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ARTICLE

Profiling variable-number tandem repeat variation
across populations using repeat-pangenome
graphs
Tsung-Yu Lu 1, The Human Genome Structural Variation Consortium* & Mark J. P. Chaisson 1✉

Variable number tandem repeats (VNTRs) are composed of consecutive repetitive DNA with

hypervariable repeat count and composition. They include protein coding sequences and

associations with clinical disorders. It has been difficult to incorporate VNTR analysis in

disease studies that use short-read sequencing because the traditional approach of mapping

to the human reference is less effective for repetitive and divergent sequences. In this work,

we solve VNTR mapping for short reads with a repeat-pangenome graph (RPGG), a data

structure that encodes both the population diversity and repeat structure of VNTR loci from

multiple haplotype-resolved assemblies. We develop software to build a RPGG, and use the

RPGG to estimate VNTR composition with short reads. We use this to discover VNTRs with

length stratified by continental population, and expression quantitative trait loci, indicating

that RPGG analysis of VNTRs will be critical for future studies of diversity and disease.
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The human genome is composed of roughly 3% simple
sequence repeats (SSRs)1, loci composed of short, tandemly
repeated motifs. These sequences are classified by motif

length into short tandem repeats (STRs) with a motif length of six
nucleotides or fewer, and variable-number tandem repeats
(VNTRs) for repeats of longer motifs. SSRs are prone to hyper-
mutability through motif copy number changes due to poly-
merase slippage during DNA replication2. Variation in SSRs are
associated with tandem repeat disorders including amyotrophic
lateral sclerosis and Huntington’s disease3, and VNTRs are
associated with a wide spectrum of complex traits and diseases
including attention-deficit disorder, Type 1 Diabetes and
schizophrenia4. While STR variation has been profiled in human
populations5 and to find expression quantitative trait loci
(eQTL)6,7, and variation at VNTR sequences may be detected for
targeted loci8,9, the landscape of VNTR variation in populations
and effects on human phenotypes are not yet examined genome-
wide. Large scale sequencing studies including the 1000 Genomes
Project10, TOPMed11 and DNA sequencing by the Genotype-
Tissue Expression (GTEx) project12 rely on short-read sequen-
cing (SRS) characterized by SRS reads up to 150 bases. Alignment
and standard approaches for detecting single-nucleotide variant
(SNV) and indel variation (insertions and deletions <50 bases)
using SRS are unreliable in SSR loci13, and the majority of VNTR
SVs are missed using general SV detection algorithms with SRS14.

A number of tools have been developed specifically to detect or
genotype tandem repeat variation with short reads. Most existing
tools, however, support a limited description of the complexity of
tandem repeats using a single motif, such as in GangSTR15 and
adVNTR8, leaving the variation in motif sequences unexplored.
While ExpansionHunter9 allows the repeat structure to be defined
by a regular expression, it is mostly restricted to STR genotyping
and has not been extended to VNTRs. The full extent to which
VNTR loci differ has been made more clear by long-read
sequencing (LRS) and assembly. LRS assemblies have megabase
scale contiguity and accurate consensus sequences16,17 that may
be used to detect VNTR variation. Nearly 70% of insertions and
deletions discovered by LRS assemblies greater than 50 bases are
in STR and VNTR loci14, accounting for up to 4Mbp per gen-
ome. Furthermore, LRS assemblies reveal how VNTR sequences
differ by kilobases in length and by motif composition18. LRS
assemblies have been used to improve VNTR analysis with SRS
when used as population-specific references that add sequences
missing from the reference and improve alignments19,20. Addi-
tionally, VNTR variation discovered by LRS assemblies may be
genotyped using SRS, although with lower accuracy than other
SVs21,22. Furthermore, the genotype represents the presence of a
known variant, and does not reveal the spectrum of copy number
variation that exists in tandem repeat sequences23. Repeat length
estimation in tools specialized for tandem repeat genotyping
allows more biological meaningful analyses7,24,25.

The hypervariability of VNTRs prevents a single assembly from
serving as an optimal reference. Instead, to improve both align-
ment and genotyping, multiple assemblies may be combined into
a pangenome graph21,23,26,27 composed of sequence-labeled ver-
tices connected by edges such that haplotypes correspond to
paths in the graph. Sequences shared between haplotypes are
stored in the same vertex, and genetic variation is represented by
the structure of the graph. A conceptually similar construct is the
repeat graph28, with sequences repeated multiple times in a
genome represented by the same vertex. Graph analysis has been
used to encode the elementary duplication structure of a
genome29 and for multiple-sequence alignment of repetitive
sequences with shuffled domains30, making them well-suited
to represent VNTRs that differ in both repeat count and
composition.

Here, we propose the representation of human VNTRs as a
repeat-pangenome graph (RPGG), that encodes both the repeat
structure and sequence diversity of VNTR loci. The most straight-
forward approach that combines a pangenome graph and a repeat
graph is a de Bruijn graph, and was the basis of one of the earliest
representations of a pangenome by the Cortex method31,32. The
de Bruijn graph has a vertex for every distinct sequence of length
k in a genome (k-mer), and an edge connecting every two con-
secutive k-mers, thus k-mers occurring in multiple genomes or in
multiple times in the same genome are stored by the same vertex.
While the Cortex method stores entire genomes in a de Bruijn
graph, we construct a separate locus-RPGG for each VNTR and
store a genome as the collection of locus-RPGGs, which deviates
from the definition of a de Bruijn graph because the same k-mer
may be stored in multiple vertices.

We developed a toolkit, Tandem Repeat Genotyping based on
Haplotype-derived Pangenome Graphs (danbing-tk) to identify
VNTR boundaries in assemblies, construct RPGGs, align SRS
reads to the RPGG, and infer VNTR motif composition and
length in SRS samples. We generate a RPGG from 19 haplotype-
resolved LRS genomes sequenced for population references and
diversity panels14,20,22,23, showing that while ~85% of the com-
position of repeats is discovered after three genomes, the genetic
diversity stored in the RPGG sequentially increases as all 19
genomes are included in the RPGG. Alignment to the RPGG
improves the mean absolute percentage error 28–63% over
mapping to the standard human reference as a linear sequence or
a repeat graph. This enables the alignment of SRS datasets into an
RPGG to discover population genetics of VNTR loci, and to
associate expression with VNTR variation. We find 785 loci that
demonstrate population structure with respect to the inferred
lengths of VNTR sequences, and importantly to discover 8,216
loci that show differential motif usage between populations.
Finally, we apply danbing-tk to the SRS genomes from the GTEx
consortium to discover 346 eQTL where the VNTR length is
associated with gene expression.

