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a b s t r a c t 

Tumor-normal cell interplay defines the course of a neoplastic malignancy. The outcome 

of this dual relation is the ultimate prevailing of one of the cells and the death or retreat 

of the other. In this paper we study the mathematical principles that underlay one impor- 

tant scenario: that of slow-progressing cancers. For this, we develop, within a stochastic 

framework, a mathematical model to account for tumor-normal cell interaction in such 

a clinically relevant situation and derive a number of deterministic approximations from 

the stochastic model. We consider in detail the existence and uniqueness of the solutions 

of the deterministic model and study the stability analysis. We then focus our model to 

the specific case of low grade gliomas, where we introduce an optimal control problem 

for different objective functionals under the administration of chemotherapy. We derive 

the conditions for which singular and bang-bang control exist and calculate the optimal 

control and states. 

© 2017 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

Stochastic processes are ubiquitous in biological systems [2,10,16] . Important examples range from gene expression [48] ,

cellular differentiation [41] , to animal migration and infectious disease risk [3] . The interface of malignant cancer cells with

the surrounding healthy tissue provides another relevant scenario for stochastic processes [4,15,19,23,24,30,31,47,63] . Disrup-

tion of the balance between early formed neoplastic cells and the normal cells results in the invasion and dissemination of

the malignant cells and eventually a transition from a benign to a malignant tumor. This cell to cell interaction is crucial

as it defines the basis of later advanced cancer stages: different pathways at the initial phases of growth will produce dra-

matically different natural histories of the tumor, which will be reflected not only in the distinct morphologies displayed

[6,22,56] but also in the diversity of responses to therapies [35] . 

Another layer of complexity is the relative speed at which tumors advance. Tumors that exhibit a fast progression are

characterized by a strong competition for resources; this includes access to space, oxygen and nutrients. Thus, a considerable
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restructuration of the pre-existing healthy tissue occurs, typically resulting in the growth of a vascular network, which is of-

ten aberrant and dysfunctional, and in the development of necrotic regions [1] . The modification of the spatial environment

re-defines the malignant-normal cell interaction that initially governed the system [18,56] . As a consequence, the conditions

that were present during tumorigenesis change dramatically and may become masked by the complexity of a fast-evolving

and multi-variable system. From a therapeutical point of view, modelling this situation poses enormous challenges. 

In contrast, focusing the attention on slow-progressing tumors, a somewhat more localized interplay between cells pre-

vails for relatively longer times, so that the marked spatio-temporal complexity encountered in fast-growing tumors is less

pronounced. Of course, in the long term, if the tumor becomes sufficiently large, then such a localized interaction between

(malignant and normal) cells cannot be maintained. 

Modelling slow-progressing tumors, although perhaps less demanding from a mathematical and computational point of 

view, is nonetheless relevant from a clinical point of view. It should be stressed that slow progression does not necessarily

imply less malignancy. There are a number of cancer types that can grow slowly for a significant fraction of their natural

history and yet have a dismal prognosis. For instance, pancreatic cancers may require up to 29 months to achieve a size of

1 cm [49] , very rarely demonstrating any specific symptoms (thus making them quite difficult to detect), and still remain

lethal if treatment is delayed. Another important example are low grade gliomas. 

The World Health Organization (WHO) classifies the tumors of the central nervous system by their cell of origin,

histopathological characteristics and molecular signatures, which are predictive of their progression [42,43] . Gliomas are

neuroepithelial tumors originating from the supporting glial cells of the central nervous system. The most frequent gliomas

comprise diffuse astrocytic and oligodendroglial tumors. Low grade gliomas (LLG) encompass a heterogeneous group of pri-

mary brain tumors (WHO grade I and II) that are typically well-differentiated, do not exhibit prominent histologic features

[27,61] , and account for approximately 15% of all gliomas [36] . These tumors often arise in young, but otherwise healthy

patients, and generally present an asymptomatic course with a lower incidence and a longer-term survival when compared

with high-grade gliomas (median overall survival drops from about 7 years for grade II to 15 months for grade IV). Most

of these tumors very rarely, if ever, metastasize outside the brain. Treatment options include observation, surgery, radia-

tion, chemotherapy, and combined modalities, which are based on tumor location, histology, molecular profile and patient

characteristics [27,61] . 

The timing of treatment in LGG remains a controversial issue. A number of works support early intervention, including

surgical resection, radiotherapy and chemotherapy [61] . Chemotherapy has been traditionally utilized as a last-resort alter-

native following surgery and radiotherapy, once tumor recurrence is observed. The most studied chemotherapies are PVC

(combination of procarbazine, lomustine and vincristine) and temozolomide. PVC is usually administered in cycles of ap-

proximately 8 weeks [27,61] . Since LGG are inevitably fatal in the long term; in most cases the tumor progresses towards

a higher grade glioma (WHO grade III and IV), it is an open question how to ”best” administer chemotherapy to maintain

a prolonged control of the tumor (maximize the free progression survival) and reduce as much as possible neurocognitive

toxicities in the patient. From a mathematical point of view this problem motivates to carefully define both the key ingre-

dients governing the (necessarily) stochastic interaction between tumor and normal cells and the introduction of a suitable

optimization control problem to model the treatment response. 

Therefore, the main purpose of this paper is dual: firstly, building from a continuum stochastic non-spatial model, we

derive a minimal deterministic model that accounts for the tumor-normal cell interplay under slow progression, which

is later focused on low-grade gliomas. Secondly, we consider the response of our tumor model to the administration of

chemotherapy. To this end, we apply optimal control theory to find optimal therapy strategies within our model, calculating

bang-bang and singular optimal controls. 

Thus, the paper is organized as follows. In Section 2 we introduce the mathematical model and discuss its biological

meaning. Next, in Section 3 we carry out an expansion of the master equation to derive a system of deterministic equations.

In Section 4 we study different mathematical properties of the continuous model and the stability of the corresponding

stationary states. Moreover, we analyze the behaviour of the first and second moments of the fluctuations near the station-

ary state. Section 5 deals with the formulation of the optimal control problems using several objective functionals. After

proving the existence of optimal controls, we discuss the necessary optimality conditions of Pontryagin’s Maximum (Mini-

mum) Principle [54] . Since the control variable appears linearly in the dynamic system and objectives, optimal controls are

concatenations of bang-bang and singular arcs. We derive a formula for the singular control in terms of state and adjoint

variables. A further necessary condition is the generalized Legendre–Clebsch condition [34,59] which we evaluate explic-

itly. The numerical simulations performed to solve the optimal control problems are based on dicretization techniques and

nonlinear programming methods. Finally, in Section 6 we summarize our conclusions. 

2. The model 

We model the interaction between tumor and normal cells as a continuous-time bivariate Markov process [32] . Let n i ,

with i = 1 , 2 , denote the number of tumor and normal cells, respectively. The initial number of tumor and normal cells will

be represented by ˆ n i (t 0 ) � = 0 and, without loss of generality, we take for the initial time t 0 = 0 . Therefore, the continuous-

time bivariate Markov process { X ( t ), Y ( t ): t ≥ 0} is defined on the space S = { (n 1 , n 2 ) : n 1 , n 2 = 0 , 1 , 2 . . . } . We assume that

transitions can only occur between adjacent states. Therefore, since there are two random variables, X ( t ) and Y ( t ), we shall
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be concerned with the joint probability distribution at time t , given by 

P (X (t) = j, Y (t) = i ) = p i j (t) . (1)

Next, the conditional probability distribution of the relevant transitions in the interval �t , from state n = (n 1 , n 2 ) ∈ S to

state m = (m 1 , m 2 ) ∈ S, reads as 

P (X (t + �t) = m 1 , Y (t + �t) = m 2 | X (t) = n 1 , Y (t) = n 2 ) = p nm 

(�t) . 

In the limit �t → 0 + , the transition probabilities can be defined as 

• p nm 

(�t) = αn 1 ,n 2 , for m = (n 1 + 1 , n 2 ) . 
• p nm 

(�t) = ᾱn 1 ,n 2 , for m = (n 1 , n 2 + 1) . 

• p nm 

(�t) = βn 1 ,n 2 + γn 1 ,n 2 + μ(1) 
n 1 ,n 2 

, for m = (n 1 − 1 , n 2 ) . 

• p nm 

(�t) = μ(2) 
n 1 ,n 2 

, for m = (n 1 , n 2 − 1) . 

• p nm 

(�t) = 1 − (αn 1 ,n 2 + ᾱn 1 ,n 2 + βn 1 ,n 2 + γn 1 ,n 2 + μ(1) 
n 1 ,n 2 

+ μ(2) 
n 1 ,n 2 

) , for m = (n 1 , n 2 ) . 

