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ARTICLE

Functional characterization of T2D-associated SNP
effects on baseline and ER stress-responsive β cell
transcriptional activation
Shubham Khetan1,2, Susan Kales 3, Romy Kursawe1, Alexandria Jillette1, Jacob C. Ulirsch 4,5,

Steven K. Reilly 5, Duygu Ucar 1,2,6, Ryan Tewhey 3,7,8✉ & Michael L. Stitzel 1,2,6✉

Genome-wide association studies (GWAS) have linked single nucleotide polymorphisms

(SNPs) at >250 loci in the human genome to type 2 diabetes (T2D) risk. For each locus,

identifying the functional variant(s) among multiple SNPs in high linkage disequilibrium is

critical to understand molecular mechanisms underlying T2D genetic risk. Using massively

parallel reporter assays (MPRA), we test the cis-regulatory effects of SNPs associated with

T2D and altered in vivo islet chromatin accessibility in MIN6 β cells under steady state and

pathophysiologic endoplasmic reticulum (ER) stress conditions. We identify 1,982/6,621

(29.9%) SNP-containing elements that activate transcription in MIN6 and 879 SNP alleles

that modulate MPRA activity. Multiple T2D-associated SNPs alter the activity of short

interspersed nuclear element (SINE)-containing elements that are strongly induced by ER

stress. We identify 220 functional variants at 104 T2D association signals, narrowing

54 signals to a single candidate SNP. Together, this study identifies elements driving β cell

steady state and ER stress-responsive transcriptional activation, nominates causal T2D SNPs,

and uncovers potential roles for repetitive elements in β cell transcriptional stress response

and T2D genetics.
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Type 2 diabetes (T2D) is a complex disease with both
genetic and environmental risk factors that ultimately
manifests when pancreatic β cells are unable to secrete

adequate amounts of insulin in response to elevated blood glucose
levels1,2. Genome-wide association studies (GWAS) have identi-
fied single nucleotide polymorphisms (SNPs) representing 403
association signals in 243 regions of the human genome (loci) for
genetic risk of developing T2D3,4. The overwhelming majority
(~90%) of these T2D-associated GWAS SNPs are non-coding,
suggesting that altered transcriptional regulation is a common
molecular mechanism underlying disease risk in these loci3–6.
Identifying the functional variant(s) among multiple SNPs that
are in linkage disequilibrium (LD) at each T2D GWAS locus is an
important step to convert these statistical association signals into
molecular and biological insights.

Although studies over the past several years clearly implicate
altered islet cis-regulatory element (CRE) activity in T2D genetic risk
and progression, they have co-localized only ~1/4 of T2D-associated
loci to altered chromatin accessibility and/or gene expression levels
in islets5,7–10. This may be partially because previous studies mea-
sured the effect of genetic variants on chromatin accessibility
(caQTLs) and gene expression levels (eQTLs) in islets under steady-
state conditions7,11, consequently missing the role of genetic variants
whose functions emerge only under certain cellular conditions.
Uncovering such genotype-environment interactions is critical for a
complex disorder like T2D.

Endoplasmic reticulum (ER) and the unfolded protein
response (UPR) contribute to physiologic processes governing β
cell protein quality control, insulin processing/secretion, and to
pathophysiologic events contributing to islet failure in T2D12–15.
Mild to moderate ER stress can elicit beneficial responses, such as
β cell proliferation, to meet higher demand for insulin synthesis
and secretion16. However, sustained insulin production demands
of insulin resistance, associated with modern sedentary lifestyles17

and overnutrition18–20, can intensify ER stress and activate
terminal UPR, leading to β cell dysfunction and death13,14.
Genetic modulation of β cell ER folding capacity can ameliorate21

or exacerbate22 β cell death. Non-coding T2D risk alleles may
therefore modulate the transcription of genes and pathways that
alter ER stress responses and the UPR.

Massively parallel reporter assays (MPRA) are functional
genomic tools to interrogate the transcription activating potential
of thousands of sequences simultaneously23. By introducing
nucleotide changes in a given sequence of interest, the effect of
naturally occurring variants in the human population on MPRA
activity can also be elucidated24. Recent studies have employed
MPRA to identify functional SNPs associated with different
conditions including red blood cell traits25, adiposity26,
osteoarthritis27, and eQTLs24.

Here, we use MPRA to comprehensively test 2512 index and
genetically linked (r2≥ 0.8) SNP/indel alleles representing 259 GWAS
association signals for T2D and related quantitative trait from the
NHGRI/EBI GWAS Catalogue, as well as 4124 SNPs residing in
in vivo accessible chromatin sites in human islets, for their ability to
modulate transcriptional activation in β cells under steady state and
(patho)physiologic ER stress conditions. We identify 1982/6621
(29.9%) SNP-containing elements that activate transcription in MIN6
and 879 MPRA activity-modulating alleles. Multiple T2D-associated
SNPs alter the activity of short interspersed nuclear element (SINE)-
containing elements induced by ER stress. Importantly, MPRA
uncovers 220 functional variants at 104 T2D association signals,
narrowing 54 signals to a single candidate SNP. By identifying ele-
ments driving β cell steady state and ER stress-responsive tran-
scriptional activation, we nominate putative causal T2D SNPs and
uncover potential roles for repetitive elements in β cell transcriptional
stress response and T2D genetics.

Results
Selection and testing of sequences for MPRA activity in β cells.
To identify CRE sequences that activate β cell transcription and
to determine how SNP alleles alter this activity, we employed
MPRA in MIN6 β cells. The MPRA library consisted of two-
hundred base pair (bp) sequences from the human genome
containing each allele for SNPs including: (i) 2512 index or
linked (EUR r2≥ 0.8) SNPs/indels from 259 T2D and related
quantitative trait association signals in the NHGRI/EBI GWAS
Catalogue28 (“T2D SNPs”); (ii) 1910 SNPs significantly asso-
ciated with changes in human islet chromatin accessibility
(“caQTL SNPs”)7; and (iii) 2214 SNPs that overlapped human
islet ATAC-seq peaks, but were not significantly associated with
changes in human islet chromatin accessibility (“non-caQTL
SNPs”)7 (Methods; Fig. 1a).

Each sequence was cloned upstream of a minimal promoter
controlling transcription of GFP mRNAs with distinct 20 bp
barcodes in their 3′ end (Fig. 1a). This MPRA plasmid library was
transfected into biological replicates of MIN6 mouse β cells and
tested for transcriptional activity in three conditions: standard
culture, 24-h exposure to the ER stress-inducing agent thapsi-
gargin (250 nM Tg), or DMSO solvent control conditions
(Fig. 1a). For each experimental condition (standard culture,
DMSO, Tg), cells were harvested a total of thirty hours after
transfection for RNA isolation, GFP mRNA capture, and Illumina
sequencing of the sequence-associated barcodes (Methods;
Fig. 1a). RNA expression of the transfected MPRA libraries was
highly correlated between all replicates for each condition and
clustered distinctly from the MPRA plasmid library input
(Supplementary Figs. 1a–c). Under standard culture conditions,
1373 SNPs (20.7%) had at least one allele exhibiting significantly
higher RNA-seq counts compared to the plasmid library input at
FDR < 1% (Fig. 1b). We refer to these sequences as ‘MPRA active’
throughout the remainder of the manuscript.