Results
Repeat pan-genome graph construction. Our approach to build
RPGGs is to de novo assemble LRS genomes, and build de Bruijn
graphs on the assembled sequences at VNTR loci, using SRS
genomes to ensure graph quality. We used public LRS data for 19
individuals with diverse genetic backgrounds, including genomes
from individual genome projects33,34, structural variation
studies14, and diversity panel sequencing22 (Fig. 1a and Supple-
mentary Data 1). Each genome was sequenced by either PacBio
contiguous long read, or high-fidelity sequencing between 16 and
76-fold coverage along with matched 22–82-fold Illumina
sequencing (Table 1). This data reflects a wide range of tech-
nology revisions, sequencing depth, and data type, however
subsequent steps were taken to ensure accuracy of RPGG through
locus redundancy and SRS alignments. We developed a pipeline
that partitions LRS reads by haplotype based on phased hetero-
zygous SNVs and assembles haplotypes separately by chromo-
some. When available, we used existing telomere-to-telomere
SNV and phase data provided by Strand-Seq and/or 10x
Genomics14,35 with phase-block N50 size between 13.4–18.8 Mb.
For other datasets, long-read data were used to phase SNVs.
While this data has lower phase-block N50 (<0.5–6Mb), the
individual locus-RPGG do not use long-range haplotype infor-
mation and are not affected by phasing switch error. Reads from
each chromosome and haplotype were independently assembled
using the Flye assembler36 for a diploid of 0.88–14.5 Mb N50,
with the range of assembly contiguity reflected by the diversity of
input data.
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In this study, the number of resolved VNTR loci is a more
useful measurement of assembly contiguity than N50 because a
disjoint RPGG is generated for each VNTR locus. An initial set of
84,411 VNTR intervals with motif size >6 bp, minimal length
>150 bp and <10 kbp (mean length= 420 bp in GRCh38,
Methods, Supplementary Table 1) were annotated by Tandem
repeats finder (TRF)37, and then mapped onto contig coordinates
using pairwise contig alignments. This filtering criterion corre-
sponds to an empirical cutoff of 56% purity and can retain
VNTRs (n= 2715, Supplementary Fig. 1) that have nested STR
annotations (Supplementary Fig. 2). Long VNTR loci tended to
have fragmented TRF annotation, which can cause erroneous
length estimates in downstream analysis and fail to properly
interpret repeat structures as a whole such as in adVNTR-NN
(Supplementary Fig. 3). During locus assignment, danbing-tk
expands boundaries and merges loci to ensure boundaries of all
VNTRs are well-defined and harmonized across genomes
(Methods) (Fig. 1b). In practice, we found that 43,869/84,411
(52%) of the VNTR loci are subject to boundary expansion, with
an average expansion size of 539 bp. The set of VNTRs that can

be properly annotated ranges from 19,800 to 73,212 depending
on the assembly quality, with a final set of 73,582 loci (mean
length= 652 bp) across 19 genomes (Supplementary Fig. 4 and
Supplementary Data 2).

The RPGGs are a collection of independently constructed bi-
directional de Bruijn graphs of each VNTR locus and flanking
700 bases from the haplotype-resolved assemblies. In a bi-
directional de Bruijn graph, each distinct sequence of length k
(k-mer) and its reverse complement map to a vertex, and each
sequence of length k+ 1 connects the vertices to which the two
composite k-mers map. The RPGG differs from a standard bi-
directional de Bruijn graph because a k-mer may be repeated in
multiple subgraphs. There was little effect on downstream
analysis for values of k between 17 and 25, and so k= 21 was
used for all applications. To remove spurious vertices and
edges from assembly consensus errors, SRS from genomes
matching the LRS samples were mapped to the RPGG, and
k-mers not mapped by SRS were removed from the graph
(average of 264 per locus). Using the number of vertices as a
proxy for sampled genetic diversity, we find that 27%

Fig. 1 Sequence diversity of VNTRs in human populations. a Global diversity of long-read assemblies. b Dot-plot analysis of the VNTR locus
chr1:2280569–2282538 (SKI intron 1 VNTR) in genomes that demonstrate varying motif usage and length. c Diversity of RPGG as genomes are
incorporated, measured by the number of k-mers in the 32,138 VNTR graphs. Total graph size built from GRCh38 and an average genome are also shown.
d Danbing-tk workflow analysis. (top) VNTR loci defined from the reference are used to map haplotype loci. Each locus is converted to a de Bruijn graph,
from which the collection of graphs is the RPGG. The de Bruijn graphs shown illustrate sequences missing from the RPGG built only on GRCh38. The
alignments may be either used to select which loci may be accurately mapped in the RPGG using SRS that match the assemblies (red), or may be used to
estimate lengths on sample datasets (blue). Source data are provided as a Source Data file.
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(2,102,270 new nodes) of the sequences not contained in
GRCh38 (7,672,357 nodes) are discovered after the inclusion of
19 genomes, with diversity linearly increasing per genome after
the first four genomes are added to the RPGG (8,958,361
nodes, Fig. 1c).

The alignment of a read to an RPGG may be defined by the
path in the RPGG with a sequence label that has the minimum
edit distance to the read among all possible paths. We used
~5.88 × 108 error-free 150 bp paired-end reads simulated from six
genomes (HG00512, HG00513, HG00731, HG00732, NA19238,
and NA19239) to evaluate how reads are aligned to the RPGG.
While methods exist to find alignments that do not reuse cycles38,
others allow alignment to cyclic graphs but with high computa-
tional costs when applied to RPGG27 or are limited to alignment
in STR regions9. Efficient alignment with cycles is a more
challenging problem recently solved by GraphAligner39 to map
long reads to pangenome graphs. Although >99.99% of the reads
simulated from VNTR loci were aligned, 6.03% of reads matched
with less than 90% identity, indicating misalignment. We
developed an alternative approach tuned for RPGG alignments
in danbing-tk (Fig. 1d) to realign all SRS reads within a bam/fastq
file to the RPGG in two passes, first by finding locus-RPGGs with
a high number (>45 in each end) shared k-mers with reads, and
next by threading the paired-end reads through the locus-RPGG,
allowing for up to two edits (mismatch, insertion, or deletion)
and at least 50 matched k-mers per read against the threaded path
(Methods). Using danbing-tk, 99.997% of VNTR-simulated reads
were aligned with >90% identity. The RPGG is only built on
VNTRs and their flanking sequences, excluding the rest of the
genome. When reads from the entire genome are considered, for
96.6% of the loci (71,080/73,582), danbing-tk can map >90% of
the reads back to their original VNTR regions. Misaligned reads
from either other VNTR loci included in the RPGG or the
remainder of the genome not included in the RPGG target
relatively few loci; 3.6% (2,635/73,582) loci have at least one read
misaligned from outside the locus. The graph pruning step is the
primary cause of missed alignments, and affects on average 2,772
loci per assembly. On real data, danbing-tk required 18.5 GB of
memory to map 150 base paired-end reads at 10.1 Mb/sec on
16 cores.