• p nm 

(�t) = o(�t) , otherwise, where lim �t→ 0 + 
f (t) 
�t 

= 0 . 

We define αn 1 ,n 2 and ᾱn 1 ,n 2 as the birth rates of tumor and healthy cells, respectively, and βn 1 ,n 2 is the death rate of

tumor cells. To account for resource (nutrients and oxygen) competition between tumor cells, we include the rate γn 1 ,n 2 .

Analogously, μ(1) 
n 1 ,n 2 

is the interaction rate between tumor and normal cells. Finally, the death rate for normal cells due to

the presence of cancer cells is denoted by μ(2) 
n 1 n 2 

. 

The first assumption of our model is that the healthy brain cells do not undergo mitosis, i.e., ᾱn 1 ,n 2 = 0 , since the normal

(adult) brain tissue (gray and white matter) does not exhibit a significant proliferation. Moreover, we set α0 , j = β0 , j = γ0 , j =
μ(i ) 

0 , j 
= 0 , with i = 1 , 2 , for j ≥ 0. 

Let p n 1 ,n 2 denote the conditional probability that there are n 1 tumor cells and n 2 normal cells at time t , that is 

p n 1 ,n 2 = P (X (t) = n 1 , Y (t) = n 2 | X (0) = 

ˆ n 1 , Y (0) = 

ˆ n 2 ) , 

with 

∑ ∞ 

n 1 =0 

∑ ∞ 

n 2 =0 p n 1 ,n 2 (t) = 1 . We resort to the theoretical framework of continuous-time Markov chains [2] . The forward

Kolmogorov equation reads as 

dp n 1 ,n 2 (t) 

dt 
= αn 1 −1 ,n 2 p n 1 −1 ,n 2 (t) + βn 1 +1 ,n 2 p n 1 +1 ,n 2 (t) + γn 1 +1 ,n 2 p n 1 +1 ,n 2 (t) 

+ μ(2) 
n 1 ,n 2 +1 

p n 1 ,n 2 +1 (t) + μ(1) 
n 1 +1 ,n 2 

p n 1 +1 ,n 2 (t) , (2)

together with 

dp 0 ,n 2 
dt 

= β0 ,n 2 p 1 ,n 2 . (3)

Notice that the set { (n 1 , n 2 ) ∈ S : n 1 = 0 , n 2 � = 0 } is an absorbing set. Henceforth we will assume that the rates defined above

satisfy the following conditions: 

• The birth and death rates for the tumor cells can be written as αn 1 ,n 2 = αn 1 and βn 1 ,n 2 = βn 1 , that is, independent on

the number of normal cells. This assumption relies on the fact that the presence of the normal brain cells only affects

the tumor cells via the competition for nutrients and oxygen, already taken into account. 
• The death rate for the normal cells in the presence of the tumor cells is written in the form μ(2) 

n 1 , n 2 
= μ̄(2) g(n 1 , n 2 ) , where

g ( n 1 , n 2 ) is a positive homogeneous function of degree two. That is, g(ηn 1 , ηn 2 ) = η2 g(n 1 , n 2 ) , for any non-negative real

n 1 , n 2 and η. Therefore, we are assuming that the death of normal cells is mediated by a contact interaction term g ( n 1 ,

n 2 ) between the tumor and the normal cells, with a death rate μ(2) . In general, the details of this interaction may be

very complicated. In the case of LGG, from histopathology observations, the tumor (e.g., diffuse astrocytoma) cells consist

of well differentiated fibrillary and gemistocytic neoplastic astrocytes on the background of a microcystic extracellular

matrix [42] . Although these cells do not disrupt the vasculature, they vary considerably with respect to their size and

functionality displaying an altered metabolism and signaling which affects the homeostasis of the normal brain cells. 
• γn 1 ,n 2 = γ̄ n 1 n 1 and μ(1) 

n 1 ,n 2 
= μ̄(1) n 1 n 2 are, respectively, the competition terms rate between tumor-tumor and tumor-

normal cells. 

3. Expansion of the master equation: derivation of the deterministic equations 

We start by noticing that Eq. (2) cannot be solved exactly. In fact, only in very few cases is the master equation amenable

for explicit solutions. Therefore, we will resort to an expansion of the master Eq. (2) which will yield a macroscopic and

deterministic equation capturing the average features of the stochastic model [32] . Firstly, let us introduce the following step

operators, for any general function f defined in S , which are given by: 

E n 1 f (n 1 , n 2 ) = f (n 1 + 1 , n 2 ) , 
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E n 2 f (n 1 , n 2 ) = f (n 1 , n 2 + 1) , (4) 

E −1 
n 1 

f (n 1 , n 2 ) = f (n 1 − 1 , n 2 ) . 

With the aid of these operators, the master Eq. (2) may be rewritten as 

dp n 1 ,n 2 (t) 

dt 
= (E −1 

n 1 
− 1) αn 1 ,n 2 p n 1 ,n 2 + (E n 1 − 1) 

[
βn 1 ,n 2 + γn 1 ,n 2 + μ(1) 

n 1 ,n 2 

]
p n 1 ,n 2 + ( E n 2 − 1) μ(2) 

n 1 , n 2 
p n 1 ,n 2 . (5) 

Our next task is to introduce a suitable expansion parameter. Let � be this parameter, which measures the size (e.g., the

volume) of the system. In the case of LGG it represents a sufficiently large radiologic volume that contains the tumor and

the surrounding oedema, observable in T2-weighted or in Fluid-attenuated inversion-recovery (FLAIR) MRI [58] . We assume

that if the total number of cells is large enough, then the fluctuations are relatively small and, therefore, the jumps are also

small. Thus, the number of cells can be described as a sum of a deterministic density plus a small fluctuation, with the

parameter � creating a distinction between both scales; macroscopic and fluctuation scales. 

Let us denote by x i ( t ), with i = 1 , 2 , the deterministic densities of tumor and normal cells and by ξ i ( t ), i = 1 , 2 their

fluctuations. We define the following relation: 

n i = �x i + �1 / 2 ξi = �
(

x i + 

1 

�1 / 2 
ξi 

)
, for i = 1 , 2 , (6) 

where the first term is macroscopic and the second term characterizes the fluctuations in the number of cells. We are

assuming that the fluctuations are of the order �1/2 [32] . 

Eq. (6) is a time-dependent transformation from the variables ( n 1 , n 2 ) to ( ξ 1 , ξ 2 ) involving the yet undetermined func-

tions ( x 1 , x 2 ). With the above definition (6) , the probability distribution p n 1 ,n 2 transforms into a probability distribution 	

of ξ 1 and ξ 2 , 

p n 1 ,n 2 (t) = p �x 1 +�1 / 2 ξ1 , �x 2 +�1 / 2 ξ2 
( t) = 	( ξ1 , ξ2 , t) . 

It then follows that 

∂ 

∂ξi 

= �
1 
2 

∂ 

∂n i 

and 

∂ 

∂ξ 2 
i 

= �
∂ 

∂n 

2 
i 

. 

Differentiating n i ( t ), for each i = 1 , 2 , we get 

dn i 

dt 
= �

dx i 
dt 

+ �
1 
2 

dξi 

dt 
, for i = 1 , 2 . 

Therefore, 

dp 

dt 
= 

∂	

∂t 
− �

1 
2 

dx 1 
dt 

∂	

∂ξ1 

− �
1 
2 

dx 2 
dt 

∂	

∂ξ2 

, (7) 

where we have neglected terms of the order O (�−1 / 2 ) . Next, we Taylor expand the step operators (4) 

E n i = 1 + �−1 / 2 ∂ 

∂ξi 

+ 

1 

2 

�−1 ∂ 
2 

∂ξ 2 
i 

+ O (�−1 ) , for i = 1 , 2 , 

E −1 
n 1 

= 1 − �−1 / 2 ∂ 

∂ξ1 

+ 

1 

2 

�−1 ∂ 
2 

∂ξ 2 
1 

+ O (�−1 ) . 

