
The Jackson Laboratory The Jackson Laboratory 

The Mouseion at the JAXlibrary The Mouseion at the JAXlibrary 

Faculty Research 2021 Faculty Research 

1-1-2021 

Gender-Based Deep Learning Firefly Optimization Method for Test Gender-Based Deep Learning Firefly Optimization Method for Test 

Data Generation. Data Generation. 

Wenning Zhang 

Chongyang Jiao 

Qinglei Zhou 

Yang Liu 

Ting Xu 

Follow this and additional works at: https://mouseion.jax.org/stfb2021 

 Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons 

https://mouseion.jax.org/
https://mouseion.jax.org/stfb2021
https://mouseion.jax.org/fac_research
https://mouseion.jax.org/stfb2021?utm_source=mouseion.jax.org%2Fstfb2021%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=mouseion.jax.org%2Fstfb2021%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=mouseion.jax.org%2Fstfb2021%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages


Research Article
Gender-Based Deep Learning Firefly Optimization Method for
Test Data Generation

Wenning Zhang ,1,2 Chongyang Jiao ,1 Qinglei Zhou ,3 Yang Liu ,4 and Ting Xu 1,3

1State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou, Henan 450000, China
2Software College, Zhongyuan University of Technology, Zhengzhou, Henan 450000, China
3School of Information Engineering, Zhengzhou University, Zhengzhou, Henan 450000, China
4+e Jackson Laboratory for Genomic Medicine, Farmington 06032, CT, USA

Correspondence should be addressed to Wenning Zhang; zhangwn@zut.edu.cn

Received 7 May 2021; Accepted 19 May 2021; Published 29 May 2021

Academic Editor: Syed Hassan Ahmed

Copyright © 2021 Wenning Zhang et al. )is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Software testing is a widespread validation means of software quality assurance in industry. Intelligent optimization algorithms
have been proved to be an effective way of automatic test data generation. Firefly algorithm has received extensive attention and
been widely used to solve optimization problems because of less parameters and simple implement. To overcome slow con-
vergence rate and low accuracy of the firefly algorithm, a novel firefly algorithm with deep learning is proposed to generate
structural test data. Initially, the population is divided into male subgroup and female subgroup. Following the randomly attracted
model, eachmale firefly will be attracted by another randomly selected female firefly to focus on global search in whole space. Each
female firefly implements local search under the leadership of the general center firefly, constructed based on historical experience
with deep learning. At the final period of searching, chaos search is conducted near the best firefly to improve search accuracy.
Simulation results show that the proposed algorithm can achieve better performance in terms of success coverage rate, coverage
time, and diversity of solutions.

1. Introduction

Software testing is a labor-intensive and significant measure
of software quality accounting for more than 40% of total
cost [1]. Automating the process of test data generation to
search feasible test cases to satisfy given testing criteria (e.g.,
branch coverage) can reduce testing cost thus the overall
cost, increasing the software quality [2]. Automatic test data
generation for path coverage-based optimization is one of
the most basic and critical domains with considerable re-
search interest. Its purpose is to generate test data to execute
each feasible path of the program at least once [3].

Inspired by human intelligence and natural phenomena
of biological groups, more and more metaheuristic algo-
rithms are proposed to solve diverse optimization applica-
tions and show their unique advantages. Since many typical
questions in software engineering can be formulated as

optimization question, search-based software engineering
(SBSE) has been widely applied during the whole software
life cycle, such as requirement and project management. As a
sub area of SBSE, search-based software testing (SBST) has
received the most widespread study and been proved to be
an effective approach to generate structural test case [4, 5].
Metaheuristic algorithms that have been used in test case
generation include genetic algorithms, particle swarm op-
timization, firefly algorithm, artificial bee colony, cuckoo
search algorithm, ant colony optimization, and others [2].

)rough the simulation and simplification of the be-
havior of fireflies, Yang [6] developed the firefly algorithm
(FA) according to the flashing patterns of fireflies. As one of
the stochastic, swarm intelligence methods, it has been re-
ceived extensive attention and successfully applied to various
applications because of its efficiency and simplicity [7, 8].
However, FA shows some drawbacks such as low accuracy

Hindawi
Computational Intelligence and Neuroscience
Volume 2021, Article ID 8056225, 11 pages
https://doi.org/10.1155/2021/8056225

mailto:zhangwn@zut.edu.cn
https://orcid.org/0000-0002-1035-4887
https://orcid.org/0000-0003-1348-3323
https://orcid.org/0000-0002-1156-1108
https://orcid.org/0000-0003-4433-1066
https://orcid.org/0000-0001-6832-0332
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8056225


and falling into local optima. To overcome the aforemen-
tioned limitations, we intend to propose a gender difference-
based firefly algorithm with deep learning to generate
structural test case.

)is paper proposed an effective metaheuristic firefly
search algorithm for structural test data generation, which is
the most widely studied of all the applications of search-
based techniques to the test data generation problem. )e
main work can be concluded as follows: first, a solution to
generate test case used FA is constructed; second, a new
algorithm by combining random attraction model, deep
learning, and chaotic search is formulated to balance the
global and local search ability; third, the implementation and
its analysis on public benchmark programs are discussed in
detail.

2. Background

2.1. Firefly Algorithm. FA is a metaheuristic algorithm
motivated by the idealized biological behavior and infor-
mation interaction strategy of fireflies. )e less bright firefly
will be attracted and moved towards the brighter one.
Generally, attractiveness between two fireflies is propor-
tional to the brightness and inversely proportional to the
distance [6]. In the process of evolution, fireflies will
gradually focus on the brightest fireflies, which are target
solutions. In search space of optimization problems, espe-
cially maximization problems, the firefly brightness can
simply be computed to the encoded fitness function value,
and each firefly represents a candidate solution of optimi-
zation problem.