Read-to-graph alignment in VNTR regions. Alignment of SRS
reads to the RPGG enables estimation of VNTR length and motif
composition. The count of k-mers in SRS reads mapped to the
RPGG are reported by danbing-tk for each locus. For M samples
and L VNTR loci, the result of an alignment is L count matrices
of dimensionM ´Ni, where Ni is the number of vertices in the de
Bruijn graph on the locus i, excluding flanking sequences. If SRS
reads from a genome were sequenced without bias, sampled
uniformly, and mapped without error to the RPGG, the count of
a k-mer in a locus mapped by an SRS sample should scale by a
factor of read depth with the sum of the count of the k-mer from
the locus of both assembled haplotypes for the same genome. The
quality of alignment (aln-r2) and sequencing bias were measured
by comparing the k-mer counts from the 19 matched Illumina
and LRS genomes (Fig. 2a). In total, 44% (32,138/73,582) loci had
a mean aln-r2 ≥ 0.96 between SRS and assembly k-mer counts,
and were marked as “valid” loci to carry forward for downstream
diversity and expression analysis (Fig. 2b). Valid had an average
length of 341 bp, compared to 657 bp in the entire database
(Fig. 2c). VNTR loci that did not align well (invalid) were enri-
ched for sequences that map within Alu (21,820), SVA (1762),
and other 26,752 mobile elements (Supplementary Fig. 3); loci
with false mapping in the simulation experiment are also enri-
ched in the invalid set (Supplementary Table 2). Specifically,
71.6% (4,297/5,999) of loci with false-positive mapping, 84.7%
(8,065/9,525) of loci with false-negative mapping are not marked
as valid. Loci with false mapping but retained in the final set have
lower but still decent length-prediction accuracy (0.79 versus
0.82). The complete RPGG on valid loci contains 8,958,361 ver-
tices, in contrast to the corresponding RPGG on GRCh38 only
(repeat-GRCh38), which has 7,672,357 vertices. We validate that
the additional vertices in the RPGG are indeed important for
accurately recruiting reads pertinent to a VNTR locus, using the
CACNA1C VNTR as an example (Fig. 2d). It is known that the
reference sequence at this locus is truncated compared to the
majority of the populations (319 bp in GRCh38 versus 5669 bp
averaged across 19 genomes). The limited sequence diversity
provided by repeat-GRCh38 at this locus failed to recruit reads
that map to paths existing in the RPGG but missing or only
partially represented in repeat-GRCh38. A linear fit between the

Table 1 Source genomes for the RPGG.

Genome Continental population Study Coverage Assembly N50 (Mb) Fraction of VNTR annotated Ancestry

AK1 EAS KG 54 0.88 0.840 Korean
HG00268 EUR DP 67 3.51 0.967 Finnish
HG00512 EAS HGSVG 28 8.83 0.995 Han Chinese
HG00513 EAS HGSVG 30 1.57 0.993 Han Chinese
HG00514 EAS HGSVG 31 1.32 0.948 Han Chinese
HG00731 AMR HGSVG 31 2.18 0.995 Puerto Rican
HG00732 AMR HGSVG 16 1.3 0.992 Puerto Rican
HG00733 AMR HGSVG 46 6.88 0.992 Puerto Rican
HG01352 AMR DP 68 5.97 0.992 Colombian
HG02059 EAS DP 76 19.5 0.992 Vietnamese
HG02106 AMR DP 57 0.88 0.640 Peruvian
HG02818 AFR DP 56 0.66 0.802 Gambian
HG04217 SAS DP 60 0.86 0.269 Telugu
NA12878 EUR DP 54 4.67 0.971 Central European
NA19238 AFR HGSVG 23 2.64 0.991 Yoruba
NA19239 AFR HGSVG 35 4.87 0.994 Yoruba
NA19240 AFR HGSVG 49 3.4 0.989 Yoruba
NA19434 AFR DP 62 11 0.980 Luhya
NA24385 EUR GIAB 54 1.32 0.981 Ashkenazim

Continental populations represented are East Asian (EAS), European (EUR), Admixed Amerindian (AMR), South Asian (SAS), and African (AFR). Coverage is estimated diploid coverage based on
alignment to GRCh38. Assembly N50 is of haplotype-resolved assemblies. The fraction of VNTR annotated are all VNTR with at least 700 flanking bases assembled.
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k-mers from mapped reads and the ground truth assemblies
shows that there is a 13-fold gain in slope, or measured read
depth, when using RPGG compared to repeat-GRCh38 (Fig. 2e).
The k-mer counts in the RPGGs also correlate better with the
assembly k-mer counts compared to the repeat-GRCh38 (aln-
r2= 0.992 versus 0.858).

New genomes with arbitrary combinations of motifs and copy
numbers in VNTRs should still align to an RPGG as long as the
motifs are represented in the graph. We used leave-one-out
analysis to evaluate alignment of unseen genomes to RPGGs and
estimation of VNTR length. In each experiment, an RPGG was
constructed with one LRS genome missing. SRS reads from the
missing genome were mapped into the RPGG, and the estimated
locus lengths were compared to the average diploid lengths of
corresponding loci in the missing LRS assembly. The locus length
is estimated as the adjusted sum of k-mer counts kms mapped
from SRS sample s: kms=ðcovs ´ b̂Þ, where covs is sequencing
depth of s, b̂ is a correction for locus-specific sampling bias (LSB).
LSB measures the deviation of an observed read depth from the
expected value within an interval (see “Methods” for formal
definition). As the SRS datasets used in this study during
pangenome construction were collected from a wide variety of
studies with different biases, there was no consistent LSB in either
repetitive or nonrepetitive regions for samples from different
sequencing runs (Supplementary Figs. 6 and 7). However,
principal component analysis (PCA) of repetitive and nonrepe-
titive regions showed highly similar projection patterns (Supple-
mentary Fig. 8), which enabled using LSB in nonrepetitive regions
as a proxy for finding the nearest neighbor of LSB in VNTR
regions (Supplementary Fig. 9). Leveraging this finding, a set of
397 nonrepetitive control regions were used to estimate the LSB

of an unseen SRS sample (Methods), giving a median length-
prediction accuracy of 0.82 for 16 unrelated genomes (Fig. 3a left,
Supplementary Fig. 10). The read depth of a repetitive region
correlates to the locus length when aligning short reads to a linear
reference genome. However, estimation of VNTR length from
read depth has an accuracy of 0.75 (Fig. 3a left). We also
compared the performance for length prediction using the RPGG
versus repeat-GRCh38, and observed a 58% improvement in
accuracy (0.82 versus 0.52, Fig. 3a left and Supplementary
Fig. 11). The overall error rate, measured with mean absolute
percentage error (MAPE), of all loci (n= 32,138) are also
significantly lower when using RPGGs (MAPE= 0.18, Fig. 3a
right) compared with the repeat-GRCh38 (0.23, paired t-test
P= 4.2 × 10−32) or reference-aligned read depth (0.20, paired
t-test P= 2.4 × 10−33). Furthermore, a 62% reduction in error
size is observed for the 6,383 loci poorly genotyped (MAPE > 0.4)
using repeat-GRCh38 (Fig. 3b, MAPE= 0.235 versus 0.610). Loci
with low accuracy in length estimates from RPGG can be mostly
explained by the estimation error in LSB due to varying data
quality (r2= 0.89, Supplementary Fig. 12; example given in
Supplementary Fig. 13), and to a slight degree by the presence of a
missing haplotype (Supplementary Fig. 14), the fraction of k-mers
in a locus unique to a sample (Supplementary Fig. 15), GC bias
(Supplementary Fig. 16), and the difference in the VNTR GC
content across samples (Supplementary Fig. 17).