While prior work has routinely used MIN6 mouse β cells to
provide meaningful insights into human islet cis-regulatory
control and the transcriptional effects of T2D risk
alleles5–7,9,11,29–31, we first confirmed that MIN6 β cells
appropriately modeled the cis-regulatory potential of human
islets. Binding motifs of 99 transcription factors (TFs) were
significantly enriched (FDR < 1%) in MPRA active elements in
MIN6 β cells, which notably included motifs for TFs with
reported roles in modulating beta cell identity and function
(Hnf1, MafA/B, Foxo1)32–36, glucose-stimulated insulin secretion
(Bcl11a37, LXRE38, RARa39), ER quality control and insulin
folding and processing (Atfs), circadian regulation of β cell
functions (Clock), and regulation of T2D SNP-containing cis-REs
(Foxa229,40, Rfx511) (Fig. 1c and Supplementary Data 1). Several
of these same motifs were enriched in sorted human islet β cell
ATAC-seq peaks (e.g., Fox, Mef2c)41 and were among the top
motifs identified as predictors of human islet regulatory features
by recent computational analyses42. In addition, empiric binding
sites (i.e., ChIP-seq peaks) for PDX1, NKX6.1, MAFB, and
FOXA2 in human islets8 were enriched in the MPRA active
elements (Supplementary Figs. 2a). In a comparison with nine
human tissues, the chromatin accessibility profile of MIN6 β cells
most resembled that of human islets (Supplementary Figs. 2b–c).
Furthermore, human-mouse sequence similarity did not influence
the probability that an element was MPRA active (Supplementary
Fig. 3a), and elements overlapping human islet ATAC-seq peaks
were more likely to be MPRA active in MIN6 mouse β cells than
those that did not (Supplementary Fig. 3b).

Together, comprehensive testing, identification, and analysis of
thousands of human sequences using MPRA in MIN6 revealed
regulatory features and sequence motifs empirically linked to
steady-state β cell transcriptional activation and reinforced MIN6
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cells as a valid cellular model to test the β cell transcriptional
potential of human sequences.

Identification of ER stress-responsive β cell regulatory
sequences. The high burden of insulin production and secretion
makes β cells particularly susceptible to ER stress43, and ER stress
has been implicated in the genetic etiology and pathophysiology
of both monogenic44,45 and T2D22. Thapsigargin (Tg) blocks
calcium transport into the ER lumen and has been widely used to
induce the UPR in β cells46–53. To identify ER stress-responsive
sequences, we compared MPRA activity of sequences in MIN6
cells treated with Tg versus DMSO solvent control (Fig. 1a).

Treatment with Tg increased the expression of ER stress
response genes Ddit3 (Chop), Hspa5, and Edem1, and reduced
Ins2 expression, confirming UPR induction in MIN6 cells
(Supplementary Fig. 1d). ER stress increased the MPRA activity
of 328 sequences (representing ≥1 allele(s) of 275 elements) and
decreased MPRA activity of 656 sequences (≥1 allele of 449
elements) (Fig. 1d). Elements with increased MPRA activity
under ER stress were enriched for motifs of TFs that mediate
transcriptional responses to uncompensated ER stress and whose
activity and/or abundance is increased in T2D patient islets54,
such as ATF4 and DDIT3/CHOP15,55–57, as well as factors linked
to pathophysiologic epigenetic changes in the beta cells of diet-
induced obese mice (Mef2a58) and beta-cell senescence (THRa59)
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(Fig. 1e; Supplementary Data 2). Elements with decreased MPRA
activity were enriched for motifs of β cell TFs that control insulin
transcription and secretion60,61, such as MAFA, FOXA2, and
PAX6 (Fig. 1e; Supplementary Data 2). Consistently, Ins2
expression was significantly decreased by Tg (Supplementary
Fig. 1d), suggesting ER stress leads to the inactivation of the β
cell-specific TFs. MPRA thus revealed β cell regulatory elements
that respond to ER stress and provided a functional readout of TF
dynamics in this (patho)physiologic β cell stress response.

MPRA identified 1938 elements in total for which one or both
alleles activated transcription in MIN6 β cells for at least one of
the experimental conditions tested (Fig. 1f). T2D SNP-containing
elements had the lowest proportion of active elements among the
three categories of SNPs tested by MPRA (Fig. 1g; Fisher’s exact
p= 1.50e−63, caQTL vs. T2D; p= 1.23e−19, non-caQTL vs.
T2D), presumably because the vast majority of those tested
(n= 2299/2512) did not overlap islet ATAC-seq peaks. Although
both caQTL and non-caQTL SNPs overlapped islet ATAC-seq
peaks, a significantly higher fraction of elements containing
caQTL SNPs were MPRA active (Fig. 1g; Fisher’s exact p= 3.12e
−16, caQTL vs. non-caQTL). We hypothesize this is due to the
closer proximity of caQTL SNPs to islet ATAC-seq peak
summits, as SNP-to-ATAC-seq peak summit proximity was
associated with increased MPRA activity (Supplementary Fig. 4).

MPRA identifies SNPs altering β cell transcriptional activity.
To identify SNPs that altered transcriptional activation in β cells,
we compared MPRA activity of each allele under each experi-
mental condition (standard culture, DMSO, Tg). Combining all
three categories (caQTL, T2D, and non-caQTL), 879 SNPs
exhibited allelic effects on MPRA activity (FDR < 10%) in one or
more experimental condition (Fig. 2a, Supplementary Fig. 5a–c,
Supplementary Data 3 and 4). For 98.2% (n= 332/338; Binomial
test p= 7.2 × 10−90) of SNPs that altered MPRA activity in
multiple conditions, the direction of allelic effects was concordant
(Supplementary Fig. 5a–c). To assess if MPRA properly captured
in vivo allelic effects, we assessed their concordance with caQTL
effects. Strikingly, 82.8% (n= 246/297; p= 8.6 × 10−32, binomial
test) of caQTL alleles that increased MPRA activity were asso-
ciated with increased chromatin accessibility in islets (Fig. 2b),
underscoring MPRA’s ability to report allelic effects relevant to
their endogenous, in vivo consequences.

