NOTA CIENTÍFICA

Aspectos da anatomia foliar de *Ocimum selloi* Benth. (Lamiaceae) em diferentes condições de qualidade de luz

Larissa Corrêa do Bomfim Costa¹, Evaristo Mauro de Castro², José Eduardo Brasil Pereira Pinto³, Eduardo Alves⁴, Suzan Kelly Vilela Bertolucci⁵, Louise Ferreira Rosal⁶ e Carolina Mariane Moreira⁷

Introdução

Ocimum selloi Benth. é um subarbusto perene, nativo das regiões sul e sudeste do Brasil, conhecido popularmente como alfavaquinha, Elixir-Paregórico ou Atroveran. A espécie possui largo uso popular como antidiarréico, antiespasmódico e antiinflamatório [1], além da ação comprovada como repelente de insetos [2].

Apesar da confirmação dos efeitos da qualidade da luz sobre as plantas, inclusive em nível anatômico [3,4], as respostas são muito variáveis em função das espécies [5] necessitando, portanto, do conhecimento de quais porções do espectro estão envolvidas nas respostas de cada planta [6].

Este trabalho objetivou verificar o efeito da alteração do espectro de luz incidente, utilizando-se sombreamento com telas coloridas, sobre características da anatomia foliar de *Ocimum selloi*.

Material e métodos

Mudas obtidas de sementes foram transplantadas para vasos de 10 litros e cultivadas por 90 dias em casa de vegetação, sob os tratamentos de sombreamento com tela colorida ChromatiNet 50% vermelha, azul e a pleno sol (sem tela).

As duas telas coloridas possuem espectros de transmitância distintos na faixa visível com densidade da malha de 50% de sombreamento na região da radiação fotossinteticamente ativa. O espectro típico da tela azul apresenta um pico principal de transmitância na região do azul-verde (400-540 nm), enquanto a tela vermelha possui maior transmitância além de 590 nm [7]. A razão vermelho:vermelho distante (V:VD), principal fator regulatório das reações mediadas pelos fitocromos, não é muito alterada pelas telas coloridas. O fator de diferenciação mais importante entre as telas é a razão azul:vermelho (A:V), que é maior sob a tela azul e menor sob a tela vermelha [8].

Para os estudos anatômicos foi utilizada uma folha completamente expandida do segundo nó abaixo da inflorescência do ramo central de dez plantas diferentes.

Para o preparo do material de microscopia de luz realizaram-se seções transversais e paradérmicas da região mediana foliar que seguiram os processos usuais de microtécnica vegetal: fixação em FAA por 72 horas seguido por conservação em álcool 70%, clarificação com hipoclorito de sódio 50%, coloração com safrablau (transversais) e safranina (paradérmicos) e montagem em lâmina semi-permanente com glicerina 50%. Nas seções transversais, com auxílio do programa de análise de imagens WinCELL Pro, foram feitas medições da epiderme em suas faces abaxial e adaxial, além dos parênquimas lacunoso e paliçádico, enquanto nas seções paradérmicas determinou-se o diâmetro polar e equatorial dos estômatos e a densidade de estômatos e tricomas.

Paralelamente, prepararam-se amostras foliares para microscopia eletrônica de varredura. O material foi fixado primeiramente em solução fixadora (Karnovsky modificado), lavado em tampão cacodilato, pós-fixado em tetróxido de ósmio 1%, desidratado em série acetônica progressiva, submetido à secagem em ponto crítico e recoberto com ouro metálico sob alto vácuo, para exame em microscópio eletrônico de varredura.

As amostras destinadas à microscopia de transmissão, depois de fixadas em solução de Karnovsky modificada e pós-fixadas com tetróxido de ósmio, foram contrastadas em bloco com acetato de uranila 0,5%, desidratadas em gradiente progressivo de acetona, incluídas em série crescente acetona/resina Spurr, montadas em moldes e polimerizadas em estufa a 70°C. Os blocos obtidos foram desbastados e cortados em seções ultrafinas (<100 nm) em ultramicrótomo com navalha de diamante. Os cortes foram pós-contrastados com acetato de uranila seguido por acetato de chumbo e examinados em microscópio eletrônico de transmissão. Nestas seções, determinou-se o número e a área dos cloroplastos e grãos de amido em células do parênquima paliçádico.

Os dados obtidos foram submetidos à análise de variância para comparação de médias através do teste Tukey, a 5% de probabilidade.