Profiling VNTR length and motif diversity. To explore global
diversity of VNTR sequences and potential functional impact, we
aligned reads from 2,504 individuals from diverse populations
sequenced at 30-fold coverage from the 1000-Genomes project
(1KGP)10,40, and 879 GTEx genomes12 to the RPGG. The

Fig. 2 Mapping short reads to repeat-pangenome graphs. a An example of evaluating the alignment quality of a locus mapped by SRS reads. The
alignment quality is measured by the r2 of a linear fit between the k-mer counts from the ground truth assemblies and from the mapped reads (Methods).
b Distribution of the alignment quality scores of 73,582 loci. Loci with alignment quality less than 0.96 when averaged across samples are removed from
downstream analysis (Methods). c Distribution of VNTR lengths in GRCh38 removed or retained for downstream analysis. d, e Comparing the read
mapping results of the CACNA1C VNTR using RPGG or repeat-GRCh38. d The k-mer counts in each graph and the differences are visualized with edge
width and color saturation. To visualize paths with less mapped reads, k-mer counts are clipped at 750 (left), 120 (middle), and 700 (right), respectively,
with the maximal k-mer count of each graph being 5744, 375, and 5378, respectively. e The k-mer counts from the ground truth assemblies are regressed
against the counts from reads mapped to the RPGG (red) and repeat-GRCh38 (blue), respectively. Source data are provided as a Source Data file.
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fraction of reads from these datasets that align to the RPGG
ranges from 1.11 to 1.37%, similar to the matched LRS/SRS data
(1.23%). PCA on the LSB of both datasets showed the 1KGP and
GTEx genomes as separate clusters in both repetitive and non-
repetitive regions (Supplementary Fig. 7), indicating experiment-
specific bias that prevents cross dataset comparisons. Consistent
with the finding in previous leave-one-out analysis, genomes
from the same study cluster together in the PCA plot of LSB, and
so within each dataset and locus, k-mer counts from SRS reads
normalized by sequencing depth were used to compare VNTR
content across genomes.

The k-mer dosage: kms=cov, was used as a proxy for locus
length to compare tandem repeat variation across populations in
the 1KGP genomes. The 1KGP samples contain individuals from
African (26.5%), East Asian (20.1%), European (19.9%), Admixed
American (13.9%), and South Asian (19.5%) populations. When
comparing the average population length to the global average
length, 60.8% (19,530/32,138) have differential length between
populations (FDR= 0.05 on ANOVA P-values), with similar
distributions of differential length when loci are stratified by the
accuracy of length prediction (Fig. 4a). Population stratification
was calculated using the VST statistic41 on VNTR length (Fig. 4b).
Previous studies have used >3 standard deviations above the
mean to define for highly stratified copy number variants42.
Under this measure, 785 variants are highly stratified, including
266 that overlap genes, however this is not significantly enriched
(P= 0.079, one-sided permutation test). Two of the top five loci
ranked by VST are intronic: a 72 base VNTR in PLCL1
(VST= 0.37), and a 148 base locus in SPATA18 (VST= 0.35)
(Fig. 4c, d). These values for VST are lower than what are observed
for large copy number variants41 and may be the result of neutral
variation, however, this may be affected by the high variance of
the length estimate, as VST decreases as the variance of the copy
number/dosage values increase (Methods).

VNTR loci that are unstable may undergo hyper-expansion
and are implicated as a mechanism of multiple diseases4. To
discover potentially unstable loci, we searched the 1 KGP
genomes for evidence of rare VNTR hyper-expansion. Loci were
screened for individuals with extreme (>6 standard deviations)

variation, and then filtered for deletions or unreliable samples
(Methods) to characterize 477 loci as potentially unstable
(Supplementary Data 3). These loci are inside 115 genes and
are significantly reduced from the number expected by chance
(P < 1 × 10−5, one-sided permutation test; n= 10,000). Of these
loci, 64 have an individual with >10 standard deviations above
the mean, of which two overlap genes, KCNA2, and GRM4
(Supplemental Fig. 18).

Alignment to an RPGG provides information about motif
usage in addition to estimates of VNTR length because genomes
with different motif composition will align to different vertices in
the graph. To detect differential motif usage, we searched for loci
with a k-mer that was more frequent in one population than
another and not simply explained by a difference in locus length,
comparing African (AFR) and East Asian populations for
maximal genetic diversity. Lasso regression against locus length
was used to find the k-mer with the most variance explained
(VEX) in EAS genomes, denoted as the most informative k-mer
(mi-kmer). Two statistics are of interest when comparing the two
populations: the difference in the count of mi-kmers (kmcd) and
the difference between proportion of VEX (r2d) by mi-kmers.
Kmcd describes the usage of an mi-kmer in one population
relative to another, while r2d indicates the degree that the mi-kmer
is involved in repeat contraction or expansion in one population
relative to another. We observe that 8216 loci have significant
differences in the usage of mi-kmers between the two populations
(two-sided P < 0.01, bootstrap, Supplementary Fig. 19). Among
these, the mi-kmers of 1913 loci are crucial to length variation in
the EAS but not in the AFR population (two-sided P < 0.01,
bootstrap) (Fig. 4e and Supplementary Fig. 19). A top example of
these loci with r2 at least 0.9 in the EAS population was visualized
with a heatmap of relative k-mer count from both populations,
and clearly showed differential usage of cycles in the RPGG
(Fig. 4f).

Association of VNTR with nearby gene expression. As the
danbing-tk length estimates showed population genetic patterns
expected for human diversity, we assessed whether danbing-tk