We next studied the impact of ER stress on SNP allelic effects
and β cell transcriptional activation. As anticipated based on
motif enrichment analyses (Fig. 1e), fewer caQTL SNPs exhibited
significant allelic effects on MPRA activity in Tg-treated cells

(Fig. 2a). This was driven by an overall reduction of activity of
caQTL elements under ER stress (Fig. 2c) and associated with the
enrichment of islet-specific TF binding motifs (e.g., FOXA2,
MAFA) in islet caQTL ATAC-seq peaks (Fig. 1e)7. In contrast, a
larger proportion of elements containing T2D SNPs with allelic
effects by MPRA exhibited higher activity under ER stress
conditions (Fig. 2c, d). Most of these T2D SNPs (n= 190/220)
were not islet caQTL and did not overlap islet ATAC-seq peaks in
our extensive set of >150,000 islet open chromatin sites from 19
donors. This may be due in part to the steady-state nature of
these ATAC-seq profiles, which do not capture regulatory
elements made accessible by ER stress-responsive TFs. Alter-
natively, the stress-responsive increases in these T2D SNP-
containing elements may be mediated by repetitive elements,
which have been shown to become activated by and enhance
transcriptional stress responses62–64. Consistent with the latter,
63% (139/220) of T2D SNPs with allelic effects on MPRA activity
overlapped repetitive elements. Among three repetitive element
categories, only SINEs were enriched in MPRA active elements.
SINEs containing T2D-associated SNPs were five times more
likely to be active than any other SNP-containing repetitive
elements tested (Fig. 2e). Therefore, we next asked whether T2D
SNP-containing elements that overlapped SINEs showed higher
activity under ER stress. Indeed, 79.4% of T2D SNP-containing
elements with higher MPRA activity under ER stress overlapped
SINEs, a significantly higher proportion compared to T2D SNP-
containing elements with lower or no change in MPRA activity
under ER stress (Fig. 2f; Supplementary Data 3). Alu elements,
the most common SINEs in the human genome, are primate-
specific65. When we investigated conservation in 20 mammalian
genomes, T2D SNP-containing elements with higher MPRA
activity under ER stress were indeed less likely to be conserved
beyond the primate lineage (Supplementary Fig. 6).

In summary, MPRA revealed 879 SNPs that alter β cell
transcriptional activation, including 220 T2D-associated SNPs.
These SNP-containing elements exhibited distinct patterns of
transcriptional activity in Tg- vs. DMSO-treated β cells, with
caQTL and T2D SNP- containing elements losing or gaining
activity under ER stress, respectively.

MPRA nominates functional SNPs at T2D GWAS signals. We
next sought to nominate T2D causal variants within each locus
from the set of 2512 SNPs tested by MPRA. We identified allelic
effects for 220 T2D-associated SNPs in 104 distinct association
signals (Fig. 3a; Supplementary Data 5–7 and Supplementary
Fig. 5d–f), only 17 of which were reported index SNPs. The

Fig. 1 Massively parallel reporter assay (MPRA) identifies steady state and ER stress-responsive transcription activating sequences in β cells. a
Schematic of MPRA study workflow to identify β cell transcription activating sequences. Sequences containing each allele of 2512 SNPs associated with
T2D (T2D SNPs), 1910 associated with altered islet chromatin accessibility (caQTLs), and 2214 overlapping islet ATAC-seq peaks but not associated with
altered in vivo islet chromatin accessibility (non-caQTL) were selected and tested for their ability to activate transcription in MIN6 β cells under three
conditions. Std standard, Glu glucose; DMSO dimethylsulfoxide, Tg thapsigargin, mP minimal promoter, BC barcode. b Log2 ratios of barcode/sequence
counts in gfp mRNA of transfected cells compared to those in the MPRA plasmid library in MIN6 β cells grown under standard culture conditions. Each
point represents a 200 bp sequence that was tested. Red points denote MPRA active sequences at FDR < 1% (n= 2224/13,628). c Transcription factor
(TF) binding motifs enriched in MPRA active elements (≥1 allele) in MIN6 cells grown under standard culture conditions (25mM glucose). Red dots
denote TF binding motifs enriched at FDR < 1%). d Heatmap of z-scores for sequences with significantly (FDR < 1%) higher (far right column, red bar;
n= 328, mapping to 275 elements) or lower MPRA activity (blue bar; n= 656, mapping to 449 elements) in Tg-treated cells compared to DMSO solvent
control. Black annotation bars to the left of the heatmap indicate sequences identified as MPRA active in DMSO and/or Tg based on their sequence counts
in RNA vs. plasmid DNA input. e Transcription factor (TF) binding motifs significantly enriched (FDR < 1%) in elements identified in d with higher (red
dots) or lower (blue dots) MPRA activity under ER stress. Yellow dots denote TF motifs with no significant enrichment in either comparison. f Venn
diagram showing the number of elements (≥1 allele) with MPRA activity (FDR < 1%) in each experimental condition. g Fraction of 200 nucleotide sequence
elements containing caQTL (n= 824/1910), non-caQTL (707/2218), or T2D-associated (n= 492/2215) SNPs with ≥1 allele identified as MPRA active in
≥1 experimental condition. Two-sided Fisher’s Exact p= 3.12e−16 (caQTL vs. non-caQTL SNPs), 1.50e−63 (caQTL vs. T2D SNPs), and 1.23e−19 (non-
caQTL vs. T2D SNPs). ***p < 0.001.
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number of candidate functional variants identified within the
association signals ranged from one to as many as ten, suggesting
that some T2D association signals might have more complex
effects on multiple genes and/or regulatory elements (Fig. 3b).
Importantly, 6/6 T2D risk alleles that significantly altered MPRA
activity and in vivo islet chromatin accessibility (islet caQTL)7 did
so in the same direction, and T2D SNP effects on MPRA activity
were consistent with their previously reported effects on in vitro
luciferase reporter activity, including rs7903146 (TCF7L2)6,66,
rs1635852 (JAZF1)30, rs12189774 (VEGFA)67, rs2943656 (IRS1)7,
and rs10428126 (IGF2BP2)7,68.

10.4% (n= 23/220) of T2D SNPs exhibited specific allelic effects
on MPRA activity when treated with Tg compared to baseline
conditions (Fig. 3a; Supplementary Data 5 and Supplementary

Fig. 5d–f). This included rs12189774, which is predicted to alter the
binding of ATF5 (Supplementary Data 7), a TF that forms complexes
with PDX1 and ATF4 in stressed β cells to modulate the expression
of stress response and apoptosis genes69. Although rs12189774 has
not been empirically connected to any target gene(s) to date, it may
modulate ER stress-responsive VEGFA expression based on reports
that ER stress elicits XBP-1(s) and ATF4 binding to the VEGFA
promoter and induces VEGFA expression in pancreatic beta cells and
other cell types70–72. 6.8% (n= 15/220) of T2D SNPs altered MPRA
activity exclusively in ER stressed cells compared to baseline and
DMSO-treated cells (Supplementary Fig. 5d–f; Supplementary
Data 5).

For 54 T2D GWAS signals, a single SNP among those tested
exhibited allelic effects on MPRA activity (Fig. 3b, black dots;
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Supplementary Data 6). For instance, rs17748864 was the only
SNP among the eight tested in the PEX5L locus that altered
MPRA activity (Fig. 3c). In contrast to the non-risk C allele,
which was inactive in both DMSO and Tg conditions, the T2D
risk T allele exhibited an 11-fold greater activity in MPRA and
had significantly higher MPRA activity under ER stress (Fig. 3d).
These allelic differences in MPRA activity were supported
biochemically in electrophoretic mobility shift assays (EMSAs),
which identified allele-specific binding of the non-risk C allele by
a protein or complex in MIN6 nuclear extracts (Fig. 3e, arrow).
Together, these data suggest that the rs17748864 risk T allele
conveys robust transcriptional activation activity to this sequence
by abrogating the binding of a transcriptional repressor.