Consequently the forward Kolmogorov Eq. (2) (or master equation) in the new variables takes the form 

∂	

∂t 
− �

1 
2 

(
dx 1 
dt 

∂	

∂ξ1 

+ 

dx 2 
dt 

∂	

∂ξ2 

)
= 

(
−�−1 / 2 ∂ 

∂ξ1 

+ 

1 

2 

�−1 ∂ 
2 

∂ξ 2 
1 

)
α�x 1 +�1 / 2 ξ1 , �x 2 +�1 / 2 ξ2 

	

+ 

(
�−1 / 2 ∂ 

∂ξ1 

+ 

1 

2 

�−1 ∂ 
2 

∂ξ 2 
1 

)
β�x 1 +�1 / 2 ξ1 , �x 2 +�1 / 2 ξ2 

	

+ 

(
�−1 / 2 ∂ 

∂ξ1 

+ 

1 

2 

�−1 ∂ 
2 

∂ξ 2 
1 

)
γ�x 1 +�1 / 2 ξ1 , �x 2 +�1 / 2 ξ2 

	

+ 

(
�−1 / 2 ∂ 

∂ξ1 

+ 

1 

2 

�−1 ∂ 
2 

∂ξ 2 
1 

)
μ(1) 

�x 1 +�1 / 2 ξ1 , �x 2 +�1 / 2 ξ2 
	

+ 

(
�−1 / 2 ∂ 

∂ξ2 

+ 

1 

2 

�−1 ∂ 
2 

∂ξ 2 
2 

)
μ(2) 

�x 1 +�1 / 2 ξ1 , �x 2 +�1 / 2 ξ2 
	. (8) 

We now introduce into the master Eq. (8) the birth and death rates, which were defined in Section 2 . Thus, the first two

terms on the right-hand-side (RHS) of (8) become (
−�−1 / 2 ∂ 

∂ξ1 

+ 

1 

2 

�−1 ∂ 
2 

∂ξ 2 
1 

)
α�x 1 +�1 / 2 ξ1 , �x 2 +�1 / 2 ξ2 
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+ 

(
�−1 / 2 ∂ 

∂ξ1 

+ 

1 

2 

�−1 ∂ 
2 

∂ξ 2 
1 

)
β�x 1 +�1 / 2 ξ1 , �x 2 +�1 / 2 ξ2 

	 = (−αx 1 �
1 / 2 ) 

∂	

∂ξ1 

+ 

(
α

2 

x 1 
∂ 2 	

∂ξ 2 
1 

− α
∂(ξ1 	) 

∂ξ1 

)
+ (βx 1 �

1 / 2 ) 
∂	

∂ξ1 

+ 

(
β

2 

x 1 
∂ 2 	

∂ξ 2 
1 

+ β
∂(ξ1 	) 

∂ξ1 

)
+ O (�−1 / 2 ) . (9)

Notice that parameters μ̄(1) , μ̄(2) and γ̄ are the rate of interactions between tumor-normal or tumor-tumor cells and,

therefore, depend on �. Thus, it is assumed that μ̄(1) = μ(1) / �, μ̄(2) = μ(2) / � and γ̄ = γ / �, for μ(1) , μ(2) , γ > 0. The

third term on the RHS of (8) can then be written as (
�−1 / 2 ∂ 

∂ξ1 

+ 

1 

2 

�−1 ∂ 
2 

∂ξ 2 
1 

)
γ�x 1 +�1 / 2 ξ1 , �x 2 +�1 / 2 ξ2 

	

= (γ�1 / 2 x 2 1 ) 
∂	

∂ξ1 

+ γ

(
2 x 1 

∂(ξ1 	) 

∂ξ1 

+ 

1 

2 

x 2 1 

∂ 2 	

∂ξ 2 
1 

)
+ O (�−1 / 2 ) , (10)

and the fourth term of the forward Kolmogorov Eq. (8) becomes (
�−1 / 2 ∂ 

∂ξ1 

+ 

1 

2 

�−1 ∂ 
2 

∂ξ 2 
1 

)
μ(1) 

�x 1 +�1 / 2 ξ1 , �x 2 +�1 / 2 ξ1 
	

= (μ(1) �1 / 2 x 1 x 2 ) 
∂	

∂ξ1 

+ 

(
μ(1) 

2 

x 1 x 2 
∂ 2 	

∂ξ 2 
1 

+ μ(1) x 1 
∂(ξ2 	) 

∂ξ1 

+ μ(1) x 2 
∂(ξ1 	) 

∂ξ1 

)
+ O (�−1 / 2 ) . (11)

For the fifth term of (8) , we have, from Section 2 , 

μ(2) 

�x 1 +�
1 
2 ξ1 , �x 2 +�

1 
2 ξ2 

= μ̄(2) g 

(
�x 1 + �

1 
2 ξ1 , �x 2 + �

1 
2 ξ2 

)
. 

Using the fact that g is an homogeneous function of order two, the above expression becomes 

μ(2) 

�x 1 +�
1 
2 ξ1 , �x 2 +�

1 
2 ξ2 

= μ̄(2) �2 g 

(
x 1 + 

1 

�
1 
2 

ξ1 , x 2 + 

1 

�
1 
2 

ξ2 

)
. 

Then, expanding g into a Taylor series around ( x 1 , x 2 ) we arrive at 

μ(2) 

�x 1 +�
1 
2 ξ1 , �x 2 +�

1 
2 ξ2 

= g(x 1 , x 2 ) + 

1 

�
1 
2 

(
∂g(x 1 , x 2 ) 

∂x 1 
ξ1 + 

∂g(x 1 , x 2 ) 

∂x 2 
ξ2 

)
+ O 

(
�−1 

)
. 

Introducing this last equation in the fifth term of Eq. (8) , we get (
�−1 / 2 ∂ 

∂ξ2 

+ 

1 

2 

�−1 ∂ 
2 

∂ξ 2 
2 

)
μ(2) 

�x 1 +�1 / 2 ξ1 , �x 2 +�1 / 2 ξ2 
	

= 

(
μ(2) �

1 
2 g(x 1 , x 2 ) 

)
∂	

∂ξ2 

+ 

(
μ(2) 

2 

g(x 1 , x 2 ) 
∂ 2 	

∂ξ 2 
2 

+ μ(2) ∂g(x 1 , x 2 ) 

∂x 1 

∂(ξ1 	) 

∂ξ2 

+ μ(2) ∂g(x 1 , x 2 ) 

∂x 2 

∂(ξ2 	) 

∂ξ2 

)
+ O (�−1 / 2 ) .

(12)

Collecting Eqs. (9) –(12) of Eq. (8) , we arrive at the following equation 

∂	

∂t 
− �

1 
2 

dx 1 
dt 

∂	

∂ξ1 

− �
1 
2 

dx 2 
dt 

∂	

∂ξ2 

= �
1 
2 

(
(−αx 1 + βx 1 + γ x 2 1 + μ(1) x 1 x 2 ) 

∂	

∂ξ1 

+ μ(2) g(x 1 , x 2 ) 
∂	

∂ξ2 

)

+ �0 

((
α + β + γ x 1 + μ(1) x 2 

2 

)
x 1 

∂ 2 	

∂ξ 2 
1 

+ 

(
β − α + 2 γ x 1 μ

(1) x 2 
)∂(ξ1 	) 

∂ξ1 

+ μ(1) x 1 
∂(ξ2 	) 

∂ξ1 

+ 

μ(2) 

2 

g(x 1 , x 2 ) 
∂ 2 	

∂ξ 2 
2 

+ μ(2) ∂g(x 1 , x 2 ) 

∂x 2 

∂(ξ2 	) 

∂ξ2 

+ μ(2) ∂g(x 1 , x 2 ) 

∂x 1 

∂(ξ1 	) 

∂ξ2 

)
+ O (�−1 / 2 ) . (13)

Since we are assuming that the number of cells is large enough, the deterministic process is considered as an approximation

to the stochastic model. Gathering in (13) the terms of order �
1 
2 and since these terms are all either proportional to ∂ 	/ ∂ ξ 1

or to ∂ 	/ ∂ ξ 2 we arrive at the autonomous system 

dx 1 (t) 

dt 
= x 1 

(
α − γ x 1 − μ(1) x 2 

)
− βx 1 , (14)

dx 2 (t) 

dt 
= −μ(2) g(x 1 , x 2 ) , (15)
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which are the equations for the deterministic densities. The first term in the RHS of Eq. (14) is the usual logistic form

describing the effect of population saturation due to a maximum cell density. Likewise, α is the proliferation rate while

the constants γ and μ(1) measure the tumor-tumor and the tumor-normal cell competition, respectively. The last term in

(14) describes the tumor cell death, which could be the result of the interaction with the immune system and the reaction 

of the oedema. 

In contrast, Eq. (15) , where the constant μ(2) > 0, only displays a decay of the normal cell density due to interaction

with the tumor cells. As mentioned previously, the details of this interaction may be very complicated and are embodied in

the function g . 