Assuming there are N fireflies in D-dimensional space,
the any two ith/jth firefly can be represented as
xi � (xi1, xi2, . . . , xiD), i � 1, 2, . . . , N and xj � (xj1, xj2,

. . . , xij), j � 1, 2, . . . , N, respectively. )e mathematical
description of FA can be described as follows [9].

Each firefly should be initialized as follows:

xij � rand()∗ (U − L), (1)

where rand is randomization function generating numbers
between 0 and 1 and U and L are upper bound and lower
bound of the input space.

)e distance between firefly i at xi and firefly j at xj can
be defined as follows:

rij � xi − xj

�����

����� �

�������������



D

d�1
xid − xjd 

2




, (2)

where xid is the dth spatial coordinate of the ith firefly and
xjd is the dth spatial coordinate of the jth firefly.

To reduce complexity of optimization, especially in the
simplest maximum problems, the attractiveness of firefly i
can be formulated as I(i), determined by its brightness
associated with the fitness function value. Supposing firefly j
is brighter than firefly i, the firefly i will be attracted and
moved to firefly j. However, the brightness seen by firefly i
will decrease with the distance because of the media light
absorption.)en, the attractiveness will change according to

the degree of absorption. Considering the absorption and
inverse square law, the light intensity can be defined as in (3)
and the relative attractiveness can be defined as in (4).

Iij rij  � Iie
−cr2

ij , (3)

βij rij  � β0e
−cr2

ij , (4)

where Ii is attractiveness of firefly i according to the encoded
fitness function, c is a given light absorption coefficient, and
β0 is the initial attractiveness when r� 0.

)e movement of firefly i attracted by firefly j is defined
as follows:

xid(t + 1) � xid(t) + β xjd(t) − xid(t)  + αi(t)ε, (5)

where the second part is the attractiveness between two
fireflies and the third part is the random walk.

2.2. RelatedResearch. )ere are many complex optimization
problems in many fields, which cannot be solved by tra-
ditional optimization approaches. With the deep learning
from society and nature, the last decades has seen the
emergence of many new meta heuristic search algorithms,
such as genetic algorithm (GA), hill climbing algorithm
(HCA), particle swarm optimization (PSO), cuckoo search
algorithm (CS), firefly algorithm (FA), grey wolf optimi-
zation algorithm (GWA), and moth flame optimization
algorithm (MFO). Automating the process of test data
generation with these excellent achievements has been a
burgeoning interest in recent years. Researchers [4, 5, 10]
conducted a series of extensive surveys of search and found
that some of these meta heuristic algorithms are widely used
in the automatic software test data generation, while some
have not been exploited by the test data generation tech-
niques. Khari et al. [2] selected some algorithms according to
their popularity in their research and compared the per-
formance of the HCA, PSO, FA, CS, BA, and ABC for path
coverage and branch coverage optimization. Among all, the
firefly algorithm has its unique ability of automatic division
and dealing with multi modal functions. It has received
extensive attention and been widely used to solve optimi-
zation problems because of less parameters and simple
implement.

Researchers have improved standard FA in many dif-
ferent ways, such as parameter control strategy, attractive
model, and hybrid improvement strategy [11]. Many FA
variants have been developed to solve various optimization
problems. Zhao et al. [10] proposed a firefly algorithm using
deep learning strategy to overcome premature convergence
of the firefly algorithm. Experiments of 12 functions dem-
onstrate its better performance. Hu [12] discussed the firefly
algorithm with Gaussian disturbance which is added to the
position of fireflies during iteration. Huanget al. [13] gave an
improved chaotic firefly algorithm to enhance the local
search ability. )e Chebyshev chaotic mapping function
with search operator was introduced to initialize firefly
population and promote optimization during evolution
process to change search area. Based on the initialized mate

2 Computational Intelligence and Neuroscience



list and historical movement of fireflies, Waledd et al. [14]
proposed a firefly photinus algorithm to change absorption
parameters during optimization process to balance explo-
ration and exploitation. Wang et al. [15] designed inde-
pendent movement equations for male fireflies and female
fireflies, implementing global search and local search sep-
arately. Additionally, Xie et al. [8] developed a hybrid
multiobjective firefly algorithm to cope with the emerging
complicated multiobjective optimization problem. Fireflies
were guided by the external archive whose diversity was
maintained by the archive pruning.

Also, there are some exciting achievements in software
testing. Ma et al. [16] added dynamic inertia weight and
compression factor to the firefly algorithm and applied it to
the typical triangle type program. Transforming the test suite
reduction problem into a optimization problem, Gong et al.
[17] employed the firefly algorithm and greedy algorithm to
obtain best solutions and then proved its reduction ability
and stability. Considering the firefly movement as GA’s
genetic operation, Li et al. [18] combined GA with FA to
reduce redundant test cases and enhance the astringency of
algorithm. Pandey et al. [19, 20] developed a hybrid firefly
and a genetic algorithm for regression testing environment
selection and test data generation. Evaluation showed that
the hybrid approach performs well.

3. Firefly-Based Test Case Generation

3.1. Test Case Generation Framework. )e automatic test
data generation based on FA needs to solve the cooperative
operation problem between the firefly algorithm and the test
date generation [21], as shown in Figure 1. )e framework
can be divided into two aspects: firefly algorithm and test
date generation. )rough close cooperation and immediate
feedback, both sides promote the whole optimization pro-
cess. )e overall is described as follows. First, static analysis
of the program under test (PUT) is performed to extract the
relevant interface information. And stubs are inserted into
PUT for constructing or calculating problem-specific fitness
function. Next, the firefly population is initialized to the
input space of PUT, where positions are decoded as pa-
rameter value. Following the principle of “moving towards
brighter fireflies,” the positions of fireflies are updated in
each dimension at each iteration. During the evolution
process, fitness function value and coverage information are
collected to further guide the optimization based on
knowledge and historical experience. Evolution continues
until the target solutions are found or the maximum number
of generations is reached.

