
R E S E A R CH A R T I C L E - M E T HODO LOG Y

Automated generation of oracled test cases with regular
expressions and combinatorial techniques

Macario Polo1 | Oscar Pedreira2 | �Angeles S. Places2 |

Ignacio García Rodríguez de Guzmán1

1Institute of Technologies and Information

Systems, Universidad de Castilla-La Mancha,

Ciudad Real, Spain

2Centro de Investigación CITIC, Universidade

da Coruña, Campus de Elviña s/n, A Coruña,

Spain

Correspondence

Oscar Pedreira, Centro de Investigación CITIC,

Universidade da Coruña, Campus de Elviña

s/n, A Coruña, Spain.

Email: oscar.pedreira@udc.es

Funding information

Grupo de Referencia Competitiva 2017-Xunta

de Galicia/FEDER-UE GRC; Centros singulares

de Investigación de Galicia-Xunta de

Galicia/FEDER-UE CSI, Grant/Award

Numbers: ED431C 2017/58, ED431G/01;

Xunta de Galicia grants Xunta de

Galicia/FEDER-UE, ConectaPeme, Grant/

Award Number: IN852A 2018/14; ETOME-

RDF3, Grant/Award Number:

TIN2015-69951-R; BIZDEVOPS-Global,

Grant/Award Numbers: RTI2018-098309-B-

C32, RTI2018-098309-B-C31; TESTIMO

project, Grant/Award Number:

SBPLY/17/180501/000503; Ministerio de

Economía, Industria y Competitividad

(MINECO) and Fondo Europeo de Desarrollo

Regional (FEDER); BIZDEVOPS-Global project

Abstract

One of the main challenges of software testing research is the automated addition of

oracles to the generated test cases: Whereas the automated generation of operation

sequences (which is one of the essential components of test cases) is in practice a

solved problem, the automated addition of the oracle (another indispensable ele-

ment) is still an important problem and an open research question. This article pro-

poses an approach to get executable test suites composed by complete test cases

(i.e., they include the oracle). The core of the method is based on annotated regular

expressions. The test generation process, which is supported by a tool, follows three

steps: (1) creation of annotated regular expressions, where each regular expression

describes a set of sequences of operations to be executed against the system under

test; (2) expansion of the regular expressions to get sequences of operations, which

still do not have parameter values; and (3) generation of the executable test cases

with oracle. In this third step, each test case is generated with the suitable oracle,

depending on the conditions specified in the regular expression.

K E YWORD S

oracles, regular expressions, software testing, test case generation

1 | INTRODUCTION

In functional testing, a typical test case is composed of three parts1,2:

1. The specification of the initial situation, which puts the system under test (the SUT) in the desired starting state, and which is essential to allow

the later reproduction of the test case.

2. A set of calls to those operations of the SUT that the tester is interested in exercising.

3. An oracle, which determines whether the test case has or has not found errors in the SUT.

Research in Software Engineering has produced many techniques for automating the generation of test cases, but they are mostly incomplete

because they lack the inclusion of the oracle. In fact, a test engineer may propose data values for the test cases using classic techniques such as

equivalence partitioning or boundary values3 and, then, apply an algorithm implementing some combinatorial strategy1 to get sequences of opera-

tions that can be executed against the SUT. The construction of the test cases may also be supported and guided by a strategy that iteratively

Received: 10 October 2019 Revised: 10 March 2020 Accepted: 16 April 2020

DOI: 10.1002/smr.2273

J Softw Evol Proc. 2020;e2273. wileyonlinelibrary.com/journal/smr © 2020 John Wiley & Sons, Ltd. 1 of 21

https://doi.org/10.1002/smr.2273

https://orcid.org/0000-0001-6519-6196
https://orcid.org/0000-0001-6176-4475
https://orcid.org/0000-0001-8539-304X
https://orcid.org/0000-0002-0038-0942
mailto:oscar.pedreira@udc.es
https://doi.org/10.1002/smr.2273
http://wileyonlinelibrary.com/journal/smr
https://doi.org/10.1002/smr.2273
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsmr.2273&domain=pdf&date_stamp=2020-06-04

adds more test cases to the test suite until a certain coverage threshold is reached.2 However, if these test cases have no oracle, they will be still

incomplete.

Each one of these test cases requires one or more instructions to compose the oracle; otherwise, the test case will not able to highlight the

presence of errors. The automated inclusion of the oracle has been an open research question for many years: In their well-known technical

report, Baresi and Young4 claimed: “In much of the research literature on software test case generation or test set adequacy, the availability of

oracles is either explicitly or tacitly assumed, but applicable oracles are not described.” These very same authors emphasized the prohibitive cost

of creating oracles by hand given the huge quantity of incomplete test cases that can be got through automation. Some years later, in 2007,

Bertolino highlighted the oracle automation problem as one of the most important research challenges in software testing and warned that “The

test oracles challenge also overlaps the route toward test automation.”5 Barr et al6 shared the same opinion 8 years later in 2015: “This current

open problem represents a significant bottleneck that inhibits greater test automation and uptake of automated testing methods and tools more

widely.” Pezzè and Zhang7 pointed out in their “Automated test cases” survey that the large amount of test cases produced by automated tools

provides new motivations for researching in test oracle automation.

There is, therefore, a pressing need to develop techniques to overcome this important problem, which prevents the complete automation of

the testing process.

This article proposes a method, supported by a tool, that automates the generation of test cases with oracle using annotated regular expres-

sions, which represent the family of execution scenarios the test engineer wants to test. Annotated regular expressions (we call them phase-1 test

cases) are expanded to get sequences of operations (phase-2 test cases), which are later combined with actual test data to get the executable,

phase-3 test cases. The annotations introduced in the regular expressions are used to determine which oracle must be added to every test case.

As will be seen in Section 2, other authors have also used regular expressions (proceeding from state machines) to generate test cases,

although none of the reviewed works enriches them with oracle.

Therefore, the main contribution of this article is the inclusion of the oracle in the final generated, phase-3 test cases, which is got through

the relatively simple annotations that accompany the regular expression at the phase-1 level.

The paper is organized as follows: Section 2 reviews some relevant related works. Section 3 describes the test generation process with a run-

ning example. Then, Section 4 presents the annotations made at the phase-1 level and illustrates how to deal with them for generating the final

phase-3 tests. Section 5 describes SMACTesting, the tool that implements the complete process. A real application example is presented in Sec-

tion 6. Finally, we draw our conclusions.

2 | RELATED WORK

The oracle is the fragment or set of fragments in a test case that determines whether the test case has or has no found errors in the SUT. Given

an execution scenario, the oracle emits a pass or fail verdict, usually comparing the actual SUT's output with the expected one.

An important obstacle for automating the oracle addition is precisely that the description of its calculus method can be almost as complex as

the algorithm that produces the actual output. So, and in the context of oracle automation, it is important to give the tester some mechanism to

describe, at the highest possible level, the general rules that must be followed to add to each test case its corresponding oracle.