Fig. 3 VNTR length prediction. a Accuracies of VNTR length-prediction measured for each genome (left; n= 16) and each locus (right; n= 32,138). Mean
absolute percentage error (MAPE) in VNTR length is averaged across loci and genomes, respectively. Lengths were predicted based on repeat-pangenome
graphs (RPGG), repeat-GRCh38 (RHG) or naive read depth method (RD), respectively. Boxes span from the lower quartile to the upper quartile, with
horizontal lines indicating the median. Whiskers extend to points that are within 1.5 interquartile range (IQR) from the upper or the lower quartiles.
b Relative performance of RPGG versus repeat-GRCh38. Loci are ordered along the x-axis by genotyping accuracy in repeat-GRCh38. The y-axis shows the
decrease in MAPE using RPGG versus repeat-GRCh38. The subplot shows loci poorly genotyped (MAPE > 0.4) in repeat-GRCh38. The red dotted line
indicates the baseline without any improvement. the counts from reads mapped to the RPGG (red) and repeat-GRCh38 (blue), respectively. Source data
are provided as a Source Data file.
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alignments could detect VNTR variation with functional impact.
Genomes from the GTEx project were mapped into the RPGG to
discover loci that have an effect on nearby gene expression in a
length-dependent manner. A total of 812/838 genomes with
matching expression data passed quality filtering (Methods).
Similar to the population analysis, the k-mer dosage was used as a
proxy for locus length. Methods previously used to discover eQTL
using STR genotyping6 were applied to the danbing-tk align-
ments. In sum, 30,362 VNTRs within 100 kb to 45,720 GTEx
gene-annotations (including genes, lncRNA, and other tran-
scripts) were tested for association, with a total of 149,057 tests
and ~3.3 VNTRs tested per gene. Using a gene-level FDR cutoff
of 5%, we find 346 eQTL (eVNTRs) (Fig. 5a), among which 344
(99.4%) discoveries are previously unreported (Supplementary
Table 3), indicating that the spectrum of association between
tandem repeat variation and expression extends beyond the
lengths and the types of SSR considered in previous STR15 and
VNTR43 studies. This likely represents a lower bound on the total
eVNTRs as analysis on the complete set of loci that are not
filtered by mapping accuracy include 658 eVNTRs (Supplemen-
tary Data 4–6). Both positive and negative effects were observed
among eVNTRs (Fig. 5b). More eVNTRs with positive effect size
were found than with a negative effect size (200 versus 146,
binomial test P= 0.0043), with an average effect of +0.261 (from
+0.139 to +0.720) versus −0.247 (from −0.524 to −0.159),

respectively. eVNTRs tend to be closer to telomeres relative to all
VNTRs (Mann–Whitney U-test P= 5.2 × 10−5, Supplementary
Fig. 20). As many exons contain VNTR sequences, expression
measured by read depth should increase with length of the
VNTR, and there is an 2.5-fold enrichment of eVNTRs in coding
regions as expected.

The eVNTRs have the potential to yield insight to disease. In
one example, an intronic eVNTR at chr5:96,896,863–96,896,963
flanks exon 9 of ERAP2 (Fig. 5d and Supplementary Fig. 21). The
eVNTR has a −0.52 effect size and was reported across 27 tissues.
Although the effect is not independent of the lead eSNP
(Supplementary Figs. 22 and 23), the variant is missing from
the GTEx cis-eQTL catalog and colocalizes with a regulatory
hotspot with peaks of histone markers, DNase and 40 different
ChIP signals. The protein product of ERAP2, or endoplasmic
reticulum aminopeptidase 2, is a zinc metalloaminopeptidase
involving in the process of Class I MHC mediated antigen
presentation and innate immune response. It has been reported
to be associated with several diseases including ankylosing
spondylitis44 and Crohn’s disease45. Abnormal expansion of the
VNTR might increase autoimmune disease risk through reducing
ERAP2 expression, leaving longer and more antigenic peptides,
yet potentially higher fitness against virus infection46. This VNTR
is a unique sequence in GRCh38 that is a 101 bp tandem
duplication in 17/38 of the haplotypes. Another example is an

Fig. 4 Population properties of VNTR loci. a Ratios of median length between populations for loci with significant differences in average length. Loci are
stratified by accuracy prediction (<0.8), medium (0.8–0.9), and high (0.9+). bManhattan plot of VST values. c, d The distribution of estimated length via k-
mer dosage in continental populations for PLCL1 and SPATA18 VNTR loci, selected to visualize the distribution of dosage in different populations. Each point
is an individual. e Differential usage and expansion of motifs between the EAS and AFR populations. For each locus, the proportion of variance explained by
the most informative k-mer in the EAS is shown for the EAS and AFR populations on the x- and y-axes, respectively. Points are colored by the difference in
normalized k-mer counts, with red and blue indicating k-mers more abundant in EAS and AFR populations, respectively. f An example VNTR with
differential motif usage. Edges are colored if the k-mer count is biased toward a certain population. The black arrow indicates the location of the k-mer that
explains the most variance of VNTR length in the EAS population. Source data are provided as a Source Data file.
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intergenic VNTR at chr17:46,265,245–46,265,480 that associates
with the expression of KANSL1 ~40 kb upstream (Fig. 5c and
Supplementary Fig. 21). The eVNTR has a maximal effect size of
+0.45 and is significant across 40 tissues. The protein product
of KANSL1, or KAT8 regulatory NSL complex subunit 1, is a part
of the histone acetylation machinery. Deletion of this gene is
linked to Koolen-de Vries syndrome47, and the locus is associated
with Parkinson disease48. The eVNTR colocalizes with strong
ChIP signals, and the association of this VNTR with the
epigenetic landscape warrants further investigation.

Discussion
Previous commentaries have proposed that variation in VNTR
loci may represent a component of undiagnosed disease and
missing heritability49, which has remained difficult to profile even

with whole-genome sequencing15. To address this, we have pro-
posed an approach that combines multiple genomes into a pan-
genome graph that represents the repeat structure of a
population. This is supported by the software, danbing-tk and
associated RPGG. We used danbing-tk to generate a pangenome
from 19 haplotype-resolved assemblies, and applied it to detect
VNTR variation across populations and to discover eQTL.

The structure of the RPGG can help to organize the diversity of
assembled VNTR sequences with respect to the standard refer-
ence. In particular, the RPGG on 19 genomes is 27% larger than
repeat-GRCh38. Combined with the observation that using the
19-genome RPGG gives a 63% decrease in length-prediction
error, this indicates that the pan-genomes add detail for the
missing variation. With the availability of additional genomes
sequenced through the Pangenome Reference Consortium

Fig. 5 cis-eQTL mapping of VNTRs. a eVNTR discoveries in 20 human tissues. The quantile-quantile plot shows the observed P-value of each association
test (two-sided t-test) versus the P-value drawn from the expected uniform distribution. Black dots indicate the permutation results from the top 5%
associated (gene, VNTR) pairs in each tissue. The regression plots for ERAP2 and KANSL1 are shown in c and d. b Effect size distribution (n= 2510) of
significant associations from all tissues. c, d Genomic view of disease-related (eGene,eVNTR) pairs (ERAP2, chr5:96896863–96896963) (c) and (KANSL1,
chr17:46265245–46265480) (d) are shown. Red boxes indicate the location of eGenes and eVNTRs.
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(https://humanpangenome.org/) and the HGSVC (https://www.
internationalgenome.org), combined with advanced haplotype-
resolve assembly methods50, the spectrum of this variation will be
revealed in the near future. While we anticipate that eventually
the full spectrum of VNTR diversity will be revealed through LRS
of large cohorts, the RPGG analysis will help organize analysis by
characterizing repeat domains. For example, with our approach,
we are able to detect 1913 loci with differential motif usage
between populations, which could be difficult to characterize
using an approach such as multiple-sequence alignment of VNTR
sequences from assembled genomes.