3.2. Fitness Function. In order to adapt FA to software
testing area, the automatic test data generation should be
converted into optimization problem, and solutions ma-
nipulated in search space should be encoded by reasonable
fitness function. )e encoding mechanism should ensure
that neighbour solutions in search space are similar can-
didate test data in software testing. Better candidate solu-
tions reflected by brighter fireflies should be rewarded, and

worse candidate solutions should be punished with fitness
function value. )erefore, a good fitness function is a critical
factor for the efficiency and success of optimization. For test
data generation, the better fitness function value should be
returned for those test data which nearly meet the covering
criteria.

For the automatic structural test data generation, the
objective is to search test data to maximize path coverage.
During the search process, we need to get feedback from
execution to iterate. We focus on how far is the actual
execution path for given input vector x away from the target
path. Branch coverage is the widely used criteria in software
testing [22]. Based on research achievement of Korel and
Tracy [23, 24], the summation of branch function is used for
structural test data generation. )e fitness function for
typical branch predicates can be calculated as follows (Ta-
ble 1), where k is a constant greater than 0. By using the given
fitness function, the firefly algorithm can be adapted to
generate test data and then optimization process can be
guided to seek better solutions.

Assuming PUT has n input parameters, represented as
xi � (xi1, xi2, . . . , xin), and selected target path under test
has m branches. )erefore, fitness function value for branch
1 is f1 � f1(xi) and fm � fm(xi) for branch m. By sum-
ming up function value, each fitness function value for input
xi can be calculated as in (6), where each item is defined as in
(7).

F � F f1(  + F f2(  + · · · + F fm( , (6)

F fi(  �
0, fi ≤ 0,

fi, fi ≥ 0.
 (7)

4. Improved Firefly Algorithm with
Deep Learning

4.1. Motivation. In nature, the flashing fireflies are a won-
derful sight especially in the summer night, and rhythmic
flashing light produced by fireflies is used to attract suitable
mating partners or potential prey [25]. Male fireflies have
wings, so they can cruise through the air to look for favorite
females While female fireflies of some species have no wings,
so they usually perch on branches or grasses to wait suitable
male fireflies. Once they spot a right male, they will respond
to the unique pattern of flashing.

Inspired by the interesting bioluminescence character,
the gender-based firefly algorithm with deep learning is
proposed to accelerate the evolution in this paper. Initially,
firefly population is divided into male subgroup and female
subgroup, half to half. Following the mating flashing pattern,
fireflies will be attracted by flashes produced by mating
partners and then moved towards the brighter suitable mate.
To balance the exploration and exploitation of algorithm, the
movement mechanism and update formulation are designed
for male and female firefly separately. Representing the
global optimization ability of algorithm, male fireflies search
the whole space as much as possible while female fireflies
exploit local search space to find potential solutions to

Computational Intelligence and Neuroscience 3



improve the accuracy of algorithm. Generally, the search
process is promoted by excellent solutions in various nature-
inspired optimization algorithms. Deep learning of excellent
solutions is employed to enhance the guiding ability. Fur-
thermore, chaotic search will be conducted near the best
solution to improve the diversity and accuracy of solutions.

4.2. Random Attraction Model. In the standard firefly al-
gorithm, each firefly will be attracted and moved towards
any other brighter firefly, called fully attracted model [26].
Too much attraction will cause premature convergence, in
which all fireflies are similar in the swarm. As a result, the
convergence rate is slow and target solutions are hard to
seek. Assuming there are N fireflies, the average movement

number of each firefly is (N − 1)/2 [27] in each iteration and
(N∗ (N − 1)/2) for all fireflies. Although the fully attracted
model provides a lot of opportunities for seeking, it increases
the time complexity and results in oscillation, consuming
considerable computing resources.

In the Gen-DLFA, male fireflies fly over the whole search
space to find flashes fireflies. By adapting the randomly
attracted model proposed by Wang, the male fireflies can be
attracted by another randomly selected female firefly to
focus on global search. )en, the max movement number of
male subgroup in each iteration is (N − 1)/2. Comparing
with the fully attracted model, the randomly attracted model
has lower time complexity and reduces the attraction fre-
quency and computing resources.

)e update formula of male fireflies is defined as follows:

x
t+1
i � x

t
i + dβλ y

t
k − x

t
i , (8)

where yk is a randomly selected female firefly and d is
discriminant factor of flying direction. )e value of d is
assigned based on brightness comparison. If the female
firefly is brighter, d is set to 1; otherwise, it will be set to −1. β
is the attractiveness between firefly xi and firefly yk. λ is a
random number between 0 and 1.

4.3. Deep Learning. In nature, the flashing light of fireflies
serves as a communication mechanism to attract mating
partners. According to the movement equation defined by

So�ware testing

Program under test
(PUT)

Static analysis

Interface
information

PUT
instrument

Fitness
function

construction

PUT execution with
real parameters

Coverage information
collection

Population and
parameters initialization

Movement to the brighter
firefliesDecoding

Fitness calculation

Stop condition
satisifed?

Stop search and
generate test data Yes

Firefly algorithmEnd

Start

No

Figure 1: Test data generation workflow.

Table 1: Branch distance for several predicates.