Resultados e discussão

Em todos os tratamentos a epiderme na face adaxial apresentou células mais altas do que na face abaxial e o

^{1.} Professora Assistente do Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz. Rodovia Ilhéus-Itabuna, km 16, Ilhéus, BA, CEP 45662-000. E-mail: larissa@uesc.br. Estudante Doutorado do Departamento de Agricultura, Universidade Federal de Lavras.

^{2.} Professor Adjunto do Departamento de Ciências Biológicas, Universidade Federal de Lavras. Cx. Postal 37, Lavras, MG, CEP 37200-000.

^{3.} Professor Adjunto do Departamento de Agricultura, Universidade Federal de Lavras. Cx. Postal 37, Lavras, MG, CEP 37200-000.

^{4.} Professor Adjunto do Departamento de Fitopatologia, Universidade Federal de Lavras. Cx. Postal 37, Lavras, MG, CEP 37200-000.

^{5.} Professora Assistente do Departamento de Agricultura, Universidade Federal de Lavras. Cx. Postal 37, Lavras, MG, CEP 37200-000.

^{6.} Estudante Doutorado do Departamento de Agricultura, Universidade Federal de Lavras. Cx. Postal 37, Lavras, MG, CEP 37200-000.

^{7.} Estudante Graduação Departamento de Ciências Biológicas, Universidade Federal de Lavras. Cx. Postal 37, Lavras, MG, CEP 37200-000. Apoio financeiro: CNPq.

7

parênquima lacunoso foi mais espesso do que o parênquima paliçádico. Não foram observadas diferenças significativas na espessura da epiderme da face adaxial e do parênquima paliçádico, entretanto, houve um aumento da espessura do limbo foliar na condição de pleno sol, ocorrido em função da somatória da maior espessura da epiderme da face abaxial e do parênquima lacunoso nesta mesma condição (Tab. 1). Segundo Lee *et al.* (2000), o espessamento foliar é efeito apenas da intensidade luminosa, pois a qualidade espectral da luz não é capaz de afetar a contribuição das camadas de tecido no espessamento total da folha nem a composição do mesofilo.

Os estômatos do tipo diacítico estão posicionados no mesmo nível das demais células da epiderme (Fig. 1) e podem ser encontrados nas duas faces foliares praticamente com o mesmo tamanho, mas em maior densidade na superfície abaxial, enquadrando a folha na classificação de hipoanfiestomática [9]. O diâmetro polar dos estômatos nas duas faces foliares não variou em função dos tratamentos, mas o diâmetro equatorial na face abaxial foi maior nas plantas sombreadas com tela vermelha e na face adaxial foi maior naquelas plantas sombreadas com a tela azul. A densidade estomática foi maior nas plantas mantidas a pleno sol (Tab. 2), corroborando os resultados encontrados para Hopea odorata cuja densidade estomática foi maior com o aumento da intensidade luminosa [10]. A redução da densidade estomática nos tratamentos de sombra neutra e filtrada, em relação à condição de pleno sol, comprova o efeito da intensidade de luz sobre esta característica [11].

O número de cloroplastos por célula do parênquima paliçádico e o seu tamanho foram significativamente maiores nos tratamentos sombreados (Tab. 3). A exposição à luz vermelha e vermelha distante durante o crescimento e desenvolvimento foliar influenciam significativamente o desenvolvimento dos cloroplastos para garantir uma sobrevivência mais eficiente das plantas [12], além da quantidade de luz azul presente também estar correlacionada com o número de cloroplastos [4].

Observou-se um maior número de grãos de amido nos cloroplastos das plantas mantidas a pleno sol e sombreadas com tela vermelha, mas o seu tamanho não variou entre os tratamentos (Tab. 3). Os cloroplastos das folhas que recebem luz vermelha possuem mais e maiores grãos de amido [13] do que as folhas submetidas à luz vermelha distante [12].

Tricomas glandulares peltados e capitados foram observados nas duas faces foliares enquanto a ocorrência de tricomas tectores unicelulares e pluricelulares foi verificada apenas na face adaxial da folha (Fig. 1). Em todos os tratamentos a densidade de tricomas glandulares peltados é maior na superfície adaxial, mas os tricomas capitados estão quase sempre em maior número na face abaxial, exceto no tratamento com sombreamento azul, onde é praticamente igual. Na condição de pleno sol a presença dos dois tipos de tricomas glandulares nas duas faces foliares foi significativamente maior (Tab. 4). Os tricomas podem apresentar um valor adaptativo para muitos propósitos, entre eles, o balanço energético pela diminuição da absorção de radiação de ondas curtas para manter a folha mais fresca [14].