In this sense, Baresi and Young4 mentioned the concept of “ideal oracle,” which “would satisfy desirable properties of program specifications

but avoiding over-specification.” Bertolino5 recovered this very same concept, defining the “ideal oracle” as “an engine/heuristic that can emit a

pass/fail verdict over the observed test outputs.” The problem, in fact, is over-specification, which obligates the test engineer to expend a consider-

able effort for providing a complete description of the SUT.8–10

Barr et al6 review 694 publications related to the oracle problem from 1978 to 2012 and classify them into four categories: (1) Human

(a person has to create the oracle manually), (2) Derived (which distinguish the correct or the incorrect program behavior from a variety of artifacts,

properties of the system under test, other versions, etc.), (3) Implicit (related to the detection of obvious faults, such as a program crash or null

pointer exceptions), and (4) Specified oracles (they require some kind of formal specification of the SUT).

Within the last category, state transitions systems have been a very prolific line of research8,11–14 that, as Utting and Legeard point out,15

started in the 1950s with Moore machines. A state machine describes the accepted usage protocol of the SUT: transitions are the accepted oper-

ations, and states describe the expected invariants that the SUT must fulfill after being stimulated with the precedent sequence of operations.

In fact, it is relatively easy to traverse the state machine to get a set of operations sequences that exercise the SUT: Offutt et al12 or

Weißleder,16 for example, describe a set of coverage criteria for state machines (visiting all states, all transitions, input/output transition pairs, all

paths, MC/DC, all def-use-paths, etc.) that may guide the process of test case generation. Weißleder, moreover, combines OCL-annotated UML

state machines and class diagrams to generate test cases. Furthermore, the tour over the state machine can be artificially modified using mutation,

as Hierons and Merayo do.17 Executing operations in an order different than the expected one may discover unknown errors in the SUT, hidden

behind an incomplete specification: Salas et al,18 for example, already faced this problem in a work about cybersecurity. In the context of user

interface testing,19 Belli also generates “faulty interactions,” which are sequences of events which are not considered in the state machine.

2 of 21 POLO ET AL.

Obviously, the generation of test cases from a state machine requires this artifact to be a faithful representation of the SUT. However, system

models, such as state machines, are usually incomplete, are quite abstract, or simply do not exist. And, as Jahangirova points out in her PhD

thesis,20 “the precision of automatically generated oracles depends on the information used for the generation.” Killincceker et al,21 for example, a

model with a state machine all the possible interactions a user can make on a Graphical User Interface using a tool. Even for a simple GUI, the

state machine becomes very complex, with many states, and many transitions that intersect each other.

Other approaches, such as Tuglular et al,22 propose a testing technique for GUI, based on models to detect data violations, being also the

basis for the development of test oracles. In this approach, the user interface is modeled as an “event sequence graph.” The nodes are annotated

using design-by-contract, where every contract consists of a set of boolean conditions. Even though these contracts help to add the oracle to test

cases, the main difficulty with this approach is the “over-specification” mentioned at the beginning of this section.

Kirani and Tsai23 proposed to interpret state machines as finite automata. Thus, if the operations labeling the transitions correspond to the

automaton's alphabet, its associated regular expression represents the set of all the possible operation sequences the SUT can accept. Polo et al24

explored the idea of expanding regular expressions to get JUnit test cases, but they had the main problem we are dealing with in the present arti-

cle: They did not have oracle. Thus, all the test cases were always generated exactly with the same structure, independently of the expected

result.

Obviously, the semantic enclosed in a state machine is much greater than a regular expression: Think about the UML metamodel of state

machines,25 which have states, pseudostates, composite and shadow states, submachines, transitions, guards, etc. The tester can get a very faith-

ful representation of the SUT with a state machine but, depending on the circumstances, the effort expended in its modeling may be too high.

Kilincceker et al26 utilize regular expressions for validating circuits implemented in HDL (Hardware Description Language). The source code

of the HDL program is automatically analyzed, scanning each line to find particular patterns that represent states, which are added to an FSM

(finite state machine). Transitions between states are also extracted from the analysis of the HDL program. The FSM is then processed as a regular

expression, generating sequences of symbols that correspond to test sequences. Then, they execute the sequences on the SUT with a simulation

environment. Because the sequences generated do not have any oracle, the goodness of their approach is measured in terms of the test execution

time for getting different coverage criteria on an example SUT, comparing the time with a random sequence generator. In the afore-mentioned

work about GUI testing,21 these same authors apply a similar approach, also using regular expressions.

Of course, the advantage of using regular expressions (in terms of their ability to identify all possible test scenarios when generating test

cases) encloses a disadvantage, related to the cost of exploring the entire test space. For this reason, it is essential to identify and apply good cov-

erage criteria when choosing the optimal test sets to be generated.27

Belli and Grosspietsch28 propose to model the systems by using (1) predicate/transition nets and (2) regular expressions. Whilst the former

models the generic behavior of the system using Petri nets, the latter models in detail the sequential behavior of components with a lower level

of granularity. This “double strategy” of modeling both at high and low levels perfectly fits with our proposal: Regular expressions specify the

behavior of the system components.

A very interesting approach was presented by Liu et al,29 who propose a notation for writing “extended regular expressions” for generating

test cases, together with six modeling rules. Using EREs makes unnecessary to use FSMs. Unlike our approach, the effort to define the ERE seems

to be higher than the one needed to define the classical ER. Neither our approach implies losing semantics in terms of the representation of the

software behavior. Additionally, our proposal presents a supporting software that fully supports the life cycle of regular expressions, from their

creation to their expansion for the generation of test cases with real data, including the generation of the oracles (which is still the most complex

part of the testing process).

In their TOTEM methodology, Briand and Labiche30 use regular expressions to “express in an analyzable and compact form” the sequence dia-

grams, although they do not explain how they deal with them and, thus, it seems an alternative notation for representing scenarios. TOTEM pro-

duces test cases at a system level, but it requires that the SUT behavior is completely specified not only with use case, sequence, and class

diagrams but also with OCL annotations (for class invariants and operations' pre- and post-conditions) and “a data dictionary that describes each

class, method and attribute.” TOTEM is powerful, but it has the aforementioned problem of over-specification.4

Finally, we would like to mention other testing approaches that rely on formal theories. For example, it is worthy to mention,31 where the

results of the Côte de Resyste project are presented. The most interesting outcome of this project (in the context of this paper) is the TorX tool,

which automates the generation, execution, and analysis of test cases. TorX is based on the ioco test theory.32 Although the approach presented

in this paper is not formalized at the same level, we think that future work could be improved by introducing some of the concerns, such as the

ioco-test derivation algorithm.