The terms of order �0 in (13) yield the Fokker–Planck equation 

∂	

∂t 
= 

(
β − α + 2 γ x 1 + μ(1) x 2 

)∂(ξ1 	) 

∂ξ1 

+ μ(1) x 1 
∂(ξ2 	) 

∂ξ1 

+ μ(2) ∂g(x 1 , x 2 ) 

∂x 1 

∂(ξ1 	) 

∂ξ2 

+ μ(2) ∂g(x 1 , x 2 ) 

∂x 2 

∂(ξ2 	) 

∂ξ2 

+ 

(
α + β + γ x 1 + μ(1) x 2 

2 

)
x 1 

∂ 2 	

∂ξ 2 
1 

+ 

μ(2) 

2 

g(x 1 , x 2 ) 
∂ 2 	

∂ξ 2 
2 

+ O (�−1 / 2 ) . (16) 

From (16) , the equations for the moments of ξ 1 and ξ 2 can be derived and read as 

d〈 ξ1 〉 
dt 

= −
(
β − α + 2 γ x 1 + μ(1) x 2 

)〈 ξ1 〉 − μ(1) x 1 〈 ξ2 〉 , (17) 

d〈 ξ2 〉 
dt 

= −μ(2) ∂g(x 1 , x 2 ) 

∂x 1 
〈 ξ1 〉 − μ(2) ∂g(x 1 , x 2 ) 

∂x 2 
〈 ξ2 〉 . (18) 

Moreover, the three second-order moments obey the three coupled equations: 

d〈 ξ 2 
1 〉 

dt 
= −2(β − α + 2 γ x 1 + μ(1) x 2 ) 〈 ξ 2 

1 〉 − 2 μ(1) x 1 〈 ξ1 ξ2 〉 + 

(
α + β + γ x 1 + μ(1) x 2 

)
x 1 , (19) 

d〈 ξ1 ξ2 〉 
dt 

= −
(

β − α + 2 γ x 1 + μ(1) x 2 + μ(2) ∂g(x 1 , x 2 ) 

∂x 2 

)
〈 ξ1 ξ2 〉 − μ(2) ∂g(x 1 , x 2 ) 

∂x 1 
〈 ξ 2 

1 〉 − μ(1) x 1 〈 ξ 2 
2 〉 , (20) 

d〈 ξ 2 
2 〉 

dt 
= −2 μ(2) ∂g(x 1 , x 2 ) 

∂x 1 
〈 ξ1 ξ2 〉 − 2 μ(2) ∂g(x 1 , x 2 ) 

∂x 2 
〈 ξ 2 

2 〉 + μ(2) g(x 1 , x 2 ) . (21) 

4. Mathematical analysis of the model 

4.1. Existence of solutions, qualitative analysis and stability of the deterministic system 

In this subsection, a study of the existence of solutions of the deterministic system (14), (15) is considered. We first

specify a set of additional properties to be satisfied by function g ( x 1 , x 2 ): 

(H1) g(x 1 , x 2 ) = x 1 x 2 h (x 1 , x 2 ) , with h ∈ C 1 (R 

2 ) . 

(H2) h ( x 1 , x 2 ) > 0, ∀ x 1 , x 2 > 0. 

(H3) 
∂h (x 1 ,x 2 ) 

∂x 1 
≥ 0 , ∀ x 1 , x 2 ≥ 0, except possibly in a set of zero measure. 

We state the following result: 

Theorem 1. For any initial data ( x 10 , x 20 ) such that x 10 > 0 and x 20 > 0 the solutions to the system (14) and (15) exist for t >

0, are positive bounded and unique. 

Proof. Representing the solutions of system (14) and (15) in integral form: 

x 1 (t) = x 10 exp 

[∫ t 

0 

[ α − β − γ x 1 (s ) − μ(1) x 2 (s )] ds 

]
, (22) 

x 2 (t) = x 20 exp 

[
−

∫ t 

0 

μ(2) h (x 1 (s )) ds 

]
. (23) 

Thus, if the initial conditions are positive, the components of the solution are positive for all finite time t . 

Moreover, since α − β − γ x 1 (s ) − μ(1) x 2 (s ) ≥ 0 , ∀ s > 0, then 

dx 1 
dt 

≤ x 1 (α − β − γ x 1 ) . (24) 

This differential inequality shows that x 1 ( t ) is bounded. The boundedness of x 2 is straightforward from (15) as it is a de-

creasing function. Given that the RHS of Eqs. (14) and (15) are continuous in ( x , x ) and have bounded coefficients, the
1 2 
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existence of solutions follows from [44] . Furthermore, as the partial derivatives of the RHS of the system are continuous and

bounded, uniqueness follows from the Picard-Lindelof theorem. �

Next, we rule out the presence of limit cycles on account of the Bendixon–Dulac theorem. Let Q be the first quadrant of

the phase plane ( x 1 , x 2 ), 

Q = { (x 1 , x 2 ) : x 1 > 0 , x 2 > 0 } . 
Then, we formulate the following theorem: 

Theorem 2. If conditions (H1)–(H3) are satisfied then, there exist no limit cycles of the system (14) , (15) in the region Q. 

Proof. Let us define an auxiliary function B (x 1 , x 2 ) = 

1 
g(x 1 ,x 2 ) 

. The (Dulac) function B is continuously differentiable on the

simply connected region Q . Using now the Bendixon–Dulac theorem we check the sign of 

∂ 

∂x 1 

[
B (x 1 , x 2 ) x 1 (α − β − γ x 1 − μ(1) x 2 ) 

]
+ 

∂ 

∂x 2 

[
B (x 1 , x 2 )(−μ(2) g(x 1 , x 2 )) 

]
. 

Since g(x 1 , x 2 ) = x 1 x 2 h (x 1 , x 2 ) , the above expression reduces to 

∂ 

∂x 1 

[ 

x 1 
(
α − β − γ x 1 − μ(1) x 2 

)
g(x 1 , x 2 ) 

] 

= 

−(α − β − γ x 1 − μ(1) x 2 ) 
∂h 
∂x 1 

− γ h 

x 2 h 

2 
< 0 , 

for all ( x 1 , x 2 ) ∈ Q . Therefore, due to the Bendixon–Dulac theorem, no periodic solutions exist for the system (14), (15) lying

entirely within the region Q . �

Now, we perform an asymptotic analysis for the system of Eqs. (14) and (15) . The equilibrium points of the system are

then, using (H1) and (H2) 

P 1 = 

(
α − β

γ
, 0 

)
, P 2 = (0 , a ) , a ≥ 0 . 

Since α and β represent the birth and death rates of the tumor cells, unless there exists an exogenous factor (such as

therapy) altering these rates, we assume α > β . Thus, the previous equilibrium points are non-negative and they remain

inside the first quadrant. 

In order to check the stability of the fixed points, the Jacobian matrix J is calculated for system (14), (15) . 

J(x 1 , x 2 ) = 

⎛ 

⎝ 

α − 2 γ x 1 − μ(1) x 2 − β −μ(1) x 1 

−μ(2) ∂g( x 1 , x 2 ) 

∂x 1 
−μ(2) ∂g( x 1 , x 2 ) 

∂x 2 

⎞ 

⎠ . 

• Substituting the fixed point P 1 in the matrix, using hypothesis (H3) and calculating the eigenvalues, we obtain λ1 =
−(α − β) < 0 and λ2 = −μ(2) ∂g(P 1 ) 

∂x 2 
< 0 . Thus, P 1 is a stable node. 

• Substituting P 2 in J , employing (H3) and calculating the eigenvalues, we get λ1 = 0 and λ2 = α − μ(1) a − β . These points

are nonhyperbolic points. If μ(1) a < α − β, then the fixed points P 2 possess a local unstable manifold and a local center

manifold. Otherwise, P 2 has a local stable and a local center manifolds. 

From a biological point of view, it is reasonable to concentrate on the situation where a < 

α−β

μ(1) . In this case, λ2 = α −
μ(1) a − β > 0 and the fixed points P 2 are all unstable. Therefore, this constraint will be considered henceforth, and, thus,

we rule out the points for which a > 

α−β

μ(1) . 

Now, we analyze the behavior of the nullclines of the system (14), (15) . 

• Nullcline for x 1 . The nullclines for (14) are 

x 1 = 0 , x 2 = 

α − β

μ(1) 
− γ

μ(1) 
x 1 . 

• Nullcline for x 2 . From (H1), we have that for Eq. (15) , the nullclines are x 1 = 0 and x 2 = 0 . 