There are several caveats to our approach. Datasets combined
from disparate sequencing runs with batch effects will affect
dosage estimates. In contrast to other pangenome
approaches27,38, danbing-tk does not keep track of a reference
(e.g., GRCh38) coordinate system. Furthermore, because it is
often not possible to reconstruct a unique path in an RPGG, only
counts of mapped reads are reported rather than the order of
traversal of the RPGG. An additional caveat of our approach is
that genotype is calculated as a continuum of k-mer dosage rather
than discrete units, prohibiting direct calculation of linkage-
disequilibrium for fine-scale mapping51. Finally this approach
only profiles loci where k-mer counts from reads and assemblies
are correlated; loci for which every k-mer appears the same
number of times are excluded from analysis (on average 8,058/
73,582 per genome).

The rich data (Supplementary Data 7–9) provided by danbing-
tk and pangenome analysis provide the basis for additional
association studies. While most analysis in this study focused on
the diversity of VNTR length or association of length and
expression, it is possible to query differential motif usage using
the RPGG. The ability to detect motifs that have differential usage
between populations brings the possibility of detecting differential
motif usage between cases and controls in association studies.
This can help distinguish stabilizing versus fragile motifs52, or
resolve some of the problem of missing heritability by discovering
new associations between motif and disease18. Finally, this work
is a part of ongoing pangenome graph analysis53,54, and repre-
sents an approach to generating pangenome graphs in loci that
have difficult multiple-sequence alignments or degenerate graph
topologies. Additional methods may be developed to harmonize
danbing-tk RPGGs with genome-wide pangenome graphs con-
structed from other methods.

Methods
Repeat-pangenome graph construction
Initial discovery of tandem repeats. TRF37 v4.09 (option: 2 7 7 80 10 50 500 -f -d -h)
was used to roughly annotate the SSR regions of five PacBio assemblies (AK1,
HG00514, HG00733, NA19240, NA24385). The scope of this work focuses on
VNTRs that cannot be resolved by typical short-read sequencing methods. We
selected the set of SSR loci with a motif size greater than 6 bp and a total length
greater than 150 bp and <10 kbp. For each haplotype, the selected VNTR loci were
mapped to GRCh38 reference genome to identify homologous VNTR loci. To
maintain data quality, VNTR loci that could not be assigned homology were
removed from datasets.

Boundary expansion of VNTRs. The biological boundaries of a VNTR are ill-
defined; VNTRs with sparse recurring motifs or transition between different motifs
or a nested motif structure often fail to be fully annotated by TRF. A misannotation
of VNTR boundaries can cause erroneous length estimates. To avoid the propa-
gation of this error to downstream analysis, we developed a multiple boundary
expansion algorithm to recover the proper boundary for each VNTR across all
haplotypes, including the 14 remaining genomes (HG00268, HG00512, HG00513,
HG00731, HG00732, HG01352, HG02059, HG02106, HG02818, HG04217,
NA12878, NA19238, NA19239 and NA19434). The algorithm maintains an
invariant: the flanking sequence in any of the haplotypes does not share k-mers
with the VNTR regions from all haplotypes. VNTR boundaries in each haplotype
are iteratively expanded until the invariant is true or if expansion exceeds 10 kbp in
either 5′ or 3′ direction. The size of the flanking regions is chosen to be 700 bp,
which is approximately the upper bound of the insert size of typical SRS reads. The

following QC step removes a haplotype if its VNTR annotation is within 700 bp to
breakpoints or if the orthology mapping location to GRCh38 is different from the
majority of haplotypes. A VNTR locus with the number of supporting haplotypes
less than 90% of the total number of haplotypes is also removed. Adjacent VNTR
loci within 700 bp to each other in any of the haplotypes will induce a merging step
over all haplotypes. Haplotypes with distance between adjacent loci inconsistent
with the majority of haplotypes are removed. Finally, VNTR loci with the number
of supporting haplotypes less than 80% of the total number of haplotypes are
removed, leaving 73,582 of the initial 84,411 loci.

Read-to-graph alignment. For the two haplotypes of an individual, three data
structures are used to encode the information of all VNTR loci, including VNTRs
and their 700 bp flanking sequences. The first data structure allows fast locus
lookup for each k-mer (k= 21) by hashing each canonical k-mer in the VNTRs and
the flanking sequences to the index of the original locus. The second data structure
enables graph threading by storing a bi-directional de Bruijn graph for each locus.
The third data structure is used for counting k-mers originating from VNTRs. The
read mapping algorithm maps each pair of Illumina paired-end reads to a unique
VNTR locus in three phases: (1) In the k-mer set mapping phase, the read pair is
converted to a pair of canonical k-mer multisets. The VNTR locus with the highest
count of intersected k-mers is detected with the first data structure. (2) In the
threading phase, the algorithm tries to map the k-mers in the read pair to the bi-
directional de Bruijn graph such that the mapping forms a continuous path/cycle.
To account for sequencing and assembly errors, the algorithm is allowed to edit a
limited number of nucleotides in a read if no matching k-mer is found in the graph.
The read pair is determined feasible to map to a VNTR locus if the number of
mapped k-mers is above an empirical threshold. (3) In the k-mer counting phase,
canonical k-mers of the feasible read pair are counted if they existed in the VNTR
locus. Finally, the read mapping algorithm returns the k-mer counts for all loci as
mapped by SRS reads. Alignment timing was conducted on an Intel Xeon E5-
2650v2 2.60 GHz node.

Graph pruning and merging. Pan-genome representation provides a more thorough
description of VNTR diversity and reduces reference allele bias, which effectively
improves the quality of read mapping and downstream analysis. Considering the
fact that haplotypes assembled from long-read datasets are error prone in VNTR
regions, it is necessary to prune the graphs/k-mers before merging them as a pan-
genome. We ran the read mapping algorithm with error correction disabled so as
to detect k-mers unsupported by SRS reads. The three data structures were updated
by deleting all unsupported k-mers for each locus. By pooling and merging the
reference regions corresponding to the VNTR regions in all individuals, we
obtained a set of “pan-reference” regions, each indicating a location in GRCh38
that is likely to map to a VNTR region in any other unseen haplotype. By refer-
encing the mapping relation of VNTR loci across individuals, we encoded the
variability of each VNTR locus by merging the three data structures across
individuals.

Alignment quality analysis. To evaluate the quality of the haplotype assemblies and
the performance of the read mapping algorithm, VNTR k-mer counts in the ori-
ginal assemblies were regressed against those mapped from SRS reads. The r2 of the
linear fit was used as the alignment quality score (referred to as aln-r2). To measure
alignment quality in the pan-genome setting, only the k-mer set derived from the
genotyped individual was retained as the input for regression.

Data filtering. A final set of 32,138 VNTR regions was called by filtering based on
aln-r2. The quality of a locus was measured by the mean aln-r2 across individuals.
Loci with mean aln-r2 below 0.96 were removed from the final call set. The final
pan-genome graphs were used to genotype large Illumina datasets, measure length-
prediction accuracy, analyze population structures and map eQTL.

Predicting VNTR lengths. Read depths at VNTR regions usually vary considerably
from locus to locus. Furthermore, the sampling bias of different sequencing runs
are also different, which limits our ability to genotype the accurate length of
VNTRs. To account for this, we compute LSBs bs for each sample s, which is a tuple
of (genome g, sequencing run), as follows:

bs ¼
kmss

covs ´ Lg
ð1Þ

where Lg is the ground truth VNTR lengths of 32,138 loci in genome g; kmss is the
sum of k-mer counts in each locus mapped by sample s; covs is the global read
depth of sample s estimated by averaging the read depths of 397 unique regions
without any types of repeats or duplications.