3 | TEST CASE GENERATION WITH REGULAR EXPRESSIONS

Consider, for the sake of illustration, the simple banking account whose structure and behavior are shown in Figure 1: According to its usage pro-

tocol, which is described in the UML state machine shown on the right side of the figure, the account admits calls to deposit, withdraw, and transfer

POLO ET AL. 3 of 21

after the instance creation. Consider that the tester is, in this example, only interested in testing the behavior of the operations shown in the

figure.

The tester could generate test cases for that state machine guiding the process with, for example, the four coverage criteria proposed by

Offutt et al12:

• With transitions coverage, the tester must include tests that cause every transition in the state machine to be taken.

• The full-predicate coverage criterion establishes that, for each transition, the tester must include tests triggering the transition reaching MC/DC

coverage on the transition's guard condition.

• With transition-pair, the tester must include tests in such a way that every possible pair (input transition, output transition) is traversed for every

state.

• With a complete sequence, the tester must include tests that traverse all the “meaningful sequences” of execution on the state machine.

According to Offut et al, such sequences are based on the tester's experience, domain knowledge, and other human-based knowledge.

Assuming there are no “meaningful sequences” in the state machine, taking into account that transition-pair subsumes transitions and that the

two transitions with guards (getBalance > 0 and getBalance() < =0) only have one condition, transition-pair would be enough to produce a test suite

for this system.

The problem with state machines is that the tester requires a specific tool not only for drawing them and annotating transitions and states

(the state annotation is essential to generate the oracle because it holds the SUT expected postcondition after executing each transition) but also

for processing it in order to generate the tests. As it was pointed out in Section 2, system models are usually incomplete, and the precision of the

generated oracles depends on such precision. In fact, literature evidences that one of the problems of model-based testing is the existing gap

between the given SUT specification and its actual behavior.

This approach is inspired by the Kirani and Tsai idea of generating test sequences from the regular expression associated with a state

machine, which can be understood as a finite automaton. Thus, it is a form of model-based testing based on state machines that, however,

does not need either the complete description of the SUT or of the state machine, but only the regular expressions that represent the test

scenarios the tester is interested in exercising. We have decided to make use of regular expressions to specify test cases because we

believe they are simpler and easier to write for the test engineer. Belli also appreciates the advantages of applying algebraic methods

instead of graphical operations.19 As we do not need and do not have a state machine modeling the system, we have no algorithms to

reach states, transitions or pairs, but we do require an engine to expand the regular expressions and produce test sequences. In terms of

regular languages, a test sequence will be a word accepted by the finite automaton associated with the regular expression.

3.1 | Regular expressions as phase-1 test cases

In our approach, instead of drawing a state machine, the tester does not need a specific tool to deal with state machines, because these are

described as textual regular expressions. From the banking account state machine, we can extract the regular expression of Figure 2 (parameters

are omitted for brevity):

F IGURE 1 Structure and behavior of a simple SUT

F IGURE 2 Regular expression (phase-1 test case) proceeding from
the state machine in Figure 1

4 of 21 POLO ET AL.

Because a regular expression represents a family of test scenarios and will be progressively converted into the test cases of a test suite, we

say that a regular expression is a phase-1 test case. Actually, the regular expression requires additional annotations to produce, at the end, execut-

able test cases with oracle. The complete description of a phase-1 test case is presented in Section 4.

3.2 | Sequences of operations as phase-2 test cases

An expansion engine, explained in Section 5, is in charge of expanding the regular expression enclosed in a phase-1 test case up to a certain length,

thus producing a set of sequences, called phase-2 test cases. These test cases are not executable because they lack parameter values. A phase-2

test case represents a sequence of operations that, when combined with actual test data, will likely traverse the system under test in different

ways. Some of the authors mentioned in Section 2 call “abstract test cases” or “test sequences” to these specifications.

A length of 4 applied to the phase-1 test case in Figure 2 produces the Phase-2 test cases in Figure 3.

3.3 | Executable test cases as phase-3 test cases

In order to become executable, the phase-2 test cases need parameter values. Given a phase-2 test case, a combinatorial strategy1 must be applied

to its parameters' values. Suppose the tester selects {−100, 0, 100, 1000} as values for the amount parameter of deposit, withdraw, and transfer.

Depending on the selected combinatorial strategy, the number of executable sequences produced is different: For the 13th sequence of Figure 3,

each choice would generate only four test cases, AETG33 16 test cases and all combinations will produce 4 × 4 × 4 = 64 test cases, some of which

appear in Figure 4.

The remaining task to convert each executable sequence into an actual case is the addition of the oracle. Thus, for example, it may be

expected that all the executable sequences that use −100 or 0 (13.1, 13.2, 13.2, 13.62 in Figure 4) as value for any of the amount parameters

throw an NegativeAmountException, that the executable sequences 13.63 and 13.64 throw an InsufficientBalanceException, and that the account

balance after 13.48 is 800.

4 | ANNOTATIONS IN PHASE-1 TO GET PHASE-3 TEST CASES

Although in Section 3.1, we have assimilated “regular expression” with phase-1 test case, the truth is that a regular expression needs additional

information to become an actual phase-1 test case. We are behind the “ideal oracle” mentioned by Bertolino's5 and by Baresi and Young's4 and,

thus, we want to be able to give, at the highest possible abstraction level, the required specifications for generating the “oracled” phase-3 test

cases. In this context, that highest abstraction level is phase-1 test cases.

As noted in the previous subsection, each phase-3 test case must be generated with a different oracle, likely according to a different “test

template.” This template depends (1) on the sequence of operations involved in each test case and (2) on the parameter values assigned to the

phase-3 test case. The left side of Figure 5 shows the test template to be applied to test cases corresponding to negative amounts (executable

sequences 13.1, 13.2, 13.2, 13.62 of Figure 4), whilst the right side shows the template to be used when no exceptions are expected (executable

sequence 13.48). Obviously, a mechanism is required to decide which test template will be used for writing the code of every phase-3 test case.

This is made using When clauses, which will be presented in brief.

Note in both templates the presence of the #SEQUENCE# token, which will be substituted by the sequence of operations of this phase-3 test

case, with its parameter values. Note also theTCNUMBER token, which will be replaced by an incremental counter.

F IGURE 3 Some sequences
(phase-2 test cases) proceeding
from the expansion of the regular
expression

POLO ET AL. 5 of 21

Additionally, the Normal template includes a reference to expectedBalance, a variable that is used to compare the actual account's balance (ret-

urned by account.getBalance()) to the expected one. expectedBalance has not been defined so far and, therefore, we need to define it at some

place.

4.1 | Before, maxLength, and test values annotations

Figure 6 shows some of the annotations added to a regular expression for generating test cases for the account class. It:

1. Includes code in the Before annotation, which will be included at the beginning of every test case. Note that this code has: (a) the declaration

and construction of account, the instance of the class under test; (b) an initial assertion; and (c) the declaration and assignment of an initial

value to expectedBalance, which is the same variable used in the Normal template to check the instance state.