Therefore, we can formulate the following proposition: 

Proposition 1. If the assumptions (H1)–(H3) are fulfilled, then the steady state P 1 = ( α−β
γ , 0) is globally stable in the following

region D: 

0 ≤ x 1 ≤ α − β

γ
, 0 ≤ x 2 ≤ α − β

μ(1) 
− γ

μ(1) 
x 1 . (25)

Proof. Let us consider the triangular region D defined in (25) . Denote by � n the outward-pointing normal vector for each

segment of the boundary D . The flow on each segment of the region D is given by the scalar product: ∣∣ 〈
�

(
(1) (2) 

)〉∣∣
X 

∂D 
=  n , x 1 (α − γ x 1 − μ x 2 ) − βx 1 , −μ g(x 1 , x 2 ) ∂D 

. (26) 
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Fig. 1. (Left panel) Sketch of the phase portrait for Eqs. (14) and (15) in the case when g(x 1 , x 2 ) = x 1 x 2 and for values of the parameters given in Table 1 . 

(Right panel) Zoom of the left panel plot to display the positive invariant region D (red triangle). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

Table 1 

Values of the biological parameters for 

the system (14), (15) extracted from 

[9,12,29,51] . 

Variable Value (Units) 

x 10 0 .2 

x 20 0 .7 

α 1.5 year −1 

β 0.12 year −1 

γ 1.6 year −1 

μ(1) 1.3 year −1 

μ(2) 0.8 year −1 

 

 

 

 

 

 

 

 

 

 

 

 

 

• On the segment r 1 : x 2 = 

α−β

μ(1) − γ

μ(1) x 1 . It is straightforward to obtain X| r 1 = −μ(2) g(x 1 , 
α−β

μ(1) − γ

μ(1) x 1 ) < 0 . 

• On the segment r 2 : x 1 = 0 , we get X| r 2 = 0 . 
• Finally, on the segment r 3 : x 2 = 0 , we find that X| r 3 = μ(2) g(x 1 , 0) = 0 . 

Then, D is a positive invariant set of (14), (15) . Therefore, all trajectories which attain D remain there (see Fig. 1 ).

Theorem 2 shows that there exist no limit cycles of Eqs. (14) and (15) in the region D . Therefore, the Poincare-Bendixon

theorem implies that P 1 is globally asymptotically stable in D . �

Fig. 1 depicts the phase portrait (left-hand panel) and the positive invariant region D (right-hand panel) of Eqs. (14) and

(15) for g(x 1 , x 2 ) = x 1 x 2 and the parameters displayed in Table 1 . 

Remark 1. There exists a very small probability for a fluctuation to drive the system, starting from ( x 10 , x 20 ), backwards

to extinction and therefore, discrepancy between the stochastic and deterministic equation could arise. The probability for

this scenario to take place is typically of order e −�, and therefore, usually very small, except near the boundary of the

attraction region. Although rare, the spontaneous regression of LGG has been documented in pediatric gliomas, either in

association with neurofibromatosis, which increases the probability, or in its absence [57] . Despite the simplicity of our

model, it is nevertheless worth mentioning that it can also account for this type of clinically observable process if suitable

initial conditions ( x 10 , x 20 ) are imposed. In what follows, we will however choose the initial conditions sufficiently far away

from the y -axis and thus, the occurrence of such spontaneous regression will be negligible. 

4.2. The linear noise approximation: first and second moments of the fluctuations and their behavior near the stationary state 

Having analyzed the terms of order �1/2 in the previous section, we are left with an equation for 	( ξ , t ). The terms of

order �0 were calculated in (16) . This approximation is called linear noise approximation. 

We now proceed to consider the behavior of this approximation, calculating the expected value, the variation and co-

variance of the fluctuations near the stationary steady states of the deterministic system, given by Eqs. (14) and (15) . Thus,

for P 1 = ( ̄x 1 , 0) = ( (α − β) /γ , 0 ) , the first two equations of (17) and (18) read as 

d〈 ξ1 〉 
dt 

= −(α − β) 〈 ξ1 〉 − μ(1) α − β

γ
〈 ξ2 〉 , 

d〈 ξ2 〉 
dt 

= −μ(2) ∂g( ̄x 1 , 0) 

∂x 
〈 ξ2 〉 . (27) 
2 
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Fig. 2. (Left panel) The solution to Eqs. (14) and (15) (Middle panel) to Eqs. (27) (Right panel) and to Eqs. (28) for g(x 1 , x 2 ) = x 1 x 2 and for the parameters 

given in Table 1 . Blue and red colors label the curves for both populations, whereas the green color represents the curves for the moment 〈 ξ 1 ξ 2 〉 (right 

panel). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is straightforward to see that the trivial steady state (0, 0) of system (27) is asymptotically stable. The system for the

second-order moments becomes 

d 

dt 
〈 ξ 2 

1 〉 = −2(α − β) 〈 ξ 2 
1 〉 − 2 μ(1) α − β

γ
〈 ξ1 ξ2 〉 + 2 α

(
α − β

γ

)
, 

d 

dt 
〈 ξ1 ξ2 〉 = −

(
α − β + μ(2) ∂g( ̄x 1 , 0) 

∂x 2 

)
〈 ξ1 ξ2 〉 − μ(1) α − β

γ
〈 ξ 2 

2 〉 , 
d 

dt 
〈 ξ 2 

2 〉 = −2 μ(2) ∂g( ̄x 1 , 0) 

∂x 2 
〈 ξ 2 

2 〉 . (28)

It is easy to see that the steady state of system (28) is ( α/ γ , 0, 0) and a standard stability analysis shows that this steady

state is asymptotically stable. 

In Fig. 2 , the solution to the deterministic system (14) and (15) , expectations of fluctuations and the second moments,

are shown. For these simulations, we have chosen a contact function g(x 1 , x 2 ) = x 1 x 2 and the parameters given in Table 1 .

Notice that the time scale is in years since LGG progress very slowly in contrast with other higher-grade gliomas. 

5. Optimal control for the deterministic system of differential equations 

In standard chemotherapy protocols, drugs are administered in cycles at maximum tolerated doses (MTD) alternating

with periods of rest. The underlying rationale is that the more anti-cancer drug is given to the patient, the more tumor

cells are killed. Hence, the chemotherapeutic schedule traditionally used in the clinical practice consists of delivering the

maximal dose of a chemotherapeutic (or a combination) that can be tolerated by the patient. However, as chemotherapy

not only targets cancer cells but also any other cell in a state of rapid proliferation, the approach of MTD induces toxicities,

depending on the type of anti-cancer agent used, and thus requires prolonged breaks between successive cycles to allow

recovery from the harmful side effects. This eventually allows for (subsets of) malignant cells to resume their growth and,

in the long term, the MTD efficacy can be hampered by the propensity of some cancer cells to develop resistance to the

drugs. 

There is a growing number of clinical evidences pointing to the fact that “more is not necessary better”, which has led

to the concept of biologically optimal dose (BOD) chemotherapy. An example is the so-called metronomic chemotherapy

[7,37,52] , i.e., the administration of traditional chemotherapy at lower, less toxic doses for longer times (even continuously).

This idea has been put forward as an alternative on the basis of a growing experimental evidence not only because of its

toxic effect on the tumor, but also because of the immune-stimulatory effects. By relying on lower doses and more fre-

quent administration, metronomic chemotherapy can reduce toxic effects and prevent vascular rebound, a rapid vascular

regrowth that can lead to tumor growth during therapy breaks [7,17] . The introduction of metronomic chemotherapy paved

the way for the development of well-tolerated treatments that might prevent tumour progression for an extend period of

time [8,28] . Initially, metronomic chemotherapy was thought to exert its antitumour activity exclusively though antiangio-

genic mechanisms [33] . However, additional mechanisms of action include a enhanced immune response and additional

anticancer effects, so metronomic chemotherapy is now considered to be a form of multi-targeted chemotherapy [52] . 

From the mathematical point of view, the modelling of cancer chemotherapy by using optimal control theory has various

decades of history. Different frameworks have been considered in the literature, depending on the study focus, from macro-

scopic [60] to microscopic [37,38] level, including systems of differential equations (see [20,25,55] and references therein)

and partial differential equations (see instance [60] and references therein). 

Here we formulate an optimal control problem for the administration of chemotherapy and particularize our results to

the case of LGG, where two different modalities (time durations) are considered. We remind that since the median overall
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survival of LGG (WHO grade II) is about 7 years, these administration modalities extend for periods of many months (33

and 66 months). 