The ground truth VNTR length of a locus l in genome g is averaged across
haplotypes:

Lg;l ¼
1
H

∑
H

h¼1
Lg;h;l ð2Þ

where H is the number of haplotype(s) in genome g, i.e., 2 for normal individuals
and 1 for complete hydatidiform mole (CHM) samples.
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With the above bias terms, the VNTR length of locus l in sample s can be
computed by:

Ls;l ¼
kmss;l

covs ´ bŝ
ð3Þ

where covs is same as described above; bŝ is the estimated LSBs computed from
sample ŝ with ground truth VNTR lengths; kmss;l is the sum of k-mer counts of
locus l mapped by sample s. We assume the LSBs that best approximates bs come
from samples within the same sequencing run. Without prior knowledge on the
ground truth VNTR lengths of s and therefore bs , we determine the “closest”
sample ŝ w.r.t. s based on r2 between the read depths, RD, of the 397 unique regions
as follows:

ŝ ¼ argmax
s0;s02GT;s0≠s

r2ðRDs0;RDsÞ ð4Þ

where GT is the set of samples with ground truths and within the same sequencing
run as s. We cross-validate our approach by leaving one sample out of the pan-
genome database and evaluating the prediction accuracy on the excluded sample.

For comparison, VNTR lengths were also estimated by a read depth method.
For each VNTR region, the read depth, computed with samtools bedcov -j, was
divided by the global read depth, computed from the 397 nonrepetitive regions, to
give the length estimate.

Comparing with GraphAligner. The compact de Bruijn graph of each VNTR locus
was generated with bcalm v2.2.3 (option: -kmer-size 21 -abundance-min 1) using
the VNTR sequences from all assemblies as input.

GFA files were then reindexed and concatenated to generate the RPGGs for
32,138 loci. Error-free paired-end reads were simulated from all VNTR regions at
2x coverage with 150 bp read length and 600 bp insert size (300 bp gap between
each end). Reads were aligned to the RPGG using GraphAligner v1.0.11 with
option -x dbg --seeds-minimizer-length 21. Reads with alignment identity >90%
were counted from the output gam file. To compare in a similar setting, danbing-tk
was run with option -gc -thcth 117 -k 21 -cth 45 -rth 0.5 to assert >90% identity for
all reads aligned, given that ðread length� kmer sizeþ 1Þ ´ 0:9 ¼ 117.

Population analysis
VST calculation. VST was calculated according to Redon et al.41:

VST i½ � ¼ max 0;
varall � 1

n∑p2Pvarp ´ np
varall

 !
ð5Þ

Top VST loci were considered as the sites with VST at least three standard
deviations above the mean.

Properties of VST. The dosage of a VNTR for an individual j is xj ≥ 0. Consider nT
individuals consisting of P populations, with ni individuals each, with population
mean and variance, μi and σ2i , and a global mean and variance μT and σ2T for all

individuals. Population stratification is calculated as VST ¼ 1
σ2T

σ2T � ∑σ2i ni
∑ni

� �
.

The mean across populations, μT is calculated as ∑μini
� �

=∑ni . The variance is
Eðxj � μTÞ2 for all individuals, and this may be separated out by population as

∑iEðxik � μTÞ2ni=∑ini , using xik to denote the kth individual in population i. The

value ∑iEðxik � μTÞ2 may be computed as:

E xik � μT
� �2 ¼ E xik � μi

� �þ μi � μT
� �� �2

¼ E xik � μi
� �2 þ 2 xik � μi

� �
μi � μT
� �þ μi � μT

� �2� �

since E xik
� � ¼ μi; E xik � μi

� � ¼ E xik
� �� E μi

� � ¼ 0

¼ σ2i þ E μi � μT
� �2

¼ σ2i þ μi � μT
� �2 ð6Þ

The total population variance σ2T relative to the population mean, variance, size,
and global mean is:

σ2T ¼
∑ini σ2i þ μi � μT

� �2� �
∑ini

ð7Þ

Replacing this in the calculation of VST gives:

VST ¼ 1
σ2T

∑ini σ2i þ μi � μT
� �2� �

∑ini
�∑iσ

2
i ni

∑ini

0
@

1
A ¼ ∑ini μi � μT

� �2
nT ´ σ2T

ð8Þ

Identifying unstable loci. A locus was annotated as a candidate for being unstable if
at least one individual had outlying k-mer dosage ≥ six standard deviations above
the mean, using population and locus-specific summary statistics on data dis-
carding individuals with dosage <10 or a bimodal distribution was not detected
(diptest v0.75–7, P > 0.9). Among this set, the number of times each genome

appeared as an outlier was used to select a set of genomes with an over abundant
contribution to fragile loci. Any candidate locus with an individual that was an
outlier in at least four other loci was removed from the candidate list. The loci were
compared to gencode v34, excluding readthrough, pseudogenes, noncoding RNA,
and nonsense transcripts.

Identifying differential motif usage and expansion. Sample outliers in the 1000
Genomes were detected from the LSBs over 397 control regions and the VNTR
dosages over 32,138 loci using DBSCAN. A total of 119/2504 samples were
removed from downstream analysis. We use the EAS population as the reference
for measuring differential motif usage and expansion. Initially, a lasso fit using the
statsmodel.api.OLS function in python statsmodel v0.10.155 was performed for
each locus to identify the k-mer with the most variance explained (VEX) in VNTR
lengths using the following formula: y ¼ Xbþ ϵ, where y ∈ RN is the VNTR
length of N individuals in the EAS population; X ∈ RN ´M is the k-mer dosage
matrix for N individuals with M k-mers; b ∈ RN is the model coefficient, and
ϵ � N 0; σ2

� �
is the error term. The lasso penalty weight α was scanned starting at

0.9 with at a step size of −0.1 until at least one covariate has a positive weight or α
is below 0.1. The k-mer with the highest weight is denoted as the most informative
k-mer (mi-kmer) for the locus.

To identify loci with differential motif usage between populations, we
subtracted the median count of the mi-kmer of the AFR from the EAS population
for each locus, denoted as kmcd. The null distribution of kmcd was estimated by
bootstrap. Specifically, EAS individuals were sampled with replacement NEAS þ
NAFR times, matching the sample sizes of the EAS and AFR populations,
respectively. The bootstrap statistics, kmc*d, were computed by subtracting the
median count of the mi-kmer of the last NAFR from the first NEAS bootstrap
samples for each locus. The estimated null distribution is then used to determine
the threshold for calling a locus having significant differential motif usage between
populations (two-sided P < 0.01).