Predicates Branch distance function
Boolean If true, then 0; else k
¬a Negation is propagated over a
a� b If abs(a − b) � 0, then 0; else (a − b) + k

a≠ b If abs(a − b)≠ 0, then 0; else k
a< b If a − b< 0, then 0; else (a − b) + k

a≤ b If a − b≤ 0, then 0; else (a − b) + k

a> b If b − a< 0, then 0; else (b − a) + k

a ≥ b If b − a≤ 0, then 0; else (b − a) + k

a and b f(a) + f(b)

a or b min(f(a), f(b))

4 Computational Intelligence and Neuroscience



standard FA, a firefly will be attracted and moved to any
other more attractive (brighter) firefly in search space. In
short, all fireflies in swarm learn from “leader.” Tang et al.
[28] analyzed the trajectory of particles and employed
general center particle (GCP) as learning leader in each
iteration. Experiments showed that the proposed GCP can
guide the evolution efficiently and improve converging
speed without increasing computing complexity. )e po-
sition of GCP is calculated as follows:

x
GCP
d �

1
N



D

i�1
x

pbest
id , (9)

where xGCP
d is the dth spatial coordinate of general center

particle and x
pbest
id is the dth spatial coordinate frommemory

of particle i.
Benefit from excellent leadership of GCP in SPO, the

general center of male fireflies can be constructed by his-
torical best values from their leaning memory to attract
female fireflies. As other fireflies, the general center firefly
can emit flashing light to participate in cooperative com-
munication and guide the search process of female fireflies
with its leadership strength.

In order to discover useful patterns and intrinsic feature
of training data from experience, the deep learning tech-
nique builds complex mapping relationship between low
level features to high level semantics of training data. Hu
et al. [29] adopted the deep neural network to recognize
faults in bogies. Wang et al. [30] proposed an attention-
based deep learning framework for trip destination pre-
diction. Chen et al. [31] proposed an improved semantic
segmentation neural network, which adopted a fully con-
nected (FC) fusion path and pretrained encoder for the
semantic segmentation task of HRRS imagery. Inspired by
these exciting achievement, deep learning is employed on
general center firefly to promote its leadership advantage
during evolution process, enhancing the global search
ability.

Initially, the general center firefly is used as input for the
deep learning model. )en, the single dimension optimi-
zation is carried out with count times according to the
following equation:

x
GCP
d (t + 1) � x

GCP
d (t) + cauchy xrd(t) − x

GCP
d (t) ,

(10)

where xrd(t) is the dth spatial coordinate of the randomly
selected firefly r and xGCP

d (t) is the dth spatial coordinate of
general center firefly at the tth iteration.

)e general center firefly generated from deep learning
architecture is used to guide the evolution process of female
fireflies to learn from historical experiments. If the general
center firefly is brighter than female one, the female firefly
should move and update its position according to (11);
otherwise, female firefly mutates according to (12).

xid(t + 1) � xid(t) + β0e
− cr2

iGCP x
GCP
d (t) − xid(t) , (11)

xid(t + 1) � x
gbest
d (t) + cauchy( ), (12)

where cauchy is random number generated by Cauchy
distribution function and x

gbest
d (t) is the dth spatial coor-

dinate of the brightest firefly in the search space at iteration t.

4.4. Chaotic Search. Ideally, fireflies will slowly gather to-
gether and then focus on the best solutions at the end.
However, at the final period of searching, distance between
any other fireflies decreases, thus increasing the attractive-
ness. Too much attraction increases the movement, and it is
difficult to find target solutions because of oscillation caused
by too much movement.

Like other well-known global optimization methods, the
firefly algorithm should balance the intensification and di-
versification. Recently, chaos has drawn more attention in
various applications, including optimization algorithms,
data encryption, and smartphone fitting algorithm [32].
Gandomi et al. [33] introduced 12 different chaotic maps
into FA and proved its improved global search ability for
robust global optimization. After position update of all
fireflies, chaos search is employed to seek around the current
global best solution xgbest to improve seeking accuracy.
During the chaotic search process, chaotic variables gen-
erated by chaotic sequence are mapped into input space
initially. )en, some candidate solutions will be selected due
to ergodicity and disturbance properties of chaos. )e chaos
strategy can effectively overcome the typical local optimal
problem and explore search space of standard FA. )e
detailed steps can be described as follows:

Firstly, chaotic sequence generated by logistic mapping
function is represented as follows:

ch0 � rand()

chk+1 � α∗ chk 1 − chk( ,
(13)

where ch0 is the initialized random number between 0
and 1, k is the iteration number, and chk is the kth
number in chaotic sequence. Obviously, all chaotic
number will between 0 and 1 under the initial condition
of ch0. α is set 4, and k is set 5 to ensure the com-
pleteness of search space.
Secondly, chaotic sequence is mapped to search space
as follows:

Chk � L + chk ∗ (U − L), (14)

where chk is the kth chaotic number in sequence and U
and L are upper bound and lower bound of parameters
of programs under test.

Computational Intelligence and Neuroscience 5



Finally, chaotic search is conducted near the best so-
lution Xgbest according to (15) to obtain k solutions to
enhance the local exploitation ability and improve the
search precision:

ε �
ItMax − t + 1

ItMax

x
gbest′

� (1 − ε)xgbest
+ ε∗Ch(k).

(15)

4.5. Proposed Algorithm of Gen-DLFA. )e process detail of
Gen-DLFA is described as follows:

(1) Firefly population and relative parameters are ini-
tialized, and then the population is divided into male
group and female group;

(2) Each male firefly will randomly select another female
firefly and update its position in each dimension
according equation (8);

(3) General center firefly of male group is constructed
from their historical experiment by equation (9).
)en, conduct deep learning count times by equation
(10);

(4) )e general center firefly will guide the optimization
process of female subgroup. If the general center
firefly is brighter than female one, the female firefly
should move and update its position in each di-
mension according equation (11); otherwise, female
fireflies mutate according to equation (12);

(5) Chaos search is implemented around the current
best solutions to generate k candidate solutions by
equation (15) to improve accuracy and population
diversity;

(6) It is checked whether the stopping condition is
satisfied. If the conditions are met, the search process
stops and outputs the best solutions. Otherwise, the
search process goes back to step 3.