5.1. Formulation of the optimal control problem 

In this subsection, the following optimal control problem is studied 

dx 1 
dt 

= αx 1 − γ x 2 1 − μ(1) x 1 x 2 − βx 1 − m 1 ux 1 , x 1 (0) = x 10 , (29) 

dx 2 
dt 

= −μ(2) x 1 x 2 − m 2 ux 2 , x 2 (0) = x 20 , (30) 

where the constants m 1 and m 2 are the characteristic rates of cell-death induced by chemotherapy in tumor and normal

cells, respectively. Since we assume that the administered drug is cytotoxic, this implies that it will primarily (but not

exclusively) interfere with the cell cycle of fast-dividing cells. Given that for LGG the proliferation rate is in the order of

several months (see Table 1 ), the effect of chemotherapy is expected to produce visible effects within a period of few years.

This is in stark contrast with high-grade gliomas (e.g., glioblastoma [5,45,53] ) which exhibit a much faster dynamics (about

two orders of magnitude). In our calculations, we will use the following values m 1 = 2 . 0 year −1 and m 2 = 0 . 4 year −1 . 

The control variable u represents the drug dose. In general, the main objective is to determine the optimal drug schedule

which minimizes, as much as possible, the number of tumor cells at the final time of the treatment period while keeping the

toxic side effects of the drug at an acceptable level. To reduce the toxicity of the drug, which also affects the normal cells, we

add isoperimetric or state constraints. There are different kinds of constraints depending on the model assumptions, mainly

pointwise or integral type constraints. For instance, one may prescribe a maximum rate at which the chemotherapeutic drug

is administered at each time or imposes a bound on the total drug dosage in the therapy interval; cf. [20,21,39] . 

The set of admissible controls for the dynamical system (29) is given by 

U = { u : [0 , T ] → R measurable | 0 ≤ u (t) ≤ u M 

for almost all t ∈ [0 , T ] } . 
Here, u M 

, represents the MTD, which cannot be exceeded during the course of the therapy. In addition, we introduce another

control constraint by imposing a bound on the total amount of drug dose administered: ∫ T 

0 

u (t) dt ≤ M. (31) 

From a clinical point of view, the objective function should be designed in such a way that the tumor cell population

x 1 is minimized by an admissible control u satisfying the dynamical system (29) and the constraint (31) . This goal can be

achieved by minimizing the objective function 

J w 

(u ) = (1 − w ) x 1 (T ) + w 

∫ T 

0 

x 1 (t ) dt , (32)

where w is a weight parameter. For w = 0 we obtain a functional which focuses on the number of terminal tumor cells: 

J 0 (u ) = x 1 (T ) , (33) 

while for w = 1 we get a functional which takes into account the dynamics of tumor cells during the entire therapy interval:

J 1 (u ) = 

∫ T 

0 

x 1 (t ) dt . (34) 

By introducing the additional equation ˙ z = u (t) , z(0) = 0 , the constraint (31) is equivalent to the terminal constraint z ( T ) ≤
M . Then the control system can be written as: 

dx 1 
dt 

= αx 1 − γ x 2 1 − μ(1) x 1 x 2 − βx 1 − m 1 ux 1 , x 1 (0) = x 10 , (35) 

dx 2 
dt 

= −μ(2) x 1 x 2 − m 2 ux 2 , x 2 (0) = x 20 , (36) 

dz 

d t 
= u, z(0) = 0 , z(T ) ≤ M. (37) 

Hence, the state vector of the control problem is 

x = (x 1 , x 2 , z) 
T ∈ R 

3 . 

Since the control variable u appears linearly in the dynamics, we can write the model Eq. (35) in the form 

˙ x = f (x ) + g(x ) u, (38) 
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where 

f (x ) = 

⎛ 

⎝ 

αx 1 − γ x 2 1 − μ(1) x 1 x 2 − βx 1 

−μ(2) x 1 x 2 

0 

⎞ 

⎠ , g( x ) = 

⎛ 

⎝ 

−m 1 x 1 

−m 2 x 2 

1 

⎞ 

⎠ . (39)

5.2. Pontryagin’s Minimum Principle: necessary optimality conditions 

We evaluate the necessary optimality conditions of Pontryagin’s Minimum Principle [26,40,54,59] for the optimal control

problem with objective J w 

( u ) in (32) . Defining the adjoint variable λ = (λ1 , λ2 , λ3 ) , the Hamiltonian is 

H(x, λ, u ) = wx 1 + 〈 λ, f (x ) + g(x ) u 〉 
= wx 1 + λ1 (αx 1 − γ x 2 1 − μ(1) x 1 x 2 − βx 1 − m 1 x 1 u ) 

+ λ2 (−μ(2) x 1 x 2 − m 2 x 2 u ) + λ3 u. 

The adjoint equation then becomes 

˙ λ = −H x (x, λ, u ) = −a 1 − λ(D f (x ) + u 

∗Dg(x )) , λ(T ) = m, (40)

where a 1 = (w, 0 , 0) t , m = (1 − w, 0) t and Df , resp., Dg denote the matrices of the partial derivatives of the vector fields f ,

resp., g . 

The optimal control u ∗ minimizes the Hamiltonian H which is equivalent to minimizing the function 

[ −m 1 x 1 λ1 − m 2 x 2 λ2 + λ3 ] u, (41)

with respect to u ∈ [0, u M 

]. Hence, defining the switching function φ( x, λ) as 

φ(x, λ) = −m 1 x 1 λ1 − m 2 x 2 λ2 + λ3 , (42)

and setting 

φ(t) = φ(x (t) , λ(t)) , 

the optimal control satisfies the switching condition 

u 

∗(t) = 

{
0 , if φ(t) > 0 , 

u M 

, if φ(t) < 0 . 
(43)

In later computations, we shall take the MTD u M 

= 1 . The control is not determined a priori by the minimum condition

at times when φ(t) = 0 . Thus, we consider two cases: 

• If the switching φ( t ) has only finitely many zeros on an interval I b ⊂ [0, T ], the control u ∗ is called bang-bang on I b . In

this case we have u ∗( t ) ∈ {0, u M 

} for all t ∈ I b . 
• If φ( t ) ≡ 0 holds on a time interval I s = [ t 1 , t 2 ] , 0 ≤ t 1 < t 2 ≤ T , we say u ∗ is singular on I s . 

There exists a wealth of literature analyzing bang-bang and singular controls and presenting numerical methods; cf

[11,14,46,59] . 

5.3. Computation of singular controls 

The switching function (42) can be written in the form 

φ(x, λ) = 〈 λ, g(x ) 〉 , (44)

where 〈 , 〉 denotes the inner product. Formulas for singular controls can be derived using the fact that all total time deriva-

tives of the switching function vanish on the singular interval I s . In the sequel, we shall use methods from Geometric Control

Theory [59] to compute the derivatives of φ. To this end, we resort to the notion of Lie brackets [59] . 

Definition 1. Let f and g be two continuously differentiable vector fields. Then the Lie bracket of f and g in local coordinates

is defined by 

[ f, g](x ) = Dg(x ) f (x ) − D f (x ) g(x ) . 

Now, in view of φ(x, λ) = 〈 λ, g(x ) 〉 , we obtain the first two total time derivatives of the switching function as 

d 

dt 
φ(x, λ) = − a 1 g(x ) + λ[ f, g](x ) , (45)

d 2 

dt 2 
φ(x, λ) = M(x, λ) + N(x, λ) u, (46)

where 
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M(x, λ) = 〈 λ, [ f, [ f, g]](x ) 〉 − a 1 〈 Dg(x ) , f (x ) 〉 − 〈 a 1 , [ f, g](x ) 〉 , (47) 

N(x, λ) = 〈 λ, [ g, [ f, g]](x ) 〉 − a 1 〈 Dg(x ) , g(x ) 〉 . (48) 

It has been shown in Krener [34] that the control variable u appears only in an even order derivative of the switching

function. The order of a singular control u on an interval I s = [ t 1 , t 2 ] is defined as the least integer q such that 

∂ 

∂u 

d 2 q 

dt 2 q 
φ � = 0 . (49) 

In view of (46) the order of a singular control in our problem is q = 1 , since 

∂ 

∂u 

d 2 

dt 2 
φ = N(x, λ) � = 0 . 