2. Holds the regular expression defined in terms of a set of operation aliases (D for deposit, for example), that make the writing of the regular

expression more comfortable for the tester.

3. Defines the test values for each parameter of each operation.

4. Defines the maximum length of the sequences generated by the expansion of the regular expression.

F IGURE 5 Two templates for two different types of test cases

F IGURE 4 Executable (phase-3) test cases

F IGURE 6 Partial description of an annotated regular expression, a phase-1 test case

6 of 21 POLO ET AL.

The same regular expression can be used for describing several phase-1 test cases: The only differences of the phase-1 test case described in

Figure 7 with respect to the previous one are in the Test values section: Being 6 the maximum length and having those test values, the account

instances will only run on “normal” scenarios and should be generated with the Normal template of Figure 5.

Executable, phase-3 test cases proceeding from the phase-1 test case in Figure 7 must be generated with the Normal template shown in

Figure 5. However, some of the phase-3 test cases proceeding from Figure 6 (which had negative values for amount) must be generated according

to the Normal template, others with the NegativeAmountException template, and others with other templates, depending on the situation they are

describing. For example, the code for the sequence 13.48 of Figure 4 (which corresponded to a normal scenario) appears on the right side of

Figure 8.

4.2 | Precode and postcode annotations

The test case on the right side of Figure 8 is still incomplete because the expectedBalance variable is initialized to 0, but its value is not modified

during the execution. Thus, at phase-1 level, operations can be annotated with Postcode and maybe with Precode, which will be respectively

inserted after and before each operation call (Figure 9).

Now, the test case 13.48 will be generated as in Figure 10.

4.3 | When clauses

When clauses are the last annotation required by phase-1 test cases. A When clause holds a condition and points to the template that must be

used to generate the phase-3 test cases that fulfill the condition.

The condition is written as a function on the parameters and their values. Before generating the code of a phase-3 test case, the parameters

are confronted against the condition of each When clause: If they match, then the phase-3 test case is generated according to the template,

substituting the #SEQUENCE# and TCNUMBER tokens by the corresponding values.

There are three types of conditions:

1. OR, which are fulfilled when any of the parameter values are included in the values used for defining the condition. For example, “When the

amount is 0 or −100, the test case must expect that the SUT throws a NegativeAmountException”.

F IGURE 8 The Normal template and one of its test cases

F IGURE 7 Partial description
of a different phase-1 test case

POLO ET AL. 7 of 21

2. AND, which are fulfilled when all the parameter values are included in those that define the condition. For example, “When the amount of

deposit is 1000 and the amount of withdraw is 100, the test case must check that no exception has been thrown and that the account's bal-

ance is 900”.

3. ELSE, which are fulfilled by all those phase-3 test cases that match neither OR nor AND conditions.

Figure 11 shows the same phase-1 test case now enriched with the Precode and Postcode sections and five When clauses. It is worth noting

that our experience in the application of SMACTesting to a wide number of different projects with diverse technologies evidences that, in general,

AND clauses are the preferred ones to generate “positive” test cases, and OR clauses are more suitable for “negative” test cases. Those phase-3

test cases mapped by ELSE clauses have test data combinations that the tester has not foreseen either in AND or OR clauses. SMACTesting gives

a default template that throws an exception to inform the tester of this unforeseen test case (Figure 11).

According to the sixth Software Testing Principle of Myers et al,34 test cases must check that the SUT (1) does what it must do and (2) does

not do what it must not do:

1. The first point (“does what it must do”) corresponds to positive test cases, which test “normal” scenarios. In a test case that tests a normal sce-

nario, the SUT receives an acceptable sequence of operations and parameters. A positive test case finds an error if the SUT throws an excep-

tion and/or reaches an undesired state.

2. The second point (“does not do what it must not do”) maps to negative test cases. A negative test case tests what in use case design is an

exception or error scenario: it is expected that the SUT detects that the received operation sequence and/or the parameter values are not

acceptable. Thus, the SUT's right behavior is to throw a certain type of exception and/or to resiliently remain in a coherent, controlled state. A

negative test case finds an error if it does not throw the expected exception and/or reaches an incoherent state.

F IGURE 10 The test case of Figure 8, now with Postcode

F IGURE 9 Addition of Precode and Postcode to the phase-1 test case of Figure 6

8 of 21 POLO ET AL.

Table 1 summarizes the conditions under which a positive or negative test case must emit a pass or fail verdict. This table is the basis for cre-

ating the When clauses.

4.3.1 | Limitations of When clauses

An important constraint of When clauses is that they can be only defined on parameter values. For example, the sequence of operations shown in

Figure 12 makes two withdrawals of 1,000 from an account that only has 100. According to theWhen clauses, this test case corresponds to a Nor-

mal scenario, because all the values of amount are positive. However, and according to the state machine from which the regular expression pro-

ceeds, it is expected that the SUT throws some kind of InsufficientBalanceException.

To successfully solve this kind of situations, the tester must play with the phase-1 definitions, considering that she/he:

1. Can distinguish the amount parameters of the three operations, naming the amountDeposit, amountWithdraw and amountTransfer instead of

simply amount.

2. Can use a same regular expression with different test values.

3. Can use a same regular expression with different maximum expansion lengths.

4. Finally, she/he can adjust the condition in the When clauses and remove or manually review those test cases matching Else clauses.

5 | TOOL SUPPORT

Figure 13 overviews the processing implemented in SMACTesting, a tool that completely automates the process described in the previous

sections:

TABLE 1 Verdicts versus positive and negative test cases

Pass Fail Verdict

Positive The SUT does not throw any exception AND

reaches the expected coherent state

The SUT throws an unexpected exception OR reaches an undesired state

Negative The SUT throws the expected exception AND

reaches the expected, coherent state

The SUT does not throw any exception OR throws an exception different than

the expected one OR reaches an incoherent state

F IGURE 11 Complete description of the phase-1 test case started in Figure 6 and continued in Figure 9

POLO ET AL. 9 of 21

1. The tester describes, as phase-1 test cases, the behavior of the system she/he is interested in testing.

2. Then, the regular expressions contained in the phase-1 test cases are expanded by an expansion engine (Section 5.2), that produces phase-2 test

cases.

3. Once the phase-2 test cases have been produced, a combinatorial engine applies the combinatorial strategy selected by the tester to combine

each phase-2 test case with its corresponding parameter values, so producing the final, executable, phase-3 test cases.

If the SUT is written in Java, SMACTesting analyzes its compiled code using the reflection API and automatically assigns a letter (or sequence

of letters) to the operations found.

5.1 | Metamodel for test cases

The representation of the different test cases is depicted in Figure 14: As it is seen, a phase-1 test case produces, via its generateTestCases() opera-

tion, a collection of phase-2 test cases. This generation requires the previous execution of expand on the regexp associated with this phase-1 test.