For 25 T2D-associated GWAS signals, we nominated two
functional SNPs (Fig. 3b, red points; Supplementary Data 6). For
example, in the LARP6 locus, rs11630895 and rs113350503 were the
only functional SNPs among the 16 tested which all resided on the
same tightly linked haplotype (r2= 0.97; Fig. 3f, g). The major allele
for each of these SNPs displayed opposing directions-of-effect on
MPRA activity in DMSO control conditions and were affected
differently by ER stress (Fig. 3f, g). As with the PEX5L locus, EMSAs
indicate that both transcription-lowering T2D SNP alleles are bound
by distinct MIN6 nuclear factors (Fig. 3h, arrows). Thus, while our
results provide conclusive support for allelic effects on in vitro
binding and transcriptional output, further investigation to under-
stand their relative contributions and directions-of-effect in their
endogenous context is needed. Because oligo design and synthesis
for this study occurred prior to the report of credible SNP sets for
T2D-associated loci4, our LD-based approach to select SNPs for
testing did not exhaustively and comprehensively test the function-
ality of all T2D credible set SNPs. However, for this and other
GWAS signals, MPRA has nominated multiple high-priority
candidate causal SNPs for targeted and mechanistic investigation
in the future (Supplementary Data 5–7).

Integrating MPRA data with QTL maps refines T2D causal
alleles/mechanisms. Finally, we sought to understand the in vivo
consequences of the putative functional T2D SNPs nominated by
MPRA. Integration with islet caQTL revealed striking correlations
between SNP effects on in vitro MPRA activity and in vivo islet
chromatin accessibility (Fig. 2b), which confirmed that the short
sequence element tested by MPRA has function when residing in

its broader, endogenous context. To define target genes, we
determined islet transcripts whose abundance73 was linked to the
functional T2D SNP alleles nominated by MPRA. We found that
T2D functional SNPs nominated by MPRA were more enriched
for islet eQTLs than T2D SNPs without MPRA activity (Fig. 4a).
Integration of MPRA with caQTLs and eQTLs confirmed pre-
viously reported effects of the rs10428126 T2D risk allele, which
increased reporter activity (Fig. 2b), in vivo chromatin accessi-
bility (Fig. 2b), and IGF2BP2 expression in islets (Fig. 4a).

Importantly, this integrated approach refined QTL maps to
improve insights at additional T2D loci. For example, at the RNF6
locus, rs4630391 was the only SNP to exert allelic effects on
MPRA activity among 28 T2D SNPs in high LD that were tested
(Fig. 4b). The C risk allele conveyed 30% higher MPRA activity
than the T allele (Fig. 4c) and was associated with increased
RNF6, CDK8, and WASF3 expression in human islets73 (Fig. 4d).
rs4630391 is one of eight SNPs in or immediately adjacent to
an ATAC-seq peak containing an islet caQTL (Fig. 4e). Islet
donors with AA genotype at the T2D-associated, lead caQTL SNP
rs34584161 (n= 10) exhibited higher chromatin accessibility
than those with AG (n= 8) or GG (n= 1) genotypes. Although
rs34584161 has been recently reported as the SNP with the
highest genetic posterior probability of being the causal allele for
T2D association in this locus (PPAg= 0.67)4, only rs4630391
(PPAg= 0.037) exhibited transcription-modulating effects in
MPRA (Fig. 4b). Interestingly, this SNP overlaps an Alu SINE
element at the edge of an islet ATAC-seq peak and exhibits allelic
effects under ER stress conditions (Fig. 4c, e). Importantly, allelic
effects on MPRA activity and chromatin accessibility were
concordant, i.e., the rs4630391-C allele was associated with both
higher in vitro MPRA activity in MIN6 and increased in vivo
chromatin accessibility in human islets (Fig. 4b, e). EMSA
revealed that decreased transcriptional activity of the rs4630391-T
allele was accompanied by increased T allele-specific binding in
MIN6 nuclear extracts (Fig. 4f, arrow). While this does not
definitively rule out that the lead caQTL SNP (rs34584161) or
other SNPs in high LD are also functional, these data provide
compelling functional support for rs4630391 as a putative causal
variant despite its lower reported genetic posterior probability.

MPRA also refined the relative functional contributions of two
T2D-associated SNPs in high LD. At the SLC35D3 locus, we
previously identified rs6937795 and rs6917676, located 15 bp
apart, as islet caQTLs7 for which the risk alleles were associated

Fig. 2 Identification of β cell transcription-modulating allele. a Fraction of caQTL, non-caQTL, and T2D SNP alleles that significantly alter MPRA activity
in standard culture, DMSO, and Tg conditions. b Correlation between allelic effects on in vivo islet chromatin accessibility (x-axis) and MPRA activity (y-
axis) for MPRA active elements containing islet caQTL SNPs. Quadrants 1 and 3 (red) contain SNPs where the allelic effects on chromatin accessibility and
MPRA activity were concordant. The number of SNPs in each quadrant is indicated; the number of SNPs for which the relative MPRA activity lies outside
the y-axis boundaries are indicated in brackets. Ref= hg19 reference allele; Alt= alternate allele. c Heatmap of elements containing SNPs that significantly
alter MPRA activity for which overall MPRA activity is higher (red) or lower (blue) in Tg-treated vs. DMSO control-treated cells. Scale bar on top indicates
z-scores obtained by centering and scaling the normalized RNA/DNA ratios for the reference and alternate alleles (5 replicates each per condition).
Annotations on the right indicate whether the element (row) contains a caQTL and/or T2D-associated SNP. Note that the majority of elements with higher
MPRA activity under ER stress contain T2D-associated SNPs. d Proportion of elements containing caQTL (red), non-caQTL (yellow), or T2D-associated
(green) SNPs with allelic effects on MPRA activity (under any condition) that show lower, no change, or higher MPRA activity under ER stress conditions
compared to DMSO control. A significant proportion of caQTL SNPs with allelic skew showed lower MPRA activity under ER stress, while a significant
proportion of T2D-associated SNPs showed higher activity in this condition. ***p < 0.001; **p < 0.01; and *p < 0.05, Fisher’s exact test comparing elements
with higher or lower MPRA activity under ER stress to those showing no change. e Odds of MPRA active elements (≥1 allele; any experimental condition)
containing caQTL, non-caQTL, or T2D-associated SNPs for overlapping long interspersed nuclear element (LINE), long terminal repeat (LTR), or short
interspersed nuclear element (SINE) repetitive elements. Error bars indicate the 95% confidence interval of the odds ratio estimates. f Fraction of T2D
SNP-containing elements or 10,000 randomly selected 200 bp genomic regions (black bar) overlapping SINE repeats in the human genome. T2D SNP-
containing elements are grouped based on whether they show (i) MPRA activity, (ii) allelic skew in MPRA activity, and/or (iii) higher MPRA activity under
ER stress. A significantly higher fraction of T2D SNP-containing elements with higher activity under ER stress overlap SINEs compared to those without
higher activity under ER stress. ***p < 0.001; **p < 0.01; and *p < 0.05 using two-sided Fisher’s exact test (corrected for multiple testing) in panels (a), (d),
(e), and (f).
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with significantly higher chromatin accessibility in islets (Fig. 5a).
Their high LD (r2= 0.99) make it impractical to separate the
individual contributions of each SNP allele to altered regulatory
function using population genetic approaches. MPRA, however,
allowed each pairwise, synthetic combination to be tested
independently to identify which of the SNPs has functional
effects on β cell transcription. This revealed rs6917676, not
rs6937795, as the SNP that altered transcriptional activity
(Fig. 5b). Interrogation of recent steady-state islet eQTL data73

indicated that the rs6917676 T allele, which increased MPRA
activity, was associated with increased SLC35D3 expression
(Fig. 5c). Allelic effects of rs6917676 were lost in ER stressed
cells, while the activity and allelic effects of rs947734 and
rs947735, two SNPs in high LD (r2= 1) ~4.6 kb away in a SINE,
increased (Fig. 5d). While additional mechanistic investigation is
clearly needed to understand the causal relationship to T2D, this

observation illustrates the value of evaluating variant haplotypes
and their effects in multiple conditions.