A further necessary optimality condition is the generalized Legendre–Clebsch condition (GLC); cf [11,14,34] .: 

− ∂ 

∂u 

d 2 

dt 2 
φ(t) = −N(x (t ) , λ(t )) ≥ 0 , ∀ t ∈ I s . (50)

In order to determine the singular control u from the representation (46) we assume that the strict GLC condition holds: 

− ∂ 

∂u 

d 2 

dt 2 
φ(t) = −N(x (t ) , λ(t )) > 0 , ∀ t ∈ I s . (51)

In our problem, the strict GLC condition cannot be verified a priori, but has to be checked numerically. Assuming now

(51) , the relation 

d 2 

dt 2 
φ(t) = 0 yields the following formula of the singular control in terms of the state variable x and adjoint

variable λ: 

u sing (x (t) , λ(t)) = −M(x (t) , λ(t)) 

N(x (t) , λ(t)) 
. (52) 

Then the optimal control on the singular interval I s is given by 

u 

∗(t) = u sing (x (t ) , λ(t )) , ∀ t ∈ I s . (53)

To obtain the functions M and N we compute the following Lie brackets: 

[ f, g](x ) = 

⎛ 

⎝ 

−γ m 1 x 
2 
1 − μ(1) x 1 m 2 x 2 

−μ(2) x 2 m 1 x 1 

0 

⎞ 

⎠ , (54) 

and 

[ g, [ f, g]](x ) = 

⎛ 

⎝ 

γ m 

2 
1 x 

2 
1 + μ(1) x 1 m 

2 
2 x 2 

μ(2) x 2 m 

2 
1 x 1 

0 

⎞ 

⎠ , (55) 

and 

[ f , [ f , g]](x ) = 

⎛ 

⎝ 

γ m 1 (β − α) αx 2 1 + μ(1) (m 1 − m 2 )(γ − μ(2) ) x 2 1 x 2 

μ(2) μ(1) ( m 1 − m 2 ) x 1 x 
2 
2 + μ(2) m 1 (β − α) x 1 x 2 

0 

⎞ 

⎠ . 

This allows us to find the functions M and N in (47) and (48) explicitly: 

M(x (t) , λ(t)) = λ1 L 1 + λ2 L 2 + wx 1 [ m 1 (α − μ(1) x 2 − β) + μ(1) m 2 x 2 ] , (56) 

N(x (t) , λ(t)) = λ1 (γ m 

2 
1 x 

2 
1 + μ(1) m 

2 
2 x 1 x 2 ) + λ2 μ

(2) m 

2 
1 x 1 x 2 − wm 

2 
1 x 1 , (57) 

where 

L 1 = − γ m 1 αx 2 1 + γ m 1 μ
(1) x 2 1 x 2 + γ m 1 βx 2 1 − γμ(1) m 2 x 

2 
1 x 2 

+ (m 2 − m 1 ) μ
(1) μ(2) x 2 1 x 2 , 

L 2 = − μ(2) m 1 αx 1 x 2 + μ(2) m 1 μ
(1) x 1 x 

2 
2 + μ(2) m 1 βx 1 x 2 − μ(2) μ(1) m 2 x 1 x 

2 
2 . 

The strict GLC condition (51) then requires to check whether the inequality 

−λ1 (γ m 

2 
1 x 

2 
1 + μ(1) m 

2 
2 x 1 x 2 ) − λ2 (μ

(2) m 

2 
1 x 1 x 2 ) + wm 

2 
1 x 1 > 0 , (58)

holds on the singular interval I s . 
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Fig. 3. Optimal solution for functional J w ( u ) in Eq. (59) with w = 0 and total dose M = 5 ; the time horizon is T = 33 months. Left : a) Tumor cells x 1 . Middle: 

b) Normal cells x 2 . Right : c) Optimal control u ∗( t ) and scaled switching function c · φ with c = 30 , where φ satisfies the control law (43) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4. Optimal control solutions 

5.4.1. Sketch of numerical methods. 

Several numerical methods are available to solve the class of optimal control problem with constraints considered here.

We choose the numerical approach First Discretize then Optimize . Using a suitable discretization scheme the optimal con-

trol problem is transformed into a large-scale nonlinear programming (NLP) problem; cf., e.g., [13,46,62] . The NLP problem

can be efficiently solved by the Interior-Point code IPOPT developed by Wächter and Biegler [62] . Here, we formulate the

discretized control problem with the help of the Applied Model-Interior-Point optimization code IPOPT. We use the im-

plicit Euler method for ODEs. The Lagrange multipliers of the NLP problem represent the discretized adjoint variables of

the original optimal control problem. This allows us to verify the necessary optimality conditions; in particular the switch-

ing condition (43) with high precision. Verifiable sufficient optimality conditions have been developed only for bang-bang

controls; cf. [46,50] . 

5.4.2. Optimal controls for the functional J w 

( u ) in (32) 

The goal of this section is to compute a standard protocol of chemotherapy, where the total dose of chemotherapy is

M = 5 to be administered during two different treatment modalities: T = 33 and T = 66 months, respectively. We use the

parameters of Table 1 . 

We consider the weighted objective function (32) : 

J w 

(u ) = (1 − w ) x 1 (T ) + w 

∫ T 

0 

x 1 (t ) dt , 0 ≤ w ≤ 1 (59)

and, within each modality, several cases are distinguished: 

Case w = 0 , T = 33 months. 

The state variables, the optimal control and the switching are shown in Fig. 3 . Initially, no dose is applied during the first

28 months, and subsequently the MTD is administered for the last 5 months. It can be seen that tumor cells grow while

normal cells are diminished during the no-treatment period. Once the chemotherapy starts, both types of cells decay with

the tumor cells displaying a more pronounced decline. 

We obtain a bang-bang optimal control given by (t in months): 

u 

∗(t) = 

{
0 , for 0 ≤ t < t 1 , 

1 , for t 1 ≤ t ≤ T , 
(60)

and terminal states 

J 0 (u 

∗) = 0 . 181541 , x 1 (T ) = 0 . 181541 , x 2 (T ) = 0 . 336674 . (61)

From the simulations, we find t 1 = 28 months. 

To show the optimality of the control u ∗( t ) in Fig. 3 c), we apply the second order sufficient condition (SSC) by Osmolovskii

and Maurer (Theorem 7.10 in [50] ). Since there is only one switching point t 1 and one terminal constraint z(T ) = 5 , the SSC

degenerates into a first-order sufficient condition , which is fulfilled if the following strict bang-bang property holds: 

φ(t) > 0 , ∀ t ∈ [0 , t 1 ] , ˙ φ(t 1 ) < 0 , φ(t) < 0 , ∀ t ∈ (t 1 , T ] . (62)

The dotted line in Fig. 3 c) shows that the strict bang-bang property holds. 

Case w = 1 , T = 33 months. 

The state variables, the optimal control and the switching are shown in Fig. 4 . Now, in contrast to the solution for w = 0 ,

the maximal dose is administered from the very beginning until the total dose M = 5 is reached. Thereafter, no treatment is

administered. Both the tumor and normal cells decrease until the treatment finishes and the tumor cells regrow, while the

normal cells are depleted although at a slower pace. 
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Fig. 4. Optimal solution for functional J w ( u ) in Eq. (59) with w = 1 , and total dose M = 5 ; the time horizon is T = 33 months. Left : a) Tumor cells x 1 
Middle: b) Normal cells x 2 ; Right : c) Optimal control u ∗( t ) and switching function φ satisfying the control law (43) . 

Fig. 5. Optimal solution for functional J w ( u ) in Eq. (59) with w = w s = 0 . 0309 , and total dose M = 5 ; the time horizon is T = 33 months. Left : Tumor cells 

x 1 . Middle : Normal cells x 2 . Right : Optimal control u ∗( t ) which is totally singular on [0, 1]. 

 

 

 

 

 

 

 

 

 

 

 

 

We obtain a bang-bang optimal control given by: 

u 

∗(t) = 

{
1 , for 0 ≤ t < t 1 , 

0 , for t 1 ≤ t ≤ T , 
(63) 

and terminal states 

J 1 (u 

∗) = 5 . 74873 , x 1 (T ) = 0 . 285677 , x 2 (T ) = 0 . 403899 . (64)

We find t 1 = 5 months. Fig. 4 c) shows that the strict bang-bang property holds. 

φ(t) < 0 , ∀ t ∈ [0 , t 1 ] , ˙ φ(t 1 ) > 0 , φ(t) > 0 , ∀ t ∈ (t 1 , T ] . (65)

Case w = w s = 0 . 0309 , T = 33 months. 

Our computations reveal that, for the weight w s = 0 . 0309 , the optimal control is totally singular. Thus, we have 

0 ≤ w < w s : u 

∗(t) = 

{
0 for 0 ≤ t ≤ 28 

1 for 28 ≤ t ≤ 33 

}
, 

w s < w ≤ 1 : u 

∗(t) = 

{
1 for 0 ≤ t ≤ 5 

0 for 5 ≤ t ≤ 33 

}
. 