Details on expand are presented in Section 5.2.

Each phase-2 instance holds a reference to the phase-1 test case it proceeds from. In this way, when the generateTestCases() is executed on a

Phase2TestCase instance, it looks for which when clauses of its corresponding phase1TestCase are fulfilled by the current phase-3 test that the

combinatorial engine is generating. The conditions of When clauses are represented by the self-type of the instance (WhenOr or WhenAnd) and

the values it points to. There is no object representation of phase-3 test cases because they are a mere transposition to the corresponding

TestTemplate.

5.2 | Expanding regular expressions

The source code of the regular expressions expansion engine is available at Polo35 and has been presented in Usaola et al.36 It deals with regular

expressions having the operators shown on the left-hand side of Figure 15. As shown on the right-hand side, there is a supporting class model

composed of an abstract RegularExpression class that has one specialization per operator, excepting for the Concatenation, which is represented in

the figure by the next association field.

Each specialization helps the RegularExpression's expand method to expand the regular expression on which the operation is executed, sum-

marizing the following:

F IGURE 13 The oracled test
cases generation process

F IGURE 12 A sequence of operations

10 of 21 POLO ET AL.

1. RESimple, corresponding to a symbol of the alphabet, produces the symbol itself, independently of the maxLength parameter: expand (symbol,

L) = {symbol}

2. REBrackets represents a regular expression enclosed within brackets, such as (a) or (a|b). Note that this subtype holds a re attribute, which is

the actual regular expression within the brackets. Expanding a REBracket is like expanding the re attribute: expand((r), L) = expand(r, L)

3. REQuestion is an optional regular expression that, when expanded, produces the empty regular expression (λ) and the expansion of the optional

regular expression (which is represented by the re field in the class diagram): expand(r?, L) = {λ} [expand(r, L)

4. REOr is used to represent the union of regular expressions and, thus, it has two regular expressions: reLeft and reRight (obviously, the union of

3 or more regular expressions is a ReOr regular expression whose reRightField is also a ReOr regular expression). Expanding a REOr instance

consists in expanding both reLeft and reRight and returning all these expansions: expand(r|s, L) = expand(r, L) [expand(s, L)

F IGURE 15 Supported operators and the corresponding class model

F IGURE 14 Metamodel used for representing phase-1 and phase-2 test cases

F IGURE 16 Expansion function for the positive closure (+)

POLO ET AL. 11 of 21

5. REStar is a regular expression receiving the Kleen closure operator (*). It returns the empty regular expression and the result of applying the “+”

operator (REPlus, see below) to the regular expression: expand(r*) = {λ} [expand(r+, L)

6. REPlus represents a regular expression with the positive closure (+). Expanding it consists in expanding the closured regular expression up to

the maximum length. Actually, this is the only operator that increments the length of the expression. So, this version of expand is slightly more

difficult. A simplified pseudocode appears on Figure 16 (note that the parameter received is a regular expression r with the + operator

applied):

a Initially, the closured expression (r, not r+) is expanded by calling the suitable expand (line 1) version according to the type of r. This expan-

sion is saved in expansions (also in line 1) and a copy in result (line 2). In the loop of lines 3−5, result will progressively accumulate the expan-

sions. It is also the variable with the return value.

b Then, the algorithm iterates so many times as the desired length (L). In each iteration (line 4), result accumulates the cartesian product of the

current value of result with the original value of expansions.

c Finally, line 6 removes those sequences longer than L (line 6) and returns the result.

7. Concatenation: As said before, concatenation is represented by the next field hold by the RegularExpression superclass: after executing the con-

crete version of expand corresponding to the actual regular expression which is being processed, if next is not null, then the expansion of next

is concatenated to the results previously obtained.

We want to expand the expression (ab|c)* up to length 6:

expand abjcð Þ�,6ð Þ:

Because the regular expression is an instance of REStar, the function described in the fifth place is applied:

expand abjcð Þ�,6ð Þ= λf g[expand abjcð Þ+ ,6ð Þ:

Consider now (ab|c)+, which is an instance of REPlus. The algorithm of Figure 16 proceeds as follows:

1. First, it expands (ab|c), which is an instance of REOr, composed in turn by an instance of a RESimple (a) whose next field is another RESimple (b),

and another instance of RESimple (c): expand((ab| c), 6) = expand(ab, 6) [expand(c,6) = {ab} [{c} = {ab, c}

2. The set obtained is saved in expansions, and a copy in result.

3. Then, because L = 6, the loop makes six iterations. In the first one, result accumulates the cartesian product of result by expansions. Note that

the cartesian product concatenates the elements of both sets: result = result [(result × expansions) = {ab, c} [({ab, c} × {ab, c}) = {ab, c, abab,

abc, cab, cc}

4. In the second iteration, result against accumulates the cartesian product of itself by the original expansions:result = {ab, c, abab, abc, cab,

cc} [({ab, c, abab, abc, cab, cc} × {ab, c}) = {ab, c, abab, abc, cab, cc, ababab, ababc, abcab, abcc, cabab, cabc, ccab, ccc}

5. The function continues in this very same way. At the end, result will hold a number of sequences. The statement in line 6 cleans result, remov-

ing those sequences longer than 6.

5.3 | Combining test data values in phase-2 test cases

SMACTesting provides three combinatorial algorithms1 to combine test data values with phase-2 test cases to get the final result:

TABLE 2 Partial description of a phase-1 test case for the call data records system (I)

Phase-1 Test Case

Before annotation Regular expression:AB (CDE) + F

Usage:
A = Call call = new Call();

B = call.setUserId (callUserId);

C = call.setDate (date);

D = call.setCost (cost);

E = registerCall (call);

F = double total = getBill (userId, start, end)

double expectedTotal = 0.0;

12 of 21 POLO ET AL.

• Each choice generates a test suite where each test value of each parameter is used at least once. It produces as many test cases as the number

of test values we have in the parameter with the highest number of test values.

• AETG, an algorithm by Cohen et al33 that gets a test suite where the test cases cover all values pairs of any two parameters.

• All combinations, that computes the cartesian product of all parameters. For a given set of parameters and values, this algorithm generates all

the possible test cases, so being the technique with more ability to find errors in the SUT. However, many of the test cases generated are

redundant from any coverage criterion point of view (i.e., they visit exactly the same areas of the program).

5.4 | Algorithmic complexity of the process

Computationally speaking, the test generation process may find two bottlenecks: the first one, in the computational cost of the expand function in

the REPlus subclass of Figure 15; the second, if the combinatorial strategy for converting phase-2 into phase-3 is all combinations.