Discussion
In this study, we tested 13,252 sequences containing alleles of
6,621 SNPs for their ability to activate and modulate transcription
in MIN6 β cells under standard culture conditions and after ER
stress or paired solvent control exposures. In total, 29.9% of
elements (n= 1982/6621) exhibited increased β cell transcrip-
tional activity from a minimal promoter. SNP alleles in 44.3% of
these elements altered MPRA activity (n= 879/1982), including
220 SNPs associated with T2D risk by GWAS.

Multiple lines of evidence indicate that MPRA in MIN6 mouse
β cells is capable of identifying features of β cell transcription
activation of human sequences and allelic effects of SNPs on this
activity, despite potential limitations of cross-species testing of

Fig. 3 MPRA identifies functional SNPs at 104 T2D-associated GWAS signals. a Venn diagram showing the number of T2D-associated SNP alleles
altering MPRA activity (FDR < 10%) in each experimental condition. Tg thapsigargin, DMSO dimethyl sulfoxide. b Scatter plot of 220/2515 T2D-associated
index and high LD (r2≥ 0.8) SNP alleles, representing 104/259 association signals from the NHGRI/EBI GWAS catalog (x-axis; log scale), that significantly
altered MPRA activity at FDR < 10%. Jitter in the plot is used to visually separate individual points. c Among eight SNPs in high LD at the PEX5L locus, only
rs17748864 exhibited significant allelic effects on MPRA activity. Higher MPRA activity was detected for the rs17748864-T allele in all three experimental
conditions compared to rs17748864-C. d MPRA activity for rs17748864 reference ‘C’ and alternate ‘T’ alleles in DMSO and Tg conditions. Each of the five
paired biological replicates for each MPRA experiment are indicated by distinct shapes and colors. *, FDR < 10% for allelic effects on MPRA activity; +,
FDR < 1% for increased MPRA activity; n.s., not significant. e Allele-specific binding of sequences containing rs17748864 alleles by MIN6 β cell nuclear
factors. EMSA was completed with biotin-labeled probes containing the rs17748864 ‘C’ or ‘T’ allele incubated with MIN6 nuclear extract. Arrow indicates
the allele-specific difference in nuclear factor binding. f Among 19 SNPs in high LD in the LARP6 locus, two exhibited significant allelic effects on MPRA
activity (rs113350503, rs11630895). rs113350503 alternate ‘G’ allele increased MPRA activity compared to the reference ‘A’ allele in all experimental
conditions. rs11630895 reference ‘G’ allele conferred higher MPRA than the alternate ‘A’ allele in DMSO control. g MPRA activity for the rs113350503
reference ‘A’ and alternate ‘G’ alleles (top) and for the reference ‘G’ and alternate ‘A’ alleles of rs11630895 (bottom). Distinct data point shapes and colors
of indicate each of five paired biological replicates for each MPRA experiment. *, +, and n.s. assignments are as in panel (d). h Allele-specific binding of
sequences containing different rs113350503 or rs11630895 alleles by β cell nuclear factors. EMSA was completed with biotin-labeled probes containing
reference or alternate alleles for each SNP and incubated with MIN6 nuclear extract. Arrows indicate allele-specific differences in nuclear factor binding.
Box plots in panels (d) and (g) display the minimum, maximum, median, first quartile, and third quartile of each data set.
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human sequences using episomal assays. First, MPRA active
elements were enriched for both motifs and empiric binding of
several islet TFs governing human islet cell identity and function
under steady-state conditions. Second, under ER stress, changes
in MPRA activity reflect reported in vivo changes in TF levels and
their activity in β cells54–56,58–61. Finally, allelic effects on MPRA
activity in MIN6 exhibited a significant, positive correlation with
their effects on in vivo human islet chromatin accessibility.
Moreover, the likelihood of MPRA activity was higher for ele-
ments in the vicinity of ATAC-seq peak summits, and SNPs
closer to ATAC-seq peak summits were more likely to alter

MPRA activity and chromatin accessibility. These results confirm
cross-species transferability of this assay and help prioritize
sequences within open chromatin regions for their importance in
regulating human β cell transcriptional activity.

In total, 10.4% (n= 23/220) of T2D SNPs exhibiting allelic effects
on MPRA activity did so only when treated with Tg compared to
baseline conditions. This included a SNP that has a comparable
PPAg to the top SNP in this association signal (PPAg= 0.093 vs.
0.12, respectively) and resides near VEGFA, a putative T2D effector
gene whose expression is induced by ER stress via direct binding of
the ER stress-responsive TFs XBP-1(s) and ATF4 to its promoter in