As alterações encontradas na espessura foliar, densidade de estômatos e tricomas podem ser atribuídas principalmente ao fator intensidade de luz enquanto que o número de cloroplastos e de grãos de amido podem ter sido influenciados pela qualidade da radiação incidente (razão A:V).

Referências

- LORENZI, H.; MATOS, F.J.A. 2003. Plantas medicinais no Brasil: nativas e exóticas. Nova Odessa, Instituto Plantarum. 254 p.
- [2] PAULA, J.P.; GOMES-CARNEIRO, M.R.; PAUMGARTTEN, F.J.R. 2003. Chemical composition, toxicity and mosquito repelency of *Ocimum selloi* oil. *Journal of Ethnopharmacology*, 88: 253-260,
- [3] LEE, D.W. *et al.* 2000. Effects of irradiance and spectral quality on leaf structure and function in seedlings of two southeast asian Hopea (Dipterocarpaceae) species. *American Journal of Botany*, 87, 4: 447-455.
- [4] SCHUERGER, A.C.; BROWN, C.S.; STRYJEWSKI, E.C. 1997. Anatomic features of pepper plants (*Capsicum annuum* L.) grown under red light-emitting diodes supplemented with blue or far-red light. *Annals of Botany*, 79: 273-282.
- [5] KIM, S-J.; HAHN, E-J.; HEO, J.; PAEK, K-Y. 2004. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. *Scientia Horticulturae*, 101: 143-151.
- [6] MCMAHON, M.J.; KELLY, J.W. 1995. Anatomy and pigments of chrysanthemum leaves developed under spectrally selective filters. *Scientia Horticulturae*, 64: 203-209.
- [7] OREN-SHAMIR, M.; GUSSAKOVSKY, E.E.; SPIEGEL, E.; NISSIM-LEVI, A.; RATNER, K.; GILLER, Y.E.; SHAHAK, Y. Colored shade nets can improve the yield and quality of green decorative branches of Pittosporum variegatum. J. Hort. Sci. Biotech., v. 76, p. 353-361, 2001.
- [8] SHAHAK, Y.; GUSSAKOVSKY, E.E.; GAL, E.; GANELEVIN, R. Colornets: crop protection and light-quality manipulation in one technology. *Acta Hort*. (ISHS) 659:143-151. 2004b. Disponível em: http://www.actahort.org/books/659/659 17.htm>. Acesso em: 16/05/2006.
- [9] GONÇALVES, L.A. 2001. Ontogenia dos tricomas glandulares e influência da radiação solar no desenvolvimento e no teor de óleo essencial de Ocimum selloi Benth. (Lamiaceae). 95 f. Dissertação de Mestrado, Curso de Pós-Graduação em Botânica, UFV, Viçosa.
- [10] LEE, D.W. *et al.*1997. Effects of irradiance and spectral quality on seedling development of two Southeast Asian Hopea species. *Oecologia*, 110: 1-9.
- [11] BUISSON, D.; LEE, D.W. The developmental responses of papaya leaves to simulated canopy shade. American Journal of Botany, v.80, n. 8, p. 947-952, 1993.
- [12] KASPERBAUER, M.J.; HAMILTON, J.L. 1984. Chloroplast structure and starch grain accumulation in leaves that received different red and far-red levels during development. *Plant Physiology*, 74: 967-970.
- [13] LEONG, T.; GOODCHILD, D.J.; ANDERSON, J.M. 1985. Effect of light quality on the composition, function and structure of photosynthetic thylakoid membranes of *Asplenium australicum* (Sm.) Hook. *Plant Physiology*, 78: 561-567.
- [14] GUTSCHICK, V. P. 1999. Research reviews: biotic and abiotic consequences of differences in leaf structure. *New Phytol.*, 143: 3-18.

Tabela 1. Esp	bessura do	limbo e	tecidos	foliares	de Od	cimum	selloi e	m fun	ção do	s tipos	de som	breament	o com	tela	colorida.	LF,
limbo foliar ; A	AD, epide	rme da fac	e adaxia	ıl; PP, p	arênqı	uima pa	aliçádic	o; PL,	parênq	uima la	cunoso	AB, epic	lerme d	la fac	e abaxia	I.