To identify loci with differential motif expansion between populations, we
subtracted the proportion of VEX by mi-kmer in the AFR from the EAS
population, denoted as r2d. The null distribution of r2d was estimated by bootstrap in
a similar sampling procedure as kmcd, except for subtracting the proportion of
VEX by the mi-kmer in the last NAFR from the first NEAS bootstrap samples for
each locus. The estimated null distribution is used to determine the threshold for
calling a locus having significant differential motif expansion between populations
(two-sided P < 0.01).

eQTL mapping
Retrieving datasets. WGS datasets of 879 individuals, normalized gene expression
matrices and covariates of all tissues are accessed from the GTEx Analysis V8
(dbGaP Accession phs000424.v8.p2).

Genotype data preprocessing. VNTR lengths are genotyped using daunting-tk with
options: -gc -thcth 50 -cth 45 -rth 0.5. All the k-mer counts of a locus are summed
and adjusted by global read depth and ploidy to represent the approximate length
of a locus. Sample outliers were detected from the LSBs over 397 control regions
and the VNTR dosages over 32,138 loci using DBSCAN. A total of 26/838 samples
were removed from downstream analysis. Adjusted values are then z-score nor-
malized as input for eQTL mapping.

Expression data preprocessing. The downloaded expression matrices are already
preprocessed such that outliers are rejected and expression counts are quantile
normalized as standard normal distribution. Confounding factors such as sex,
sequencing platform, amplification method, technical variations and population
structure are removed prior to eQTL mapping to avoid spurious associations.
Technical variations are corrected with the covariates, including PEER factors,
provided by the GTEx Consortium. Population structures are corrected with the
top 10 principal components (PCs) from the SNP matrix of all samples. Particu-
larly, principal component analysis (PCA) was performed jointly on the intersec-
tion of the SNP sets from GTEx samples and 1KGP Omni 2.5 SNP genotyping
arrays (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/
hd_genotype_chip/ALL.chip.omni_broad_sanger_combined.20140818.snps.geno-
types.vcf.gz). This is done by first using CrossMap v0.4.0 to liftover the SNP sites
from Omni 2.5 arrays to GRCh38, followed by extracting the intersection of the
two SNP sets using vcftools isec. The SNP set is further reduced by LD-pruning
with plink v1.90b6.12 using the options: --indep 50 5 2, leaving a total of
757,000 sites. Finally, PCA on the joint SNP matrix was done by smartpca v13050.
The normalized expression matrix are residualized with the above covariates using
the following formula:

Y ¼ I � Hð ÞY 0 ð9Þ

H ¼ C CTC
� ��1

CT ð10Þ

where Y is the residualized expression matrix; Y′ is the normalized expression
matrix; H is the projection matrix; I is the identity matrix; C is the covariate matrix

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24378-0

10 NATURE COMMUNICATIONS |         (2021) 12:4250 | https://doi.org/10.1038/s41467-021-24378-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


where each column corresponds to a covariate mentioned above. The residualized
expression values are z-score normalized as the input of eQTL mapping.

Association test. VNTRs within 100 kb to a gene are included for eQTL mapping.
Linear regression was done using the statsmodel.api.OLS function in python
statsmodel v0.10.155 with expression values as the dependent variable and genotype
values as the independent variable. Nominal P-values are computed by performing
t-tests on slope. Adjusted P-values are computed by Bonferroni correction on
nominal P-values. Under the assumption of at most one causal VNTR per gene, we
control gene-level false -discovery rate at 5%. Specifically, the adjusted P-values of
the lead VNTR for each gene are taken as input for Benjamini–Hochberg proce-
dure using statsmodels.stats.multitest.fdrcorrection v0.10.1. Lead VNTRs that
passed the procedure are identified as eVNTRs.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data accession IDs are given in Supplementary Table 4. Six HGSVC diploid assemblies
that support the finding of this study are available at https://www.internationalgenome.
org/data-portal/data-collection/hgsvc2. The remaining 13 diploid assemblies, the RPGG
data structure and the k-mer dosage table for 1KGP samples are available at https://doi.
org/10.5281/zenodo.4758205. The whole-genome sequencing data of 1KGP samples
(PRJEB36890) are available at https://www.internationalgenome.org/data-portal/data-
collection/30x-grch38. The following cell lines/DNA samples were obtained from the
NIGMS Human Genetic Cell Repository at the Coriell Institute for Medical Research:
[NA06984, NA06985, NA06986, NA06989, NA06991, NA06993, NA06994, NA06995,
NA06997, NA07000, NA07014, NA07019, NA07022, NA07029, NA07031, NA07034,
NA07037, NA07045, NA07048, NA07051, NA07055, NA07056, NA07340, NA07345,
NA07346, NA07347, NA07348, NA07349, NA07357, NA07435, NA10830, NA10831,
NA10835, NA10836, NA10837, NA10838, NA10839, NA10840, NA10842, NA10843,
NA10845, NA10846, NA10847, NA10850, NA10851, NA10852, NA10853, NA10854,
NA10855, NA10856, NA10857, NA10859, NA10860, NA10861, NA10863, NA10864,
NA10865, NA11829, NA11830, NA11831, NA11832, NA11839, NA11840, NA11843,
NA11881, NA11882, NA11891, NA11892, NA11893, NA11894, NA11917, NA11918,
NA11919, NA11920, NA11930, NA11931, NA11932, NA11933, NA11992, NA11993,
NA11994, NA11995, NA12003, NA12004, NA12005, NA12006, NA12043, NA12044,
NA12045, NA12046, NA12056, NA12057, NA12058, NA12144, NA12145, NA12146,
NA12154, NA12155, NA12156, NA12234, NA12239, NA12248, NA12249, NA12264,
NA12272, NA12273, NA12274, NA12275, NA12282, NA12283, NA12286, NA12287,
NA12329, NA12335, NA12336, NA12340, NA12341, NA12342, NA12343, NA12344,
NA12347, NA12348, NA12375, NA12376, NA12383, NA12386, NA12399, NA12400,
NA12413, NA12414, NA12485, NA12489, NA12546, NA12707, NA12708, NA12716,
NA12717, NA12718, NA12739, NA12740, NA12748, NA12749, NA12750, NA12751,
NA12752, NA12753, NA12760, NA12761, NA12762, NA12763, NA12766, NA12767,
NA12775, NA12776, NA12777, NA12778, NA12801, NA12802, NA12812, NA12813,
NA12814, NA12815, NA12817, NA12818, NA12827, NA12828, NA12829, NA12830,
NA12832, NA12842, NA12843, NA12864, NA12865, NA12872, NA12873, NA12874,
NA12875, NA12877, NA12878, NA12889, NA12890, NA12891, NA12892]. The whole-
genome sequencing and expression data of GTEx samples (phs000424.v8.p2) can be
accessed from https://www.gtexportal.org/home/datasets. The Source Data for Figs. 1c,
2b, c, e, 3, 4e, Supplementary Figs. 1, 5–17, 19-20, 29, 32, 34–40 and Supplementary
Table 6 are available at https://doi.org/10.5281/zenodo.4758205. Source data are provided
with this paper.

Code availability
The overall analysis pipeline is delivered in a software package at https://github.com/
ChaissonLab/danbing-tk56.
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