F IGURE 18 Selection of methods under test in SMACTesting

F IGURE 17 Service and data access classes in the sample application

POLO ET AL. 13 of 21

• For calculating all combinations, SMACTesting computes, for each phase-2 test case, the cartesian product of all the parameters involved in the

sequence of operations. If {p1, p2, … pn} are the parameters involved in the phase-2 test case and {v1, v2, … vn} are the number of values of the

parameters, the algorithm starts calculating p1 × p2, which has a cost of v1·v2. In the next iteration, the result (a set composed of v1·v2 pairs) is

multiplied by v3, which requires (v1·v2)·v3 multiplications. In the end, the required number of multiplications, and the computational cost of this

strategy, is
Pjpj

i=1

Qi

j=1
v j, being|p|the cardinal of the parameters set.

• Regarding the expand function of the positive closure, the loop of lines 3−5 of Figure 16 also calculates L times the cartesian product of the

expansions of the closured regular expression. Depending on the type of regular expression, the cost of the expand function may become

exponential.

In the common practice, the design of the phase-1 test cases (overall the maximum length of the regular expression, the number of closure

operators and the number of parameter values) does not jeopardize the test generation time. Anyway, the maximum time of a test generation can

be parametrized, being stopped when it is reached.

6 | APPLICATION EXAMPLE

This section illustrates the test case generation method applied to one real project. First, we briefly describe the SMACTesting platform, a tool

that supports the test generation process described in the previous sections. After presenting the system under test we used in this application

example, we describe how to specify phase-1 test cases for this application. Finally, we show how we can define a small set of oracles that covers

a larger set of test cases, thus making the generation of complete test cases much simpler.

6.1 | The SMACTesting platform

To apply the process described in the previous section in an application example, we implemented a test generation platform called SMACTesting.

The tool supports all the steps of the test generation process: loading the SUT code using the reflection engine, selecting the methods to be used

in the tests, annotating them, defining test values for the method's parameters, defining the regular expressions, expanding them, defining the ora-

cles using the when clauses, and, finally, generating and running the test cases.

The platform is called SMACTesting because it also provides modules for automating testing of SMACT (Social, Mobile, Analytics, Cloud, and

IoT) applications. However, those modules and functionalities exceed the scope of this article.

6.2 | System under test

The application is based on a real scenario, but it has been intentionally simplified because its only purpose is to serve as a test object for the

application example presented in this section. The application allows storing telephone call data records (CDR). For our testing purpose, we will

only consider the date when the phone call took place, the id of the user that made the call, and the cost to be billed to the user. The application

allows the user to insert new CDRs in the database and to compute the amount to bill to a given user on a given period. The application is devel-

oped as a web application with a model-view-controller architecture using Java, Spring, and JSP, and uses MongoDB to store the data.

The next figure shows the three classes of the model layer of the application that are relevant for the example. The Call class implements the

Value-Object pattern,37 and it allows to represent a CDR with its three attributes: user id, date, and cost of the call. The class CallDAO implements

the data access object pattern for the entity Call. It implements four methods, that allows to insert a new CDR in the database (registerCall), to

obtain all the CDRs in the database (findAll), to find the CDRs corresponding to a given user in a period (findCallsForBilling), and to find all the

CDRs of any user in a period (findCallsForConsumption). The class CallService implements the model of the application and provides methods for

getting all the calls, computing the bill for a given user on a period, and to compute the global consumption of all users on a period.

6.3 | Specification of phase-1 test cases

A reasonable test case for this application would imply inserting some calls into the database, and then computing the amount to bill to a given

user on a certain period. Table 2 gives a partial description of a phase-1 test case.

The selected regular expression starts with the creation of an instance of Call (operation A) made by a certain user (operation B). Then, it

assigns it the date and cost (operations C and D) and registers it in the database (E). CDE can be executed several times. Finally, the F operation

14 of 21 POLO ET AL.

represents a call to the getBill method: note, in this case, that its usage assigns the result to a variable called total. Note also the declared

expectedTotal variable in the Before annotation section.

Figure 18 shows the screen of SMACTesting where the test engineer selects the operations to be included in the test cases. At this point, the

reflective engine of the tool has analyzed the project structure and shows a tree with all the operations contained in all its.class files. In this exam-

ple, the right-hand side shows the methods contained in the class selected in the tree (CallServiceImpl, that corresponds to CallService in

F IGURE 20 Actual sequence of calls
corresponding to the first data combination of
Table 5

TABLE 3 Partial description of a Phase-1 test case for the call data records system (II)

Phase-1 Test Case

Before annotation
double expectedTotal = 0.0;

Regular expression: AB (CDE) + F

Usage:
A = Call call = new Call();

B = call.setUserId (callUserId);

C = call.setDate (date);

D = call.setCost (cost);

E = registerCall (call);

F = double total = call.getBill (userId,

start, end)

Test values:
callUserId = {1}

date = {“2017/01/31”, “2018/01/1”, “2018/01/15”, “2018/01/17”,

“2018/01/31”, “2018/02/01”}

cost = {1}

userId = {1, 2} (for getBill)

start = {“2018/01/01”, “2018/01/15”}

end = {“2018/01/15”, “2018/01/31”}

Max length: 12

F IGURE 19 Interface of the test generation tool—selection of methods and specification of test values

POLO ET AL. 15 of 21

Figure 17). The operations the user has already selected appear on the bottom side. Note that the tool assigns a consecutive and different letter

to each method.

In Figure 19, the user may add precode and postcode to each operation, as well as to assign values to the parameters: In the figure, the test

engineer is assigning the values 1 and 2 to the first argument of the getBill operation (getBill in Figure 17).

Table 3 now includes the test values used for the parameters of the operations involved in the test scenario. Note that

• setUser takes only the id of the user that performs a telephone call. The test engineer assigns 1 to this value, which means that this will be the

only user that, for his/her testing goal, will make calls.

• setDate assigns a date to a telephone call. The test engineer has assigned six possible dates.

• getBill takes three parameters: for userId, the test engineer has assigned 1 (that corresponds to the calling user) and 2 (a user that has no made

calls); for start and end, that respectively represent the start and end billing periods, the user has assigned two values, which are closely related

to the setDate's date parameter.

At phase-1 level, the regular expression AB (CDE) + F, together to the test values in Table 3, represents all the scenarios where the user with

id = 1 performs a set of calls in the specified dates and with the specified cost. Every call is inserted in the database. Finally, the total due is calcu-

lated with the getBill method, in several periods (given by start and end) and for both users 1 and 2.