Fig. 4 MPRA identifies putative T2D causal SNPs altering islet expression (eQTL) and chromatin accessibility (caQTL). a Quantile-quantile plot of
observed (y-axis) vs. expected (x-axis) islet eQTL p-values from the InsPIRE Consortium for T2D SNPs, categorized based on whether ≥1 SNPs in LD had
allelic skew (red dots), or 0 SNPs in LD had significant MPRA activity (black dots). b Plot of genome location of 27 SNPs in high LD (r2≥ 0.8) with the T2D-
associated index SNP rs10507349 tested with MPRA (RNF6 locus). Allelic effects on MPRA activity were detected for rs4630391 in the same direction
across all three experimental conditions. c MPRA activity for the reference (‘C’) and alternate (‘T’) alleles of rs4630391 in DMSO and Tg experimental
conditions. Each of the five paired biological replicates for each MPRA experiment are indicated by distinct shapes and colors. * indicates significant
(FDR < 10%) allelic effects on MPRA activity; + or n.s. indicates significant (FDR < 1%) or not significant changes in MPRA activity in each condition,
respectively. Box plots display the minimum, maximum, median, first quartile and third quartile of each data set. d Plot of InsPIRE Consortium islet eQTL
association p-values between rs4630391 genotypes and expression of genes ± 1 megabase. e Magnified view of genomic region containing the MPRA-
nominated functional T2D SNP (rs4630391) and lead islet caQTL SNP (rs34584161). Credible set SNP genetic posterior probabilities of association (PPA)
are included for SNPs for which they were reported4. Normalized ATAC-seq reads were higher for islets from donors with rs34584161 AA homozygous
genotypes (red; n= 10 donors) than those from AG heterozygous (blue; n= 8) or GG homozygous (yellow; n= 1) genotypes. ‘CRG Align 75’ indicates
mappability of 75-mer sequences to the hg19 reference genome. Thick black bar indicates ATAC-seq peak in human islets. Thin black lines below indicate
the MPRA oligos tested in this region. f Allele-specific binding of sequences containing reference and alternate alleles for rs4630391. EMSA with biotin-
labeled probes containing rs4630391 C or T alleles were incubated with MIN6 nuclear extract. The arrow indicates allele-specific nuclear factor binding to
the T allele, which was more efficiently competed with unlabeled T probe than unlabeled C probe.
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pancreatic beta cells and other cell types70–72. 6.8% (n= 15/220) of
T2D SNPs that altered MPRA activity were detected exclusively in
ER stressed cells. This proportion of T2D SNPs with ER stress-
specific effects is similar to that of the broader set of SNPs altering
ER stress-specific MPRA activity in this study (7.2%). Moreover, it is
comparable to the reported percentage of context-specific regulatory
element use or activation74–78, including cytokine-responsive ele-
ments in islets (4.5%; n= 3798/84,162)76 and latent enhancers in
monocytes (8.1–15%)79, and within the range of genetic variants
reported to alter stimulus-responsive gene expression in monocytes
exposed to three immunogenic stimuli (3, 9, and 17% response
expression QTL upon exposures to LPS, MDP, and dsRNA,
respectively)80. In the future, it will be interesting and important to
determine if the variants altering ER stress-responsive MPRA

activity alter stress-responsive islet chromatin accessibility, active
histone modifications, or target gene expression in vivo and, more
broadly, to test SNP effects on cis-regulatory element use or activity
in response to a range of (patho)physiologic stimuli and stressors.

Surprisingly, we found that multiple T2D SNP-containing
elements in SINEs were active in MPRA and responded to ER
stress with increased activity. These data suggest that SINEs, and
SNPs within them, may play underappreciated roles in mod-
ulating β cell transcriptional programs in response to stress or
other stimuli. Recent studies have contributed to an emerging
appreciation of the importance of these elements in epigenetic
and transcriptional regulation, demonstrating repetitive element-
mediated oncogene activation and modulation of chromatin
structure81–89. Alu/SINEs have been shown to be

Fig. 5 MPRA refines T2D-associated haplotype in SLC35D3 locus. a Islet caQTL in the SLC35D3 locus. Two T2D SNPs, rs6937795 and rs6917676 (15 bps
apart; r2= 0.99; green lines), are both significantly associated with altered chromatin accessibility changes (caQTLs) in the SLC35D3 locus in islets from 19
different individuals. b MPRA activity (log2RNA/plasmid ratios) for each of the four possible rs6937795 and rs6917676 allelic combinations tested in the
MPRA library. Only rs6917676 alleles altered MIN6 MPRA activity. The rs6917676 T allele is associated with both increased chromatin accessibility and
MPRA activity. Shape/shading of points indicate the five paired biological replicates for each MPRA experiment. c Plot of InsPIRE Consortium islet eQTL
-log10 association p-values between rs6917676 genotypes and expression of genes ± 1 megabase from the SNP. d MPRA activity (log2RNA/plasmid ratio)
of caQTL SNP rs6917676 (left), and two additional SNPs [rs947734 (red) and rs947735 (blue); 43 bp apart] that overlap the same SINE, in ER stress (Tg-
treated) compared to DMSO control conditions. Red and blue dashed lines indicate relationships between alleles for each biological replicate. * denotes
FDR < 10%. Box plots in panels (b) and (d) display the minimum, maximum, median, first quartile and third quartile of each data set. Points outside the
minimum and maximum values are outliers.
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transcriptionally induced by cellular stressors63,90 and are emer-
ging as pervasive transcriptional modulators of cellular functions
and stress62,64,81,85,91. Three of four SNPs tested by EMSA
overlapped SINEs (rs113350503 and rs11630895 in the LARP6
locus, rs4630391 in the RNF6 locus) and showed specific binding
for the allele with lower MPRA activity, suggesting that the
activating alleles disrupt binding of a transcriptional repressor.
Future studies elucidating target genes of these and other MPRA
active, SINE-containing regulatory elements will be necessary to
fully understand the functional consequences of sequence varia-
tion in these transcriptionally active repetitive element sequences
and the potential role of SINE/Alu exaptation83,92,93 in the
genetics of islet (dys)function and T2D.

Finally, a key challenge in T2D genetics is to identify the func-
tional SNPs from multiple variants in high LD per association signal.
This is the first study to test thousands of T2D-associated SNPs for
their empiric effects on transcriptional activation in β cells. MPRA
identified 220 SNP alleles associated with T2D, representing 104
distinct association signals. Candidate causal T2D SNPs nominated
by MPRA include those previously studied using targeted, low
throughput luciferase assays, such as rs7903146 (TCF7L2)6,66,
rs1635852 (JAZF1)30, rs12189774 (VEGFA)67, rs2943656 (IRS1)7,
and rs10428126 (IGF2BP2)7,68. Importantly, directions-of-effect
detected for the T2D risk alleles by MPRA were consistent with
those observed in each previous study. At 54 T2D association sig-
nals, only one SNP among all SNPs tested exhibited significant allelic
effects on MPRA, nominating it as a putative causal SNP for that
respective signal. Two or more candidate causal SNPs were identi-
fied for 50 T2D association signals, including LARP6, wherein
EMSA and MPRA demonstrated allelic effects on both nuclear
factor binding and transcriptional activity for two SNPs in high LD.
The components of T2D risk at this and the 49 other GWAS signals
may therefore result from a combined effect of multiple functional
SNPs. Although this study was underway before T2D credible set
SNPs were reported4, select loci illustrate how MPRA may help to
evaluate and prioritize them by providing functional evidence in
support of SNPs with high genetic posterior probabilities (e.g.,
rs7903146 (TCF7L2, PPAg= 0.59), rs3802177 (SLC30A8, PPAg=
0.57), rs10811661 and rs10811660 (CDKN2A/B, PPAgs= 0.47,
0.41), rs11603349 (CENTD2/ARAP1, PPAg= 0.22), rs4846567
(LYPLAL1, PPAg= 0.17), rs2879813 (TP53INP1, PPAg= 0.14)) or
by identifying SNPs with lower genetic posterior probability for T2D
association signals, such as those in the RNF6, SLC35D3, ANK1/
NKX6-3, JAZF1, SPRY2, THADA, and VEGFA loci, as candidate
causal SNPs. However, it is possible that SNPs with low T2D
association posterior probabilities identified as functional by MPRA
may not be causal, and that technical limitations such as MPRA
design, fragment size, cell line used, and conditions tested, may
preclude the identification of some true causal SNPs. Therefore,
comprehensive testing of T2D credible set SNPs by MPRA across
multiple metabolic cell types and relevant (patho)physiologic states
in the near future will be critical to modify poster probabilities and
nominate functional T2D variants.

