(a) For ξ = 0.301
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(b) For ξ = 0.3015

Figure 3. Time series of solutions of the system (3) with parameter values: φ = 0.6, m = 0.9, δ = 0.6, ξ = 0.5, η =

0.2, µ = 0.1, ψ = 0.09, and initial values: (0.001, 0.001, 0.001).

By solving system (10) and using the fact that M2M4 + M1M3 6= 0, we get(
dRe(λ)

dξ

) ∣∣∣∣∣
ξ=ξ∗

= κ′
∣∣∣
ξ=ξ∗

= −
(

M2M4 + M1M3

M2
1 + M2

2

)
6= 0. (11)

Thus, the transversality condition be in force, and Hopf-bifurcation come to pass at ξ = ξ∗. �

According to Theorem 2, there exists a Hopf-bifurcation in the stage-structure predator-prey model (3) where the
Hopf bifurcation is controlled by ξ. In fact, using the same argument as in the proof of Theorem 2, we can show
that the Hopf-bifurcation can also be controlled by parameters η and µ. The possibility of the Hopf-bifurcation
occurance is stated in the following theorems.

Theorem 3. System (3) undergoes a Hopf-bifurcation around coexistence equilibrium E∗ = (a∗, b∗, c∗) when parameter
η passes through η∗, where η∗ satisfies τ4(η

∗) = τ1(η
∗)τ2(η

∗)− τ3(η
∗) = 0 provided that δ > (ϑ1 + ϑ5) and ϑ1ϑ5 >

[δ(ϑ1 + ϑ5) + θϑ2 + ϑ3ϑ4].

Theorem 4. System (3) undergoes a Hopf-bifurcation around coexistence equilibrium E∗ = (a∗, b∗, c∗) when parameter
µ passes through µ∗, where µ∗ satisfies τ4(µ

∗) = τ1(µ
∗)τ2(µ

∗)− τ3(µ
∗) = 0 provided that δ > (ϑ1 + ϑ5) and ϑ1ϑ5 >

[δ(ϑ1 + ϑ5) + θϑ2 + ϑ3ϑ4].
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(a) For η = 0.15 (b) For η = 0.17

Figure 4. Phase-portraits of the system (3) with parameter values: φ = 0.1, m = 0.03, θ = 0.5, δ = 0.3, ξ = 0.5µ =

0.1, ψ = 0.09. The red and green circles represent unstable and stable equilibrium point, respectively.
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(a) For η = 0.15
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(b) For η = 0.17

Figure 5. Time series of solutions of the system (3) with parameter values: φ = 0.1, m = 0.03, θ = 0.5, δ = 0.3, ξ =

0.5µ = 0.1, ψ = 0.09, and initial values: (0.001, 0.001, 0.001).

4. Numerical Simulation

Since the field data are not available, the simulations are performed by using some hypothetical parameter values.
We first consider the following parameter values: φ = 0.6, m = 0.9, θ = 0.3, δ = 0.6, ξ = 0.5, η = 0.2, µ = 0.1, ψ =

0.09. Because φδ =
(

α+h1
r

) (
δ1+h2

r

)
> θ = α

r , Theorem 1 says that E0 is locally asymptotically stable. The
behavior of this case is depicted in Figure 1a. Next, consistently using the same parameters, except θ = 0.4, the
simulation is done. In addition to E0 unstable, the system (3) also has E1 = (0.1, 0.07, 0). Since v = 0.98 and
η − ξ = −0.3, therefore condition (7) holds, so E1 is locally asymptotically stable. Behavior of this situation is
plotted in Figure 1b.

To see a Hopf–bifurcation of the system, we now choose parameter values: φ = 0.1, m = 0.03, θ = 0.5, δ =
0.3, η = 0.2, µ = 0.1, ψ = 0.09. According to Theorem 2, the system (3) undergoes a Hopf bifurcation around E∗

where the bifurcation point is at ξ∗ = 0.3012. For ξ < ξ∗, the solution of system is convergent to point E∗. It
resulted that the point E∗ is local asymptotically stable, while the solution of system is convergent to a limit cycle
for ξ > ξ∗. Behavior of this situation is plotted in Figure 2, while the time series is plotted in Figure 3.

Based on Theorem 3, it is known that the parameter η also can control the occurrence of Hopf-bifurcation. To
simulation of this case, we choose φ = 0.1, m = 0.03, θ = 0.5, δ = 0.3, ξ = 0.5, µ = 0.1, ψ = 0.09. We obtain that
η∗ = 0.16234. If η < η∗, we obtain that E∗ is locally asymptotically stable. Different results are shown when
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(a) For µ = 0.31 (b) For µ = 0.33

Figure 6. Phase-portraits of the system (3) with parameter values: φ = 0.1, m = 0.03, θ = 0.5, δ = 0.3, ξ = 0.5, η =

0.2, ψ = 0.09. The red and green circles represent unstable and stable equilibrium point, respectively.
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(a) For µ = 0.31
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(b) For µ = 0.33

Figure 7. Time series of solutions of the system (3) with parameter values: φ = 0.1, m = 0.03, θ = 0.5, δ = 0.3, ξ =

0.5, η = 0.2, ψ = 0.09, and initial values: (0.001, 0.001, 0.001).

η > η∗, E∗ is unstable and convergent to a limit cycle. The phase-portraits and time series of this case is depicted
in Figure 4 – 5.

As previously stated in Theorem 4, the Hopf-bifurcation can also be controlled by parameter µ. The following are
the parameter values used to display this behavior: φ = 0.1, m = 0.03, θ = 0.5, δ = 0.3, ξ = 0.5, η = 0.2, ψ = 0.09.
In this case, we get µ∗ = 0.32435. For µ < µ∗, the limit cycle is stable and E∗ is unstable. However, when µ > µ∗,
the solution of system is convergent to E∗ and it is asymptotically stable. Figure 6 and Figure 7 illustrates the
behavior and time series of this situation, respectively.

5. Conclusion

We have considered a stage–structure Rosenzweig–MacArthur model with linear harvesting in prey and
cannibalism in predator. By analyzing the eigenvalues and characteristic equations, the local stability of the
equilibrium is investigated. E1 exist if condition (4) holds. It causes condition (6) in Theorem 1 do not apply, so
that E0 becomes unstable. From the conditions (4) and (6), we can see that φ = α+h1

r and δ = δ1+h2
r influence the

existence of E1 and also the stability of E0. Hence, linear harvesting rate of immature prey (h1) and also mature
prey (h2) are crucial to the existence or extinction of all species in the system.

The model exhibits that Hopf-bifurcation occurs by selecting the appropriate parameters. These bifurcations are
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ecologically important to illustrate the fluctuations of population. From our results, the rate of cannibalism in
predator (σ) plays an important role in the fluctuation processes of all species in the system. This can be seen in
µ = σ/r, which is a parameter that can lead to the occurrence of Hopf-bifurcation. Numerical simulations are
actualized to support our results.
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