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Abstract. A building or a bridge might collapse after a heat shock. This paper shows 

that a porous hierarchy of a coating can effectively prevent a building or a bridge from 

such damage. A cocoon’s geometrical structure is studied and its resistance to the heat 

shock is revealed by a thermal oscillator. The theoretical model reveals an extremely low 

frequency of the thermal oscillator, which is very important for cocoons’ biomechanism, 

especially in the heat insulation function. At the same time, it shows that the cocoons 

have the best thickness to protect the pupa from the environment. In addition, surface 

temperature measurement of hierarchical mulberry leaves is performed. This work 

provides new insights into biomimetic design of the protective building and coatings.  

Key Words: Silkworm Cocoon, Hierarchical Structure, Heat Conduction, Microporous 

Capillary, Thermal Oscillation, Freeze-thaw Damage 

1. INTRODUCTION 

A building under a sudden heat shock will suffer a great damage as we can see from the 

September 11, 2001, attacks on the World Trade Center, New York, often referred to as 

9/11; the high buildings of the World Trade Center collapsed after the attack. The huge 

energy was transferred to the metal structure of the building, and the temperature was too 

high to support the building. It is extremely important to protect a building from the heat 

shock with a high environment temperature. The general thermal insulation is impossible 

for heat shock presentation. It seems there is no approach to preventing such damage so far. 
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This paper aims at a new idea for this purpose inspired from a silkworm cocoon, which is 

generally considered to protect the pupa from predators and hazards. Actually, it can also 

prevent a sudden heat shock. Liu et al. [1] proposed the fractal model for heat transfer in 

hierarchic cocoons for the first time to explain the fascinating phenomenon of pupa survival 

under extreme environment. He’s fractional derivative was adopted to study the heat 

conduction in cocoons which are regarded as fractal medium [2]. Moreover, Liu et al. [3] 

defined a new fractional derivative through the variational iteration method and applied it to 

explain the outstanding thermal protection of insulation clothing with cocoon-like porous 

structure. Because the cocoon is extremely insensitive to environment change and a pupa 

can survive in a harsh environment, a mathematical explanation to this superior survival 

ability and an experiment have been carefully carried out to verify the mechanism [4]. 

These research studies are of great importance for the biomimetic design of functional 

materials in various fields.  

A very thin and lightweight cocoon wall has a distinctive hierarchical structure and 

multiple functions [5-7]; the pupa can suffer from a sudden temperature change in some 

extreme weather situations, and the cocoon wall plays a critical role in protecting the pupa 

from energy loss and a sudden heat shock. The hierarchical porous structure of the cocoon 

wall gives the silkworm pupa unexpected properties, such as energy protection and the heat 

shock protection. However, a paucity of literature reported about its mechanism of thermal 

performance, especially a heat shock in the cocoon wall. Much literature revealed that a low 

frequency property of some vibration systems plays an important role in various 

applications. He, Liu and Gepreel found that the low frequency property of a porous 

concrete beam can prevent vibration damage [8];  He, Kou, et al. revealed all vibrations in 

a porous medium have a low frequency property when time tends to infinity [9]; Zuo applies 

the low frequency property of a fractal-like spring system to 3D printing technology 

[10-12]; He and El-Dib studied the frequency property of a fractional 

Kundu–Mukherjee–Naskar equation [13]. He and his colleagues revealed a long-lost 

technology to collect water from air by the low frequency theory [14, 15].  

The capillary effect is also important in the heat and mass transfer [16, 17]. Jin et al. [18] 

studied the low frequency property of a capillary vibration. Lin et al. [19, 20] established a 

model for a release oscillation in a hollow fiber, and ions release depends upon the low 

frequency property. 

In this work, we will study the geometric structure of the silkworm cocoon and analyze 

its thermal conduction properties and design a porous coating of the building wall which 

can prevent from a sudden heat shock.  