Methods
MPRA library design. 200 base pair sequences, with 100 bps flanking each side of
6621 SNPs were included in our MPRA library. The SNPs belong to three categories:

1. T2D-associated SNPs/indels: SNPs (n= 2299), small insertions (n= 72),
and small deletions (n= 129) in linkage disequilibrium (r2≥ 0.8) with T2D-
associated index SNPs (n= 259) were selected as previously described94 for
synthesis and testing. Briefly, T2D-associated SNPs were retrieved from the
NHGRI/EBI GWAS Catalog (accessed 19 January 2017) and LD-pruned
using PLINK version 1.995 with parameters “-maf 0.05-clump-clump-p1
0.0001-clump-p2 0.01-clump-r2 0.8-clump-kb1000” to remove index SNPs
representing redundant association signals. Additional SNPs from the 1000
Genomes Phase 3 reference panel were identified and included based on
their high LD (r2≥ 0.8) in EUR with each retained index SNP.

2. Islet chromatin accessibility quantitative trait loci (caQTLs): 1910 SNPs
previously identified as having a significant association with altered in vivo
chromatin accessibility in islet samples were also included7. Only SNPs
within a given ATAC-seq peak were considered and tested for their
association with altered accessibility of that peak. For 1816 caQTLs, one
SNP was found to show a significant correlation with chromatin accessibility
changes in human islets, all of which were included in the MPRA library
(Bonferroni adjusted p-values < 0.023). For 94 caQTLs, two SNPs <25 bp
apart showed significant correlations with islet chromatin accessibility
changes, so all four allelic combinations were synthesized and tested.

3. Non-caQTL SNPs: 2214 SNPs that overlapped islet ATAC-seq peaks but did
not significantly alter the accessibility of those peaks7 were also synthesized
and tested. Since islet caQTLs were identified in a relatively small cohort of
individuals (n= 19), the following criteria were used to include SNPs for
which the caQTL study was more appropriately powered to detect
associations with chromatin accessibility: (i) unadjusted p value >0.2; and
(ii) minor allele frequency >0.125. SNPs overlapping individual-specific
peaks or sharing peaks with other SNPs were removed. The 2,214 non-
caQTL SNPs were randomly selected for inclusion in the MPRA library
from the 15,178 SNPs that passed these inclusion criteria.

The vast majority of SNPs and elements tested belonged to only one of three
categories. However, T2D-associated SNPs overlapping 13 ATAC-seq peaks were
significantly associated with chromatin accessibility in islets (caQTLs). Therefore,
for analysis purposes, whenever SNPs were required to belong to only one of the
three categories above (such as Fig. 2a), they were not categorized as caQTLs, but as
being T2D-associated only.

MPRA library construction. The MPRA library was constructed as previously
described24. Briefly, oligos were synthesized (Agilent Technologies) as 230 bp
sequences containing 200 bp of genomic sequences and 15 bp of adaptor sequence
on either end. Unique 20 bp barcodes were added by PCR along with additional
constant sequence for subsequent incorporation into a backbone vector by Gibson
assembly. The oligo library was expanded by electroporation into E. coli, and the
resulting plasmid library was sequenced by Illumina 2 × 150 bp chemistry to
acquire oligo-barcode pairings. The library underwent restriction digestion, and
GFP with a minimal TATA promoter was inserted by Gibson assembly resulting in
the 200 bp oligo sequence positioned directly upstream of the promoter and the
20 bp barcode falling in the 3′ UTR of GFP. After expansion within E. coli the final
MPRA plasmid library was sequenced by Illumina 1 × 31 bp chemistry to acquire a
baseline representation of each oligo-barcode pair within the library. Barcodes
mapping to more than 1 sequence were discarded from all downstream analyses.
Note: Two separate batches of the MPRA library were prepared. The first batch was
used to perform MPRA under standard culture conditions. This MPRA library was
then electroporated into E. coli to obtain a second batch of the MPRA library,
which was used for the paired DMSO-Tg experiments.

MPRA library transfection into MIN6 cells. 10 million MIN6 cells were seeded in
each of seven 15 cm2 dishes. The cells were 60–70% confluent the next day. Each
15 cm2 dish was replaced with 20 ml of fresh media and transfected with 7 µg of the
MPRA plasmid library using 55 µl Lipofectamine 2000 (38% transfection effi-
ciency). Six hours after transfection, media was either (i) not changed (MPRA
under standard culture conditions), (ii) replaced with media containing 250 nM
thapsigargin (Tg) dissolved in 0.025% DMSO, or (iii) replaced with media con-
taining 0.025% DMSO. Thirty hours after transfection, cells were trypsinized and
collected by centrifugation. Cell pellets were frozen at −80 °C. For each condition
(standard culture, DMSO, or Tg), MIN6 cells were transfected on five separate days
to generate biological replicates.

RNA isolation and MPRA RNA-seq library generation. RNA was extracted from
frozen cell pellets using the Qiagen RNeasy Midi kit. Following DNase treatment, a
mixture of 3 GFP-specific biotinylated primers (Supplementary Data 8; #120, #123,
and #126) were used to immunoprecipitated GFP transcripts using Streptavidin C1
Dynabeads (Life Technologies). Following another round of DNase treatment,
cDNA was synthesized from GFP mRNA using SuperScript IV and purified with
AMPure XP beads. Quantitative PCR using primers specific for GFP (Supple-
mentary Data 8; #34 and #52) was used to determine the cycle at which linear
amplification begins for each replicate. Replicates were diluted to approximately
the same concentration based on the qPCR results, and PCR with primers #34 and
#52 was used to amplify barcodes associated with the ~13.5k sequences included in
the MPRA library for each replicate (9 cycles for standard culture, and 13 cycles for
DMSO/250 nM Tg). A second round of PCR (6 cycles) was used to add Illumina
sequencing adaptors to the DNA/RNA replicates. The resulting MPRA barcode
libraries were spiked with 5% PhiX and sequenced using Illumina single-end 31 bp
chemistry (with 8 bp index read), clustered at 80–90% maximum density.

MPRA data analysis. Data from the MPRA was analyzed as previously
described24. Briefly, the sum of the barcode counts for each oligo within replicates
was median normalized, and oligos showing differential expression relative to the
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plasmid input were identified by modeling a negative binomial distribution with
DESeq296 and applying a false discovery rate (FDR) threshold of 1%. For sequences
that displayed significant MPRA activity, a paired t-test was applied on the log-
transformed mRNA/plasmid ratios for each experimental replicate to test whether
the reference and alternate allele had similar activity. An FDR threshold of 10% was
used to identify SNPs with significant effects on MPRA activity between alleles.
Because the MPRA testing standard culture conditions was performed with a
separate MPRA library preparation, the DMSO-Tg MPRA results were not directly
compared to MPRA performed under standard culture conditions.

Annotating repetitive elements tested with MPRA. The ‘RepeatMasker’ track
for hg19 was downloaded from the UCSC genome browser. Among the ten dif-
ferent classes of repeats, only three classes (long interspersed nuclear element
(LINE), long terminal repeat (LTR), and SINE) overlapped more than 100 elements
tested with MPRA. Therefore, only these three classes of repeats were assessed for
associations with MPRA activity.