Setting 12 as the maximum length for the expansion of the regular expression produces three operation sequences that respectively corre-

TABLE 4 Number of test cases produced by each combinatorial technique

Each Choice AETG All Combinations

ABCDEF 6 13 48

ABCDECDEF 6 36 2,304

ABCDECDECDEF 6 39 110,592

Total 18 88 112,944

TABLE 5 Data combinations generated by Each choice

Sequence: ABCDEF

1/6 1, 2017/01/31, 1, 1, 2018/01/01, 2018/01/15

2/6 1, 2018/01/01, 1, 2, 2018/01/15, 2018/01/31

3/6 1, 2018/01/15, 1, 1, 2018/01/01, 2018/01/15

4/6 1, 2018/01/17, 1, 2, 2018/01/15, 2018/01/31

5/6 1, 2018/01/31, 1, 1, 2018/01/15, 2018/01/15

6/6 1, 2018/02/01, 1, 1, 2018/01/01, 2018/01/31

Sequence: ABCDECDEF

1/6 1, 2017/01/31, 1, 2017/01/31, 1, 1, 2018/01/01, 2018/01/15

2/6 1, 2018/01/01, 1, 2018/01/01, 1, 2, 2018/01/15, 2018/01/31

3/6 1, 2018/01/15, 1, 2018/01/15, 1, 2, 2018/01/15, 2018/01/31

4/6 1, 2018/01/17, 1, 2018/01/17, 1, 2, 2018/01/15, 2018/01/31

5/6 1, 2018/01/31, 1, 2018/01/31, 1, 2, 2018/01/15, 2018/01/15

6/6 1, 2018/02/01, 1, 2018/02/01, 1, 2, 2018/01/15, 2018/01/31

Sequence: ABCDECDECDEF

1/6 1, 2017/01/31, 1, 2017/01/31, 1, 2017/01/31, 1, 1, 2018/01/01, 2018/01/15

2/6 1, 2018/01/01, 1, 2018/01/01, 1, 2018/01/01, 1, 2, 2018/01/15, 2018/01/31

3/6 1, 2018/01/15, 1, 2018/01/15, 1, 2018/01/15, 1, 2, 2018/01/01, 2018/01/15

4/6 1, 2018/01/17, 1, 2018/01/17, 1, 2018/01/17, 1, 2, 2018/01/01, 2018/01/31

5/6 1, 2018/01/31, 1, 2018/01/31, 1, 2018/01/31, 1, 2, 2018/01/15, 2018/01/15

6/6 1, 2018/02/01, 1, 2018/02/01, 1, 2018/02/01, 1, 1, 2018/01/01, 2018/01/31

16 of 21 POLO ET AL.

spond to 1, 2 and 3 telephone calls, plus the calculus of the bill which is made in the F method: ABCDEF, ABCDECDEF, and ABCDECDECDEF.

These sequences could correspond to phase-2 test cases.

For the moment there are no oracles defined. As we have said in Section 5.3, SMACTesting implements three combinatorial strategies to get

phase-3 test cases from phase-2 ones (Each choice, All combinations and AETG). Table 4 shows the number of test cases produced by each combi-

natorial strategy with the test values of Table 3.

For example, the 18 test value combinations that Each choice produces are those inTable 4.

The sequence of operations corresponding to the first data combination of the previous table appears in Figure 20 (for the sake of clarity we

assume that the Date values can be processed as they are written, with no quotation marks nor the construction of a Date or Calendar object).

Note that, even for the 18 test cases of Each choice, calculating the oracle by hand may be costly and is fault-prone.

6.4 | Oracle definition

The oracle definition is made at phase-1 level. The special situations for this system are the following ones:

1. If the user for whom the bill is being calculated (userId) is 2, then the total variable (which saves the result of getBill) must be 0, no matter the

billing period.

2. If userId = 1, the total variable must accumulate those calls that took place between the start and the end dates.

All these situations are described in the highlighted cells of the phase-1 test case given inTable 6:

1. On the Postcode section we establish that, after executing setCost, the expectedTotal variable must be incremented only when the date value

of setDate is within the limits of the billing period (variables start and end).

TABLE 6 Description of a phase-1 test case for the call data records system

Phase-1 Test Case

Before annotation
double expectedTotal = 0.0;

Regular expression:A (BCDE) + F

Usage:
A = call call = new call();

B = call.setUserId (callUserId);

C = call.setDate (date);

D = call.setCost (cost);

E = registerCall (call);

F = double total = getBill (userId, start, end)

Precode:
--

Postcode:
1. setCost: expectedTotal +=

(#date# > = #start# && #date# < = #end#? #cost#: 0);

Test values:
callUserId = {1}

date = {“2017/01/31”, “2018/01/1”, “2018/01/15”, “2018/01/17”,

“2018/01/31”, “2018/02/01”}

cost = {1}

userId = {1, 2} (for getBill)

start = {“2018/01/01”, “2018/01/15”}

end = {“2018/01/15”, “2018/01/31”}

Max length: 12

When clauses:

1. WHEN userId == 2 USE the ZeroExpected template

2. ELSE USE the NormalTemplate template

TABLE 7 Test templates

ZeroExpected NormalTemplate

public void testTCNUMBER() {

#SEQUENCE#

assertTrue (total == 0.0);

}

public void testTCNUMBER() {

#SEQUENCE#

assertTrue (total == expectedTotal);

}

POLO ET AL. 17 of 21

2. The When clauses section establishes that, when the userId = 2, test cases must be generated using the ZeroExpected template. Otherwise, the

NormalTemplate must be used.

6.5 | Test cases

Table 7 shows the two templates mentioned in the When clauses section of Table 6. Both of them are quite similar, only differing in the expression

used to build the assertion.