2. GEOMETRIC ANALYSIS OF THE SILKWORM COCOON 

The cocoon wall structure is considered as a porous medium consisting of randomly 

arranged continuous silk fibers. Each layer images of the silkworm cocoon are presented in 

Fig. 1. From the SEM micrographs, they reveal that the silkworm cocoons have multilayer 

and porous structures with double silk fibroin fibers covered by sericin. The morphologies 

of each layer are remarkably different. From the outer to the inner surface, the density and 

the amount of bonding of fibers increase. 
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Fig. 1 SEM micrographs of silkworm cocoon layers from outer (a) to inner (h), scale bar: 30 

µm 

 

Fig. 2 The average diameters of cocoon silks from outer (1) to inner (8) 

The silk’s diameter of each layer was also measured (Fig. 2). It is found that the average 

diameter of the silk gradually decreases from the outer layer to the inner layer (30.3, 42.3, 

34.3, 38, 37.5,33.1, 28.3 and 26.3 µm). In addition, the diameter of the outermost fibers is 

smaller, which may be due to the component loss caused by the exposure to air. This further 

illustrates that the cocoon has a unique hierarchical structure. 

3. THE SILKWORM COCOON UNDER A SUDDEN HEAT SHOCK 

A sudden heat shock will greatly affect a building’s reliability and life. The freeze-thaw 

damage is the main reason of the failure of a cement-based material [21-29]. If the thermal 

response to the environment temperature change is slow and the inner temperature will not 

change much with 12 hours, such freeze-thaw damage can be avoided by covering a porous 

coating with a structure similar to the cocoon wall. 
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In many cases, a sudden heat shock also refers to a sudden increase or decrease of 

temperature in harsh environments [30]. In order to cope with this problem, phase change 

materials (PCM) are widely used in thermal energy systems [31-33]. The main feature of 

PCM is latent heat storage, which has higher storage density than conventional sensible heat 

storage due to a high enthalpy change in the phase change process. The latent heat storage 

based on PCM can be applied in various fields, such as solar heat storage, energy-saving 

buildings and waste heat recycle, etc [34-37]. However, there always exist diverse defects, 

such as phase separation, low heat transfer rate, supercooling, leakage in the molten state, 

instability of performance [38]. Especially the buildings on fire, which use phase change 

materials, will be a very dangerous heat source due to a low heat transfer rate of PCM. This 

brings great difficulties to firefighters' rescue operations, such as taking longer time to put 

out the fire, and may even sacrifice more people [39]. Hence, thermal conductivity 

enhancement is one of the main issues for the PCM in the application field of the latent heat 

storage. In the same way, if the phase change materials are added to the fire suit, the heat 

cannot be conducted in time, which will directly threaten the lives of firefighters. What we 

need is a porous hierarchical structure that can not only store heat and keep warm, but also 

conduct heat in time. The closer it is to the room or the human body, the slower the 

conduction will be. Moreover, people will not feel the discomfort caused by a sudden heat 

shock. Therefore, thermal conductivities of the silkworm cocoon are studied in this paper. 

The silkworm cocoons are expected to have unique characteristics under a sudden heat 

shock.  

Thermal conductivities of the silkworm cocoon were carried out using Temp.& Hum. 

Chamber T/C1000-70. The temperature rise (from the initial conditions of 26 ℃ to 57 ℃) 

and fall (from 49℃ to 20℃) profiles are obtained and shown in Figs. 3 and 4, respectively.  

 

Fig. 3 Temperature profiles for internal of the silkworm cocoon as the ambient temperature 

increases 
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Fig. 4 Temperature profiles for internal of the silkworm cocoon as the ambient temperature 

decreases 

It can be observed that the temperature inside the silkworm cocoon changes slowly 

when the ambient temperature change occurs, which indicates that the cocoon has a certain 

degree of temperature buffering. The internal temperature of the cocoon tends to be close to 

the surrounding temperature, but the internal temperature will not change immediately 

when the cocoons encounter a sudden temperature change. Therefore, we expect that it may 

be closely related to the heat flow transfer and the unique porous hierarchical structure of 

the silkworm cocoon. 

4. THERMAL OSCILLATION AND ITS LOW FREQUENCY PROPERTY 

There are many kinds of thermal oscillations. Especially, the flow boiling instabilities 

are undesired phenomena which may cause a premature critical heat flux (CHF), high 

pressure drops, control and operational problems and mechanical vibrations of the system 

components [40, 41]. Chávez et al. studied thermal oscillations during flow boiling of 

hydrocarbon refrigerants in a microchannels array heat sink [42]. Megahed [43] has verified 

the effect of mass velocity variation on thermal oscillations. Recently, Kuang et al. [44] 

found that as the saturation temperature increased, the frequency of the thermal oscillations 

increased. In general, the frequency and amplitude of the oscillations increase with 

increasing heat flux. This behavior is due to the intensification of the boiling forces [45]. In 

addition, Kim et al. [46] have investigated the rapid thermal oscillatory flow in an 

asymmetric micro pulsating heat exchanger (MPHE) and Demir et al. [47] have studied the 

dynamics of the bacterial flagellar motor’s angular velocity in response to thermal 

oscillations while focusing on the effect of frequency. 