TF motif enrichment. Homer97 findMotifsGenome.pl script was used to investi-
gate TF motifs enriched in a given set of elements. Elements with lower MPRA
activity under ER stress were used as background to identify TF motifs enriched in
elements with higher MPRA activity under ER stress, and vice-versa (parameters:
hg19, -size given). 2008 T2D-associated elements with no MPRA activity were used
as background to identify TF motifs enriched in the 492 T2D SNP-containing
elements with significant MPRA activity (parameters: hg19, -size given). For the
cross-species ATAC-seq peak analysis, ATAC-seq peaks shared with other human
cell types were used as background to identify TF motifs enriched in unique
ATAC-seq peaks (parameters: mm9, -size given).

Analysis of islet ChIP-seq data. Chromatin immunoprecipitation sequencing
(ChIP-seq) data from Pasquali et al.8 were aligned to the hg19 reference human
genome as previously described6. Elements tested with MPRA were then over-
lapped with ChIP-seq peaks to conduct Fisher’s exact tests using R.

Electrophoretic mobility shift assay (EMSA). 21-bp biotin end-labeled com-
plementary oligonucleotides were designed with each SNP allele of interest in the
11th position of the oligo (Integrated DNA Technologies; Supplementary Data 8).
For each SNP tested, complementary oligos were annealed to create double-
stranded probes for each allele tested. Nuclear extract was prepared from MIN6 β
cells using the NE-PER Extraction Kit (Thermo Scientific), and EMSA were
completed using the LightShift Chemiluminescent EMSA kit (Thermo Scientific)
according to the manufacturer’s instructions. Binding reactions consisted of 1×
binding buffer, 1 µg poly dI-dC, 4 µg MIN6 nuclear extract, and 200 fmol labeled
probe. Reactions were incubated at 25 °C for 25 m. For competition reactions, 25-
and 50-fold excess of non-biotinylated double-stranded probes for either allele was
included and pre-incubated in the reaction mixture for 15 m. DNA-protein com-
plexes were detected by chemiluminescence. EMSAs were completed on two or
more separate occasions to ensure that results were consistent.

MPRA-based interrogation of islet eQTLs. InsPIRE Consortium73 islet eQTL
p-values were retrieved for genes within 1 megabase (Mb) of each T2D-associated
SNP included in the MPRA library. In Fig. 4a, nominal islet eQTL p-values of T2D-
associated SNPs for which ≥1 SNP in high LD (r2 > 0.8) exhibited significant allelic
effects on MPRA activity were plotted and compared to those for which no SNPs in
high LD exhibited MPRA activity. For locus-specific plots in Figs. 4d and 5c,
nominal p-values were adjusted for multiple testing of genes within 1 Mb on either
side of the SNP (Bonferroni corrected p-value cutoff= 0.01).

Mapping human regulatory sequences tested with MPRA to mammalian
genomes. The UCSC genome browser Liftover tool was used to map human
sequences (hg19) tested with MPRA to 20 mammalian genomes (with a minimum
ratio of 0.20 bases that must remap; allowing for multiple output regions). The 20
mammalian genomes are: papAnu2 (Baboon), felCat5 (Cat), PanTro6 (Chim-
panzee), BosTau7 (Cow), canFAM3 (Dog), loxAfr3 (Elephant), nomLeu3 (Gib-
bon), gorGor3 (Gorilla), equCab2 (Horse), mm9 (mouse), ponAbe2 (Orangutan),
aiMel1 (Panda), susScr11 (Pig), ochPri3 (Pika), oryCun2 (Rabbit), rn5 (Rat),
rheMac8 (Rhesus), oviAri3 (Sheep), sorAra2 (Shrew), speTri2 (Squirrel). Human
sequences that did not lift over to the genome assembly of a given species were
subsequently classified as not conserved (with a minimum ratio of 0.20 bases that
must remap; allowing for multiple output regions).

To obtain human-mouse sequence similarity measures, Liftover was performed
99 times with the minimum ratio of bases that must remap ranging from 0.01 to
1.00 in increments of 0.01 (allowing for multiple output regions). The R package
‘sm’ was used plot density of human-mouse sequence similarity and perform non-
parametric bootstrap hypothesis tests of equality. Human sequences that did not
liftover to the mm9 mouse genome with even 1% sequence similarity were
classified as having 0% sequence similarity.

Cross-species mapping of human ATAC-seq peaks to MIN6 ATAC-seq peaks.
Human and mouse ATAC-seq data were processed as previously described7.
Briefly, low-quality portions of reads were trimmed using Trimmomatic98 and
aligned to the hg19 or mm9 genome assembly using Burrows Wheeler Aligner-
MEM. For each replicate, duplicate reads were removed after shifting. Technical
replicates were merged using SAMtools and peaks were called using MACS299

(with parameters -callpeak–nomodel -f BAMPE) at FDR < 1%. ATAC-seq peak
summit positions were obtained from MACS2 output files. The liftover tool in the
UCSC genome browser was used to map human ATAC-seq peaks to the mouse
(mm9) genome using a minimum ratio of 0.10 bases that must remap (not allowing
for multiple output regions). Using bedtools, human ATAC-seq peaks mapping to
the mouse genome were then overlapped with MIN6 ATAC-seq peaks.

Identification of TF binding motifs disrupted by T2D-associated SNPs. Genes
expressed in MIN6 beta cells were identified by fitting a Gaussian mixture model
(two components) to RNA-seq FPKM values. After identifying genes expressed in
MIN6 beta cells (FPKM values ≥ 1.63), mouse gene names were converted to
corresponding human homologs using the R Package, ‘biomaRt’100. After filtering
for expression in MIN6 beta cells, the R Package, ‘MotifBreakR’101, was used to
identify TF binding motifs disrupted by SNPs with allelic skew in MPRA activity
(Supplementary Data 4 and 7). Parameters used were: pwmList= hocomoco,
threshold= 1e−2, filterp= TRUE, method= “ic”. In addition to MotifBreakR,
predictions for TF binding motifs disrupted by T2D-associated and caQTL SNPs
with allelic skew in MPRA activity were also obtained from SNP2TFBS102 (default
options) (Supplementary Data 4 and 7).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All datasets generated and analyzed during the current study are publicly available in GEO
under Accession GSE145643 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE145643), which includes fastq files containing barcode sequences in the 3′UTR of
gfp in the plasmid library and MIN6 RNA samples and processed files containing the sum of
all barcode counts for each test construct in the plasmid DNA and MIN6 RNA samples.
Human islet ATAC-seq data were obtained from NCBI Sequence Read Archive Accession
SRP117935. Summary InsPIRE Consortium73 islet eQTL statistics were obtained from
https://zenodo.org/record/3408356 and SNP2TFBS predictions for transcription factor motifs
altered by MPRA-modulating SNP alleles were obtained from https://ccg.epfl.ch/snp2tfbs/.

Code availability
Code used for analysis in this paper is available at https://github.com/UcarLab/
MPRA_Khetan and linked to Zenodo at https://doi.org/10.5281/zenodo.4974390
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