Based on above analysis, the pseudo code of the gender
difference-based firefly algorithm with deep learning (Gen-
DLFA) can be summarized in Algorithm 1. Some key pa-
rameters are defined as follows: maxGen is the max gen-
erations of evolutions, N is the population size, and gbest
represents the global best firefly at each generation.

5. Empirical Evaluation

)e goal of the experiment is to evaluate performance of
Gen-DLFA. Some benchmark programs and state-of-the-art
firefly algorithm variants are used to conduct comparison
analysis. Specially, we investigated the following research
questions:

RQ1 (Effectiveness). Whether Gen-DLFA can seek
target solutions for structural test case generation?
What is the average coverage rate? Does it perform
better?

RQ2 (Efficiency). What is the rate of convergence? How
much computing resource will be required for target
solutions? What extent of cost can the Gen-DLFA
reduce?
RQ3 (Diversity). How many different target solutions
found during the total optimization process?

5.1. Experiment Preparation

5.1.1. Test Objects. Some benchmark programs which were
widely used in software test data generation were selected to
assess the performance of Gen-DLFA [20, 34]. Table 2 shows
the details of the programs under test. Although the scale of
programs is limited, their input space dimensions vary from
2 to 8 and so on. )e branch number of each program under
test ranges from 5 to 36. As seen from table, the target
branches are the deep nested paths with strict conditions,
which represent the objectives to be optimized. With respect
to the searching difficulty, these optimization targets ensure
the diversity and complexity of experiments.

5.1.2. Experimental Setup. We carried out an empirical
study to assess the Gen-DLFA with standard FA and three
other FA variants. Parameters of each algorithm are shown
in Table 3. For the sake of fairness, the population size of all
algorithms was chosen to be 100 and the maximum gen-
eration number was set to 7000. Additionally, each exper-
iment was repeated 30 times independently and the average
value of experimental results was used to reduce deviation
caused by randomness. )e input data of PUTwere encoded
as firefly position, while the number and bounds of pa-
rameters of PUT define the whole input space. All bench-
mark programs used for comparative experiments were
written in Java, and most of them can be found in source
code lib of Liang [35]. )e experiments were performed
under the common testing environment: win 10 pro 64 bit
operating system, Java Se development kit 9, Intellij IDEA,
Intel Core i7 processor, and 8GB, LPDDR3 memory.

5.2. Effectiveness. )e success coverage rate is used to
measure the effectiveness of algorithms in this paper. For
signal target path coverage, it can be calculated as the
number of success search divided by the total times of
search. In our experiments, coverage means howmany times
the algorithms can find target solutions satisfying the se-
lected branch covering criterion over repeated 30 inde-
pendent implementations. )e coverage results are
summarized in Table 4.

As seen from Table 4, the overall average coverage for FA
and Gen-DLFA is 95%. Each firefly is attracted and moved
towards any other brighter firefly in FA. )is fully attracted
model gives fireflies more learning opportunities, which
ensure the sufficiency of optimization. )e overall average
coverage for RaFA is 74%, in which each firefly is attracted
by the randomly selected firefly to reduce the attraction
frequency and then accelerate the evolution process. Al-
though RaFA is easier to implement, its global search ability

6 Computational Intelligence and Neuroscience



(1) Initialize the parameters of algorithm;
(2) Initialize firefly population randomly as in (1);
(3) Calculate brightness of each firefly according to fitness function;
(4) while (iterator<maxGen){
(5) for the male firefly xi:
(6) for xi � 1 to N/2
(7) Select a female yj randomly from female subgroup
(8) if yj is brighter than xi

(9) move xi to yj as in (8);
(10) update the position of xi

(11) End if;
(12) End for;
(13) construct general center firefly of male subgroup as in (9);
(14) conduct deep learning of general center firefly as in (10);
(15) for the female firefly yi:
(16) for yi � 1 to N/2
(17) if general center firefly is brighter than yi

(18) move yi to general center according as in (11);
(19) update the position of yi;
(20) else
(21) conduct cauchy mutation of yi as in (12);
(22) update the position of yi;
(23) End if;
(24) End for;
(25) rank the firefly population and find the best solution gbest;
(26) for j � 1 to k
(27) implement chaotic search near gbest to get gbest′
(28) if (gbest′ is brighter than gbest)
(29) gbest � gbest′;
(30) End if;
(31) End for;
(32) output the gbest;
(33) iterator++;
(34) End while;

ALGORITHM 1: )e pseudo code of Gen-DLFA.

Table 2: Benchmark programs under test.

Programs Parameters Target branch Description

Triangle x, y, z (x� � y) && (y� � z) is true
(equilateral triangle)

Calculates whether a triangle defined by inputs x, y, and z is
equilateral, isosceles, or scalene.

Angled x, y, z x2 + y2 − z2 � � 0 is true Check whether the given inputs x, y, and z satisfy the criteria of right
triangle.

RectOverlap x1, y1, w1, h1, x2,
y2, w2, h2 Two rectangles overlap Check relationship between two rectangles represented as x1, y1,

w1, h1, x2, y2, w2, and h2.

Quadratic a, b, c b∗ b − 4∗ a∗ c �� 0 is true Judge the roots type of the quadratic equation with one variable
(ax2 + bx+ c� 0).

Nextday year, month, day Next day is Feb. 28th in leap year Calculate next day of the given input year, month, and day.

LineCover x1, y1, x2, y2, x, y,
w, h

A line segment is the diagonal of a
rectangle

Check whether a line defined by (x1, y1) and (x2, y2) is the diagonal
of a rectangle. (x, y) is the coordinates of lower left point of the

rectangle.