,.		-, , pq p	,,	, .p	
Tratamento	LF	AD	PP	PL	AB
			Espessura (µm)		
Sol	298,59±11,31ª	29,44±1,19 ^a	93,08±4,20 ^a	153,82±8,65 ^a	22,27±0,80 ^a
Vermelho	245,64±7,85 ^b	27,32±1,17 ^a	$78,87{\pm}4,08^{a}$	121,14±4,32 ^b	18,32±0,50 ^b
Azul	246,51±4,87 ^b	28,020±1,02 ^a	87,01±3,65 ^a	111,46±3,39 ^b	20,01±0,46 ^b
CV (%)	10,12	12,66	14,59	14,53	9,48

Médias dos tratamentos (±EP) seguidos de mesma letra na coluna, não diferem entre si pelo teste Tukey a P≤0,05 (n=10).

Tabela 2. Tamanho dos estômatos e densidade estomática de *Ocimum selloi* em função dos tipos de sombreamento com tela colorida.

Estômatos									
_		Diâmet	Densidade (estômatos.mm ⁻²)						
Tratamento	Aba	xial	Ada	xial	Abavial	Adavial			
	Polar	Equatorial	Polar	Equatorial	Abaxiai	Auaxiai			
Sol	28,13±0,49 ^a	17,22±0,5 ^b	29,98±0,27 ^a	17,99±0,26 ^b	283,84±18,22 ^a	123,02±6,35 ^a			
Vermelho	28,87±0,63ª	$19,14\pm0,48^{a}$	30,56±0,56 ^a	$17,84\pm0,28^{b}$	232,38±6,72 ^b	105,33±5,28 ^{ab}			
Azul	$28,47\pm0,42^{a}$	$18,71\pm0,4^{ab}$	31,08±0,37 ^a	19,53±0,19 ^a	201,82±11,21 ^b	99,71±4,97 ^b			
CV (%)	8,02	10,86	6,14	5,88	17,10	16,10			

Médias dos tratamentos (±EP) seguidos de mesma letra na coluna, não diferem entre si pelo teste Tukey a P≤0,05 (n=20).

Tabela 3. Número e tamanho de cloroplastos por célula do parênquima paliçádico e grãos de amido por cloroplasto *de Ocimum selloi* em função dos tipos de sombreamento com tela colorida.

Tratamento	Clorop	lastos	A	mido
	Número	Área (μm²)	Número	Área (μm²)
Sol	$11,40\pm0,98^{b}$	4,68±0,12 ^b	$1,6\pm0,16^{a}$	$1,18\pm0,08^{a}$
Vermelho	15,90±1,12ª	6,49±0,43ª	$1,5\pm0,16^{a}$	1,09±0,21ª
Azul	18,20±0,96 ^a	7,06±0,51 ^a	$0,8\pm0,20^{\rm b}$	$1,10\pm0,29^{a}$
CV (%)	21,34	17,22	43,16	49,99
		1		

Médias dos tratamentos (±EP) seguidos de mesma letra na coluna, não diferem entre si pelo teste Tukey a P≤0,05 (n=10).

Tabela 4. Densidade de tricomas tectores e glandulares nas duas superfícies foliares de *Ocimum selloi* em função dos tipos de sombreamento com tela colorida. TGP, tricoma glandular peltado; TGP, tricoma glandular capitado; TTP, tricoma tector pluricelular; TTU, tricoma tector unicelular.

_	Densidade de Tricomas (tricomas.mm ⁻²)								
	Aba	axial	Adaxial						
Tratamento	TGP	TGC	TGP	TGC	TTP	TTU			
Sol	15,12±1,25 ^a	24,43±1,82 ^a	22,79±1,05 ^a	17,30±1,93ª	8,23±1,39 ^a	162,00±10,57 ^a			
Vermelho	5,75±1,19 ^b	18,95±1,69 ^{ab}	15,95±1,05 ^b	$10,71\pm1,49^{b}$	5,77±1,32 ^a	103,25±5,69 ^b			
Azul	9,61±1,25 ^b	$18,14\pm1,26^{b}$	14,83±2,08 ^b	19,50±1,68 ^a	8,78±1,92 ^a	138,93±5,12 ^a			
CV (%)	47,01	30,32	32,03	41,87	80,15	21,67			

Médias dos tratamentos (±EP) seguidos de mesma letra na coluna, não diferem entre si pelo teste Tukey a P≤0,05 (n=15).

Figura 1. Eletromicrografia de varredura da superfície adaxial (A) sol, (B) vermelho, (C) azul e abaxial (D) sol, (E) vermelho, (F) azul. TGP, tricoma glandular peltado; TGC, tricoma glandular capitado; TTP, tricoma tector pluricelular; TTU, tricoma tector unicelular. Barra = $40 \mu m$.