(66) 

Hence, for w � = w s all controls are bang-bang with only one switch occurring at a time when the total dose M = 5 is reached,

as depicted in Figs. 3 and 4 . However, for the specific weight w s = 0 . 0309 , the control structure changes dramatically , as

shown in Fig. 5 . 

Moreover, our computations evidence that the strict bang-bang property (62) is satisfied for all 0 ≤ w < w s , while

(65) holds for w s < w ≤ 1. This explains the role of the threshold weight w s = 0 . 0309 , where the switching function must

vanish identically in [0, 1]. Hence, for w s = 0 . 0309 we obtain a totally singular control in [0, 1], which is displayed in Fig. 5 c).

It is worth mentioning that in the three obtained scenarios, depending on the value of w , we observe that for the

threshold weight w s = 0 . 0309 there is a better control of the tumor cells since they remain bounded within a smaller interval,

in comparison with the cases where w < w s or w > w s . 

Now, we increase the time horizon up to T = 66 months: 

Case w = 0 , T = 66 months. 

The state variables, the optimal control and the switching are shown in Fig. 6 . Similar to the case w = 0 and T = 33

months, initially, the dose level is zero and then jumps to the MTD during the last 5 months starting at t 1 = 61 months. The

tumor and normal cells display a sustained growth and decrease, respectively, until the treatment starts, during which both

types of cell are depleted (notice that for the normal cells there is no significant change in the trend). 
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Fig. 6. Optimal solution for functional J w ( u ) in Eq. (59) with w = 0 and total dose M = 5 ; the time horizon is T = 66 months. Left : a) Tumor cells x 1 . Middle: 

b) Normal cells x 2 . Right : c) Optimal control u ∗( t ) and switching function φ satisfying the control law (43) . 

Fig. 7. Optimal solution for functional J w ( u ) in Eq. (59) with w = 1 , and total dose M = 5 ; the time horizon is T = 66 months. Left : a) Tumor cells x 1 . 

Middle : b) Normal cells x 2 . Right : c) Optimal control u ∗( t ) and switching function φ satisfying the control law (43) . The switching function φ( t ) is zero on 

the singular arc [ t 1 = 1 . 716 , t 2 = 22 . 673] months. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We obtain a bang-bang optimal control given by Eq. (60) . and terminal states 

J 0 (u 

∗) = 0 . 340737 , x 1 (T ) = 0 . 340737 , x 2 (T ) = 0 . 106368 . (67)

In this case, we find that t 1 = 61 months. Fig. 6 c) shows that the strict bang-bang property holds. 

φ(t) > 0 ∀ t ∈ [0 , t 1 ] , ˙ φ(t 1 ) < 0 , φ(t) < 0 ∀ t ∈ (t 1 , T ] . (68)

Case w = 1 , T = 66 months. 

In this case, we obtain a control with the structure bang-singular-bang: 

u 

∗(t) = 

⎧ ⎨ 

⎩ 

1 , for 0 ≤ t < t 1 , 

u sing (x (t ) , λ(t )) , for t 1 ≤ t < t 2 , 

0 , for t 2 ≤ t ≤ T , 

(69)

The singular control u sing is given in Eq. (52) . The found switching times are t 1 = 1 . 716 months and t 2 = 22 . 6732 months.

The state and control variables are displayed in Fig. 7 . The objective value and the terminal state variables are computed as:

J 1 (u 

∗) = 20 . 903 , x 1 (T ) = 0 . 630589 , x 2 (T ) = 0 . 1470 6 6 . (70)

Here, the treatment starts with a full dose therapy, then it jumps to a singular dose which is followed by a terminal

zero dose therapy. Thus, this type of control provides an example for a metronomic therapy, which is an alternative to MTD

therapy [37,52] . 

We can verify numerically that the strict GLC condition (51) is satisfied not only on the singular interval [ t 1 , t 2 ] but on

the whole interval [0, T ]. To see that the computed control u ∗( t ) satisfies the necessary conditions with high accuracy, we

do the following: We insert the computed values of x ( t ) and λ( t ) into the formula (52) and check that the values of the

singular control u sing ( x ( t ), λ( t )) perfectly match the computed values of u ∗( t ) in the singular domain. 

We have not been able to check the sufficient optimality for the solution in Fig. 7 since, to the best of our knowledge,

numerically verifiable sufficient conditions are not available in the literature. 

Finally, we consider the objective functional: 

J(u ) = x 1 (T ) + 

∫ T 

0 

(x 1 (t) + u (t)) dt (71)

for the following times: 

Case T = 66 months. 

Here, the treatment starts with a full dose therapy, then it jumps to a singular dose which is followed by a terminal zero

dose therapy. 
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Fig. 8. Optimal solution for functional J w ( u ) in Eq. (71) ; the time horizon is T = 66 months. Left : a) Tumor cells x 1 . Middle : b) Normal cells x 2 . Right : c) 

Optimal control u ∗( t ) and switching function φ.The switching function φ( t ) is zero on the singular arc [ t 1 , t 2 ]. 

Fig. 9. Optimal solution for functional J w ( u ) in Eq. (71) ; the time horizon is T = 120 months. Left : a) Tumor cells x 1 , b) Middle : Normal cells x 2 ; Right : c) 

Optimal control u ∗( t ) and switching function φ. The switching function φ( t ) is zero on the singular arc [ t 1 , t 2 ]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The state variables, the optimal control and the switching are shown in Fig. 8 . The switching times are computed as

t 1 = 2 . 54 months and t 2 = 28 . 09 months, showing a singular arc. The objective value and the terminal state variables are

computed as: 

J(u 

∗) = 26 . 3415 , x 1 (T ) = 0 . 579728 , x 2 (T ) = 0 . 167483 . (72)

Case T = 120 months. 

Again, we obtain a control with the structure bang-singular-bang given by Eq. (69) . The switching times are computed as

t 1 = 3 . 55 months and t 2 = 82 . 80 months showing a long singular arc. The state and control variables are displayed in Fig. 9 .

The objective value and the terminal state variables are computed as: 

J(u 

∗) = 61 . 0739 , x 1 (T ) = 0 . 659747 , x 2 (T ) = 0 . 048251 . (73)

Here, the treatment starts with a full dose therapy, then it jumps to a singular dose with medium values which is

followed by a terminal zero dose therapy. Again, we can verify numerically that the strict GLC condition (51) is satisfied on

the whole interval [0, T ]. 

6. Conclusions 

In this paper we have studied a model of slow-progressing tumor development taking into account the basic principles of

tumor-normal cell interplay. The development of the equations, analysis and control problems has given rise to a theoretical

framework that can be further exploited to define measurable experimental variables relevant for therapies. 

Starting from a stochastic model, a deterministic approximation and a Fokker–Planck equation were derived using an

expansion of the master equation or forward Kolmogorov equation. For the deterministic model, existence and uniqueness

of solutions were shown and a stability analysis was carried out. Solutions of the deterministic system were calculated for

values of the parameters in Table 1 , which correspond to low grade gliomas. 

Using the Fokker–Planck equation, the evolution of first and second moments for the fluctuations have been derived. We

have analyzed the evolution in time of the first moments (or expectations) of fluctuations near the stationary state for both

populations and observed that the expectations of the fluctuations are small and tend to zero as t → ∞ , providing partial

justification that the deterministic approximation to the stochastic model is a reasonable one. 

Subsequently, we introduced an optimal control problem assuming different types of objective functions. Since the con-

trol variable appears linearly in the control system and in the objective functional, the evaluation of the necessary optimality

conditions shows that optimal controls are concatenations of bang-bang and singular controls. We have obtained an explicit

formula for the singular control in terms of state and adjoint variables. We have then used discretization and nonlinear

programming methods to compute the control, state and adjoint variables. 
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For relatively short treatment times (in terms of the natural history of low grade gliomas), we found simple bang-bang

controls with only one switch which represent MTD therapies. This therapeutic modality is currently used in the clinical

practice, which consists of the administration of the maximal dose of chemotherapeutical drugs that can be tolerated by the

patient. We also have found an optimal control which is totally singular. 

For longer treatment times we have obtained controls with a singular arc placed between two bang-bang arcs. This type

of control provides an example for a metronomic therapy, which is an alternative to MTD therapy. From a practical point of

view such a scheme may be more difficult to administer in the clinic, but our results provide a theoretical test bench for

which realistic and easily realizable schemes can be compared and thus the efficacy of these protocols could be evaluated. 

In future works, we plan to incorporate into the present model a broader hierarchy of cells (depending on their differen-

tiation and pluripotentiality state) as well as the combination chemotherapy with neurosurgery and radiotherapy with the

goal to unveil new optimal therapeutic scenarios for low grade gliomas. 
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