LineCircle x1, y1, x2, y2, x, y, r A line segment is tangent to a
circle

Calculate relationship between a line segment and a circle. (x1, y1),
(x2, y2), and (x, y) are coordinates of a line and a circle.

LineRect x1, y1, x2, y2, x, y,
w, h

A line segment intersects at a
rectangle

Calculate the position relationship between a line segment and a
rectangle. It can be divided into inclusion, intersection, and disjoint.

Computational Intelligence and Neuroscience 7



and search precision are relatively weak. )e rate is not
stable for each program, varying from 30% to 100%. )e
average rate of other algorithms is similar, 80% for DLFA
and 83% for GDFA, employing deep learning strategy and
gender subgroups separately. Gen-DLFA outperforms better
than other four algorithms except for the program Line-
Cover, which requires high precision than others.

5.3. Efficiency. )e consumption of search budget is used to
measure the efficiency of algorithms for comparative anal-
ysis. For automated structural test case generation, we use
the average convergence generations and the average search
time (measured in ms) as measure metrics. )at is, we fo-
cused on overall average generations and average optimi-
zation time consumed by successful search, which can seek
target solutions that satisfied the selected coverage criterion.
Table 5 presents the experiment results.

In order to compare the search consumption of multiple
algorithms on benchmark programs, we calculated the total
average value at the last row in Table 5, indicating average
convergence generations and run time, respectively. From
the results, we can see that the standard FA finds reasonable
solutions with the least average generations 1710. However,
it consumes the most 40453ms run time among all algo-
rithms because of lots of attractions caused by the fully
attracted model. Compared with the standard FA, RaFA
takes much less time but more generations to seek the target
solutions. Its total average convergence generations are 2335
while the average run time is 3475ms. )e performance is
not stable since the dependence on the randomized ini-
tialization of population in some extent. With 2178 average
generations and 17853ms run time, the performance of
proposed Gen-DLFA is similar to that of DLFA and better
than that of GDFA in general.

As a typical benchmark program, the source code of
triangle has been widely used in the research of automatic

test data generation. Its average convergence generations
and run time for equilateral triangle are import performance
measures for evaluating various algorithms. As seen from
Table 4, the standard FA spent 22909ms on searching target
solutions through 1468 times generations, the most com-
putation resource consumption among all algorithms.
Notably, the Gen-DLFA found the best solution with 1023
generations in 6210ms, achieving promising results at a
lower search cost. It shows more robust performance than
other algorithms on most benchmark programs.

5.4. Stability. In order to verify the performance of algo-
rithms, some additional experiments were conducted for
discussing the implementation detail to check the stability
and observing the performance volatility with the pop-
ulation size.

As for the performance of each algorithm in different
experiments, several programs are selected from Table 2.
Once the ranges of input parameters for each program were
defined, they kept the same value during the whole exe-
cution. )e result of convergence generation for each al-
gorithm collected from 30 times execution is shown in
Figure 2. As seen, the average convergence generations of
Gen-DLFA for triangle, RectOverlap, and LineRect are lower
than those of other algorithms. While for Quadratic, the
average convergence generations of Gen-DLFA and FA are
similar but lower than those of DLFA and GDFA. In ad-
dition, the convergence generations of Gen-DLFA are stable
with little fluctuation.

)e population size is one of the key factors to algorithm
performance. Taking the triangle program, for example, the
convergence generations under different population size are
shown in Figure 3. It can be seen from the figure that the
average convergence generation decreases with the incre-
ment of population size and tends to stable when reaching a
certain population size. In most cases, Gen-DLFA and FA
can find the target solutions with less convergence
generations.

5.5. Diversity. )e positive feedback strategy adopted by
many metaheuristic algorithms can accelerate the conver-
gence rate but may result in population premature and low
population diversity. Researchers have proposed various
approaches to keep a balance between diversity and con-
vergence. )e better diversity of solutions, the stronger
ability of test cases to detect defects in software testing.

For simplicity, we use the different solutions rate to
measure diversity, which can be calculated as the solutions
with different values divided by the total success research.

Table 3: Algorithms for experimental analysis.

Algorithm Parameters Reference
FA α� 0.2, β0�1.0, c � 1.0 Yang 2010 [35]
FA with random attraction (RaFA) α� 0.2, β0�1.0, c � 1/Γm (m� 2) Wang et al. 2016 [26]
Deep learning FA (DLFA) α� 0.2, β0�1.0, c � 1/Γm (m� 2) Zhao Jia et al. 2018 [9]
FA based on gender difference (GDFA) β0 changed with functions under test and Wang et al. 2019 [15]
Gen-DLFA α� 0.2, β0�1.0, c � 1.0 N/A

Table 4: Success coverage rate.

Programs FA RaFA DLFA GDFA Gen-DLFA
Triangle 100 42 90 62 100
Angled 100 95 65 70 100
RectOverlap 100 100 73 82 100
Quadratic 100 100 70 90 100
Nextday 100 30 85 100 100
LineCover 70 64 77 90 60
LineCircle 92 58 78 74 100
LineRect 100 100 100 100 100
Avg. 95 74 80 83 95

8 Computational Intelligence and Neuroscience



Taking the typical benchmark program triangle, for example,
the detailed diversity rate of all algorithms is summarized in
Figure 2. To obtain a fair analysis, all algorithms use the same
settings. Each algorithm runs independently many times to

get 20 target solutions. As seen from Figure 4, the standard
FA and its variants perform well. )e diversity of all algo-
rithms improves with the increment of parameters’ input
space. Gen-DLFA shows better performance and achieves

7000

6000

5000

4000

3000

2000

1000

0

G
en
er
at
io
n

FA RaFA DLFA GDFA Gen-DLFA

+

(a)

6000

5000

4000

3000

2000

1000

0

G
en
er
at
io
n

FA RaFA DLFA GDFA Gen-DLFA

+

+
+

(b)

G
en
er
at
io
n

FA RaFA DLFA GDFA Gen-DLFA

6000

5000

4000

3000

2000

1000

0

(c)

G
en
er
at
io
n

FA RaFA DLFA GDFA Gen-DLFA

+

+

+

+

2000

1500

1000

500

0

(d)

Figure 2: Distribution of average convergence generations: (a) triangle; (b) RectOverlap; (c) Quadratic; (d) LineRect.