Cell growth on nanofibers can be explained by thermal oscillations. Fan et al. [48] 

showed that the capillary-like force which is parallel to the fiber orientation have a good 

guide for cell orientation. The geometric potential becomes weak when the distance 

between two adjacent fibers becomes wide. Cell orientation can also be guided by the 
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boundary-induced force induced by adjacent nanofibers. Besides, Lin et al. [19, 20, 49] 

studied the release oscillation in a hollow fiber and established a fractional model. The 

results showed that the ions release depends upon the low frequency property. 

Cocoon is a hierarchical porous medium. In this paper, we approximate the porosity in 

the cocoon wall as a microporous capillary channel for heat transfer. The model schematic 

is illustrated in Fig. 5. Heat flow is slowly transferred from the outer layer to the inner layer. 

 

Fig. 5 Schematic of heat transfer in a microporous capillary channel (marked by red lines) 

For a microporous capillary channel, the Newton’s second law for thermal oscillations 

can be written in the form 

 

..

F m x  (1) 

where x is removal from the equilibrium position, m is the total hot air mass in a 

microporous capillary channel and F is the force caused by the air pressure difference 

between the inside and outside the cocoon.   

Force F can be expressed as 

 
 out inF P P A 

 
(2)

 

where Pout and Pin are the hot air pressure outside the cocoon and the air pressure inside the 

cocoon, respectively.  A is a cross-sectional area of the microporous capillary channel. 

Combining  Eqs. (1) and (2), we have 

  
..

0out inAx x P P A    (3) 

where ρ is hot air density. 
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According to the state equation of gas 

 PV nRT  (4) 

where P is pressure, V is volume, n is moles of gas, R is the thermodynamic constant and T 

is temperature. 

Air pressure Pin in the cocoon can be written 

 
 0

in in
in

n RT
P

V L x A


 
 

(5)

 

where R is gas constant, V0 is the inner volume of the cocoon (shown in Fig. 5), Tin is the 

internal temperature of the cocoon and L is the cocoon thickness. 

Substituting Eq. (5) into Eq. (3), we get 

 
 

..

0

0in in
out

n RT
Ax x P A

V L x A
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 


 

(6) 

After the deformation of Eq. (6), it shows 

 
 

..

0

1
0in in outn RT P

x
Ax V L x A x

  
  

 

(7)

 

The initial conditions are 

 
  00x L

   
 

.

0 0x 
 

(8)
 

The nonlinear equation given in Eq. (7) with initial conditions given in Eq. (8) can be 

solved by the homotopy perturbation method [13, 15, 50-52] or by the variational iteration 

method [53-56], or He’s frequency formulation [57-60]. Hereby the Taylor series method 

[61-63] is adopted.  

After a simple transformation, we obtain the equation: 

 

 
 

 

..
0 0

0 0 0

0
out in inP A V L L A n RT

x
AL V L L A

    


   
 

(9)

 

The Taylor series solution to second order is  

 

     
   

 

..

.
0 02 2

0

0 0 0

0
0 0 ...

2! 2

out in inP A V L L A n RTx
x t x x t t L t

AL V L L A

    
     

   
 

(10)

 

According to the oscillation property, we can obtain 

 

 

 

2

0 0

0

0 0 0

0
4 42

out in in pp
P A V L L A n RT TT

x L
AL V L L A

        
    

      
 

(11)

 

where Tp is considered the period of the heat flow vibration. 
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From Eq. (11), the solution is shown as 

 

 

 
0 0

0

0 0

2
4P

out in in

A L L A V
T L

P A V L L A n RT

   


    



 

(12)

 

The frequency of heat flow oscillation is 

 

 

 
0 0

0

0 0

2

2
2

p

out in in

w
T A L L A V

L
P A V L L A n RT

 
   

    

 



 

(13) 

Eq. (13) roughly describes the main factors which affect the frequency of heat flow 

vibration. 