Table 5: Average convergence generations and search time.

Programs FA RaFA DLFA GDFA Gen-DLFA
Triangle 1468/22909 4293/4258 2219/7317 2099/13633 1023/6210
Angled 2123/28272 2615/3793 5183/20347 4784/13356 4120/18580
RectOverlap 828/15637 1919/2947 844/8935 2826/11414 593/7362
Quadratic 908/15054 1317/2648 2340/9786 2864/17584 1203/7958
Nextday 1190/2018 333/339 446/1302 1870/5066 1325/1915
LineCover 2623/57493 2274/3913 6783/28444 3450/17402 4939/21976
LineCircle 3196/174268 4897/8668 5368/93477 6290/92304 4012/74695
LineRect 424/7980 1030/1238 840/6382 284/6708 214/4135
Avg 1710/40453 2335/3475 3002/21998 3058/22183 2178/17853

Computational Intelligence and Neuroscience 9



promising results.

6. Conclusions

Generally, software test data generation is extremely labo-
rious and costly for software engineers in industry. As an
extremely active branch of search-based software engi-
neering, some typical metaheuristic algorithms and their
variants have been proved to be an effective way of gen-
erating realistic test data. Aiming at some drawback of the
firefly algorithm, such as premature convergence and low
search accuracy, we proposed the gender-based firefly al-
gorithm with deep learning (Gen-DLFA) to generate real-
istic structural test data. Initially, the population was divided
into male subgroup and female subgroup. Employing the
randomly attracted model, each male firefly is attracted by
another randomly selected female firefly, representing the
global search ability, while female fireflies implement local
search guided by the general center firefly constructed
through certain times of one-dimensional deep learning.
)us, Gen-DLFA can balance the exploration and

exploitation well. Furthermore, the chaotic search is con-
ducted near the best solution in Gen-DLFA to improve the
diversity and accuracy of solutions. )e comparison results
indicate that Gen-DLFA can achieve better performance in
terms of effectiveness, efficiency, and diversity.)e proposed
algorithm showed a strong search ability and found target
solutions at a reasonable computational cost.

As further research, more studies are needed in the
controlling parameters setting, population diversity main-
tenance, stability of the firefly algorithm, and so on. In
addition, most of the research studies have focused on single
objective optimization, and it will be useful to focus on
multiobjective optimization incorporating with current
metaheuristic algorithms.

Data Availability

)e research related data consists of two parts: pseudocode
of the proposed algorithm and its corresponding benchmark
programs under test. )e pseudocode of Gen-DLFA data to
support the findings of this study (detailed in Algorithm 1)
and the benchmark programs under test data are included
within the article (detailed in Table 2).

Conflicts of Interest

)e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

)is work was supported by the Science and Technology
Project in Henan Province (172102210592 and
212102210417).

References

[1] M. Xue, S. Jiang, and R. Wang, “Systematic review of test data
generation based on intelligent optimization algorithm,”
Computer Engineering and Applications, vol. 54, no. 17,
pp. 16–23, 2018.

[2] M. Khari, A. Sinha, E. Verdu et al., “Performance analysis of
six meta-heuristic algorithms over automated test suite
generation for path coverage-based optimization,” Soft
Computing, vol. 24, pp. 1–18, 2019.

[3] S. Anand, T. Y. Chen, E. K. Burke et al., “An orchestrated
survey of methodologies for automated software test case
generation,” Journal of Systems and Software, vol. 86, no. 8,
pp. 1978–2001, 2013.

[4] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based
software engineering: trends, techniques and applications,”
ACM Computing Surveys, vol. 45, no. 1, pp. 1–61, 2012.

[5] M. Harman, J. Yue, and Y. Zhang, “Achievements, open
problems and challenges for search based software testing,” in
Proceedings of the 8th IEEE International Conference on
Software Testing, Verification and Validation (ICST 2015),
Graz, Austria, April 2015.

[6] X. S. Yang,Nature-InspiredMetaheuristic Algorithms, Luniver
Press, London, UK, 2008.

[7] C. Xie, C. Xiao, and L. Ding, “HMOFA: a hybrid multi-ob-
jective firefly algorithm,” Journal of Software, vol. 29, no. 4,
pp. 1143–1162, 2018.

60

70

80

90

100

10 20 50 80 100

D
iff

er
en

t s
ol

ut
io

ns
 ra

te

Parameter range

FA
RaFA

DLFA
GDFA

Figure 4: Diversity analysis.

0

2000

4000

6000

50 100 150 200 250 300

G
en

er
at

io
n

Population

FA
RaFA
DLFA

GDFA
Gen-DLFA

Figure 3: Population size vs. convergence generation.

10 Computational Intelligence and Neuroscience



[8] C.W. Xie, F. Zhang, and J. Lu, “Multi-objective firefly algo-
rithm based on multiply cooperative strategies,” Acta Elec-
tronica Sinica, vol. 47, no. 11, pp. 2359–2367, 2019.

[9] J. Zhao and Z. F Xie, “Firefly algorithm with deep learning,”
Chinese Journal of Electronics, vol. 46, no. 11, pp. 2633–2641,
2018.

[10] M. Khari, P. Kumar, D. Burgos, and R. G. Crespo, “Optimized
test suites for automated testing using different optimization
techniques,” Soft Computing, vol. 22, no. 24, pp. 8341–8352,
2018.

[11] H. Wang, W. Wang, and S. Xiao, “A survey of firefly algo-
rithm,” Journal of Nanchang Institute of Technology, vol. 38,
no. 4, pp. 71–77, 2019.

[12] T. Hu,+eory Analysis of Firefly Algorithm and its Application
Research, Xian Polytechnic University, Xi’an, China, 2015.

[13] Y. Huang, Y. Wang, and S. Niu, “Optimization study of
fireflies algorithm on chaos search technology,” Computer
Simulation, vol. 34, no. 1, pp. 253–258, 2017.

[14] W. Alomoush, K. Omar, A. Alrosan, Y. M. Alomari,
D. Albashish, and A. Almomani, “Firefly photinus search
algorithm,” Journal of King Saud University-Computer and
Information Sciences, vol. 32, no. 5, pp. 599–607, 2020.

[15] C.-F. Wang and W.-X. Song, “A novel firefly algorithm based
on gender difference and its convergence,” Applied Soft
Computing, vol. 80, pp. 107–124, 2019.

[16] G. Ma, +e Research on Automatic Generation of Test Data
Based on Intelligent Optimization Algorithm, Henan Uni-
versity, Henan, China, 2018.

[17] Y. Gong, J. Xu, and Y. Xing, “Application of firefly algorithm
in test suite reduction,” Journal of Harbin Engineering Uni-
versity, vol. 41, no. 4, pp. 577–582, 2020.

[18] Y. Li and J. Wu, “An approach hybridized test case reduction
and generation,” Microelectronics & Computer, vol. 35, no. 6,
pp. 17–21, 2018.

[19] A. Pandey and S. Banerjee, “Test suite optimization using
firefly and genetic algorithm,” International Journal of Soft-
ware Science and Computational Intelligence, vol. 11, no. 1,
pp. 31–46, 2019.

[20] A. Pandey and S. Banerjee, “Test suite optimization using
chaotic firefly algorithm in software testing,” International
Journal of Applied Metaheuristic Computing, vol. 8, no. 4,
pp. 41–57, 2017.

[21] C. Mao, X. Yu, and Y. Xue, “Algorithm design and empirical
analysis for particle swarm optimization-based test data
generation,” Journal of Computer Research and Development,
vol. 51, no. 4, pp. 824–837, 2014.

[22] P. McMinn, “Search-based software test data generation: a
survey,” Software Testing, Verification and Reliability, vol. 14,
no. 2, pp. 105–156, 2004.

[23] B. Korel, “Dynamic method for software test data generation,”
Software Testing, Verification and Reliability, vol. 2, no. 4,
pp. 203–213, 1992.

[24] N. Tracey, J. Clark, and K. Mander, “Automated program flaw
finding using simulated annealing,” in Proceedings of the ACM
SigSoft International Symposium on Software Testing and
Analysis ISSTA 98, pp. 73–81, Clearwater Beach, FL, USA,
March 1998.

[25] X. S. Yang and X. He, “Firefly algorithm: recent advances and
applications,” International Journal of Swarm Intelligence,
vol. 1, no. 1, pp. 36–50, 2013.

[26] H. Wang, W. Wang, H. Sun, and S. Rahnamayan, “Firefly
algorithm with random attraction,” International Journal of
Bio-Inspired Computation, vol. 8, no. 1, pp. 33–41, 2016.

[27] H. Wang, W. Wang, X. Zhou et al., “Firefly algorithm with
neighborhood attraction,” Information Sciences, vol. 382-383,
pp. 374–387, 2017.

[28] K. Tang, B. Liu, J. Yang et al., “Double center particle swarm
optimization algorithm,” Journal of Computer Research and
Development, vol. 49, no. 5, pp. 1086–1094, 2012.

[29] H. Hu, B. Tang, X. Gong, W. Wei, and H. Wang, “Intelligent
fault diagnosis of the high-speed train with big data based on
deep neural networks,” IEEE Transactions on Industrial In-
formatics, vol. 13, no. 4, pp. 2106–2116, 2017.

[30] W. Wang, X. Zhao, Z. Gong, Z. Chen, N. Zhang, and W. Wei,
“An attention-based deep learning framework for trip des-
tination prediction of sharing bike,” IEEE Transactions on
Intelligent Transportation Systems, pp. 1–10, 2020.

[31] G. Chen, C. Li, W. Wei et al., “Fully convolutional neural
network with augmented atrous spatial pyramid pool and
fully connected fusion path for high resolution remote sensing
image segmentation,” Applied Sciences, vol. 9, no. 9, p. 1816,
2019.

[32] F. Orujov, R. Maskeli�unas, R. Damaševičius, W. Wei, and
Y. Li, “Smartphone based intelligent indoor positioning using
Fuzzy logic,” Future Generation Computer Systems, vol. 89,
pp. 335–348, 2018.

[33] A. H. Gandomi, X.-S. Yang, S. Talatahari, and A. H. Alavi,
“Firefly algorithm with chaos,” Communications in Nonlinear
Science and Numerical Simulation, vol. 18, no. 1, pp. 89–98,
2013.

[34] X. S. Yang,Nature-InspiredMetaheuristic Algorithms, Luniver
Press, London, UK, 2nd edition, 2010.

[35] Y. D. Liang, Introduction to Java Programming, Pearson,
Upper Saddle River, NJ, USA, 8th edition, 2011.

Computational Intelligence and Neuroscience 11


	Gender-Based Deep Learning Firefly Optimization Method for Test Data Generation.
	tmp.1624900195.pdf._VWDm