The low frequency property is very important for cocoons. It implies the heat cannot be 

transferred to a long distance, so that the pupa will not be affected by the heat shock outside. 

In order to ensure that the frequency is small, it can be seen from Eq. (13) 

 
 0 0 1out in inP A V L L A n RT       

(14)
 

In other words, Eq. (14) is equivalent to 

 
 0 0 0out in inP A V L L A n RT       

(15)
 

After transformation, we have 

 

0 0

1 in in

out

n RT
L L V

A P A

 
   

   

(16) 

L0 represents amplitude and L0→0. Eq. (16) becomes 

 

0

1 in in

out

n RT
L V

A P A

 
  

   

(17)

 

Take the derivative of 1/A 

 
 

0
1

dL

d
A



 

(18)

 

That is 

 
0

2
0in in

out

n RT
V

P A
 

 

(19)

 

The optimal pore size can be obtained 
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 0

2 in in
opt

out

n RT
A

P V


 

(20)

 

According to the state equation,  

 

P
RT




 

(21)

 

A higher temperature results in a larger pressure (Pout), and the porous size should be 

smaller, so the last cascade of the porous hierarchy of the coating can consist of nanofibers 

[64].  

5. APPLICATION IN A BUILDING EXTERIOR WALL 

Porous structure with cocoon-like hierarchy has good thermal insulation performance. 

This kind of structure can play a very good thermal buffer effect when used in building 

exterior wall coating. The schematic of thermal buffer in hierarchical porous structure is 

shown in Fig. 6. When a sudden heat shock from the external environment reaches the 

exterior wall coating and passes through the hierarchical porous structure, the temperature 

changes from fast to slow. The closer to the exterior wall, the extremely slow the 

temperature change is. Finally, the temperature slowly reaches the room temperature.  

 

Fig. 6 Schematic of thermal buffer in hierarchical porous structure 
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Leaves have a common hierarchical structure in nature [65-67]. They endure the 

alternation of temperature difference between day and night. This experiment was to 

measure the temperature of the upper and lower surfaces of a mulberry leaf every half an 

hour in the Soochow University campus. It was sunny, and the weather favored the 

measurements. Fig. 7 shows the temporal evolution of the leaf surface temperatures from 

9:30 a.m. to 3:30 p.m., where the upper and the lower temperatures were marked with the 

blue and green colors, respectively, and the environment temperature was marked with the 

red one. The average value of surface temperatures of the mulberry leaf was used in our 

experiment.  It can be seen from Fig. 7 that the ambient temperature increases gradually; it 

reaches the maximum at 2:00 p.m. and then it tends to be stable. Due to the sunlight, the 

temperatures of the upper and lower surfaces of the mulberry leaf change slightly with the 

rise of the ambient temperature, and both the cases have seen an obvious oscillation in 

temperature with different frequencies. The upper surface has a higher frequency of the 

thermal oscillation than the lower one. A higher frequency results in a higher metabolic rate, 

and it can inspire the specially needed permeability design for cloth and house walls.  

 
Fig. 7 The temporal evolution of upper and lower surface temperatures of a mulberry leaf 

6. CONCLUSIONS 

The cocoon wall plays a very good role in protecting silkworm pupae, no matter how the 

environment changes. The heat flow in the microporous capillary channel moves extremely 

slowly from the outer layer to the inner layer of the cocoon. It is precisely because of the 

super slow energy transmission through the cocoon wall that the silkworm pupae will not 
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suffer damage due to either excessively high or low temperatures. The cocoons have a good 

heat preservation function and the optimal pore size (Eq. (20)), which is inversely 

proportional to cocoon volume. 

In this paper, SEM elucidated the geometric structure of silkworm cocoons, and thermal 

conduction experiments were carried out to reveal the excellent thermal prevention 

properties. Especially, we obtained the frequency of thermal oscillation and analyzed the 

main influence factors. This work will lay a solid foundation for biomimetic design of the 

protective clothing and coatings in extreme environment conditions. Next, we will discuss 

the relationship between the heat transfer frequency and the fractal dimensions of the 

cocoon wall, which is going on in our laboratory. 
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