TABLE 8 Test data combinations corresponding to the ABCDECDEF sequence

Sequence: ABCDECDEF

Data Combination Template

1/36 1,”2017/01/31”,1,”2017/01/31”,1,1,”2018/01/01”,”2018/01/15” Normal

2/36 1,”2018/01/01”,1,”2018/01/01”,1,2,”2018/01/15”,”2018/01/31” Zero

3/36 1,”2018/01/15”,1,”2018/01/15”,1,1,”2018/01/15”,”2018/01/15” Normal

4/36 1,”2018/01/17”,1,”2018/01/17”,1,1,”2018/01/01”,”2018/01/31” Normal

5/36 1,”2018/01/31”,1,”2018/01/31”,1,1,”2018/01/01”,”2018/01/15” Zero

6/36 1,”2018/02/01”,1,”2018/02/01”,1,1,”2018/01/01”,”2018/01/15” Zero

7/36 1,”2017/01/31”,1,”2018/01/15”,1,2,”2018/01/01”,”2018/01/31” Zero

8/36 1,”2018/01/15”,1,”2017/01/31”,1,2,”2018/01/01”,”2018/01/31” Zero

9/36 1,”2018/01/01”,1,”2017/01/31”,1,1,”2018/01/01”,”2018/01/15” Normal

10/36 1,”2018/01/17”,1,”2017/01/31”,1,2,”2018/01/15”,”2018/01/15” Zero

11/36 1,”2018/01/31”,1,”2017/01/31”,1,2,”2018/01/15”,”2018/01/31” Zero

12/36 1,”2018/02/01”,1,”2017/01/31”,1,2,”2018/01/15”,”2018/01/31” Zero

13/36 1,”2017/01/31”,1,”2018/01/01”,1,1,”2018/01/01”,”2018/01/15” Zero

14/36 1,”2017/01/31”,1,”2018/01/17”,1,2,”2018/01/15”,”2018/01/15” Zero

15/36 1,”2017/01/31”,1,”2018/01/31”,1,2,”2018/01/15”,”2018/01/31” Zero

16/36 1,”2017/01/31”,1,”2018/02/01”,1,2,”2018/01/15”,”2018/01/31” Zero

17/36 1,”2018/01/01”,1,”2018/01/15”,1,1,”2018/01/01”,”2018/01/15” Normal

18/36 1,”2018/01/15”,1,”2018/01/01”,1,1,”2018/01/01”,”2018/01/15” Normal

19/36 1,”2018/01/17”,1,”2018/01/01”,1,1,”2018/01/01”,”2018/01/15” Zero

20/36 1,”2018/01/31”,1,”2018/01/01”,1,1,”2018/01/01”,”2018/01/15” Zero

21/36 1,”2018/02/01”,1,”2018/01/01”,1,1,”2018/01/01”,”2018/01/15” Zero

22/36 1,”2018/01/01”,1,”2018/01/17”,1,1,”2018/01/01”,”2018/01/15” Normal

23/36 1,”2018/01/01”,1,”2018/01/31”,1,1,”2018/01/01”,”2018/01/15” Normal

24/36 1,”2018/01/01”,1,”2018/02/01”,1,1,”2018/01/01”,”2018/01/15” Normal

25/36 1,”2018/01/15”,1,”2018/01/17”,1,1,”2018/01/01”,”2018/01/15” Normal

26/36 1,”2018/01/17”,1,”2018/01/15”,1,1,”2018/01/01”,”2018/01/15” Zero

27/36 1,”2018/01/31”,1,”2018/01/15”,1,1,”2018/01/01”,”2018/01/15” Zero

28/36 1,”2018/02/01”,1,”2018/01/15”,1,1,”2018/01/01”,”2018/01/15” Zero

29/36 1,”2018/01/15”,1,”2018/01/31”,1,1,”2018/01/01”,”2018/01/15” Normal

30/36 1,”2018/01/15”,1,”2018/02/01”,1,1,”2018/01/01”,”2018/01/15” Normal

31/36 1,”2018/01/17”,1,”2018/01/31”,1,1,”2018/01/01”,”2018/01/15” Zero

32/36 1,”2018/01/31”,1,”2018/01/17”,1,1,”2018/01/01”,”2018/01/15” Zero

33/36 1,”2018/02/01”,1,”2018/01/17”,1,1,”2018/01/01”,”2018/01/15” Zero

34/36 1,”2018/01/17”,1,”2018/02/01”,1,1,”2018/01/01”,”2018/01/15” Zero

35/36 1,”2018/01/31”,1,”2018/02/01”,1,1,”2018/01/01”,”2018/01/15” Zero

36/36 1,”2018/02/01”,1,”2018/01/31”,1,1,”2018/01/01”,”2018/01/15” Zero

18 of 21 POLO ET AL.

Applying AETG,33 SMACTesting generates 88 data combinations (see Table 4). As an example, Table 8 shows the 36 data combinations

corresponding to ABCDECDEF: that is., two telephone calls are made and recorded, and finally, the bill is calculated. The corresponding template

of each combination is on the last column:

• The first combination corresponds to two telephone calls made on 2017/January/31 by userId = 1. The billing period goes from 2018/

January/01 to 2018/January/15: thus, the NormalTemplate must be applied, although the expectedTotal is 0.

• The second combination registers two calls of the userId = 1, but calculates the bill for the customer with userId = 2: thus, the corresponding

template is also the ZeroTemplate. Moreover, both calls were made out of the billing period.

• The 3rd combination corresponds to two telephone calls made on January 1, 2018, by userId = 1. In this special case, the billing period takes

only 1 day (January 15) and, therefore, both telephone calls must be charged to the customer. The corresponding phase-3 test case will have

to be generated with the NormalTemplate.

• Taking as the last example the 22nd combination, it corresponds to two calls made on January 1 and 17 by userId = 1. The bill is being calcu-

lated for this very same user, from January 1 to 15. The test case must be generated with the Normal template and must check that the amount

due is 1 €.

F IGURE 21 Four of the Phase-3 test cases generated

POLO ET AL. 19 of 21

To conclude this example, Figure 21 shows the four test cases we have described now. Note that, for simplicity, the dates are written as if

they were strings.

The generation time of the test file with the 88 phase-3, executable, and oracled test cases is 28 s.

7 | CONCLUSIONS

More than generating test cases, one of the most challenging issues on the automation of software testing is the (automatic) generation of the

oracle of test cases. The solving of such problem is not only an academic issue but also an industrial challenge which is demanding software test-

ing improvements to deal with continuous testing.

In this paper, we propose a testing approach based on the specification of regular expressions which highly automate the generation of test

cases. Particularly, the approach provides the tester with a very clear workflow where the test cases are built in several steps:

1. Definition of regular expressions (or phase-1 test cases), where the tester specifies a regular expression that depicts a general execution sce-

nario. The tester annotates each regular expression with: (i) test data, (ii) “before instructions”, (iii) precode and postcode operations, and

(iv) “when clauses” (which in turn represent the future oracles).

2. Expansion of the regular expression (or phase-2 test cases), where the regular expressions are expanded according to a length established by

the tester. The main idea of this second stage is to produce, from the initial regular expression (which draws a general execution scenario) a set

of scenarios (instances of the regular expression) that could occur during an interaction with the SUT. At this point, obviously, these phase-2

test cases are not already executable.

3. Executable test cases (or phase-3 test cases), where all the instances obtained from the regular expression expansion are populated with test

data provided by the tester (in the first stage, when phase-1 tests were defined), and the executable code is automatically generated. It is very

important to point out that in this stage, “when clauses” are also populated in order to generate the code of the oracle for each test case. Once

the code of all the phase-3 test cases has been generated, the test suite (that groups all the test cases intended to test the execution scenario

described in the first stage), has been finally created and can be launched against the SUT.

In order to support the aforesaid workflow, we have built a supporting tool, which implements a metamodel to describe all the elements

involved in the process. Each instance of the metamodel holds all the information required to generate (at the end of the process) a complete test

suite to test the functionality described by the regular expression designed by the tester. The tool is being used in several software factories of a

big, multinational, company.

In this article, the approach has been illustrated by conducting the test on a subset of an industrial system. This case study shows, step by

step, how the different stages are carried out and which is the information that the tester must configure in order to generate the resulting test

suite.

ACKNOWLEDGEMENTS

This work has been partially funded by (for M. Polo and I. García-Rodríguez) the BIZDEVOPS-Global project (RTI2018-098309-B-C31), Ministerio

de Economía, Industria y Competitividad (MINECO) and Fondo Europeo de Desarrollo Regional (FEDER), and theTESTIMO project (Consejería de

Educación, Cultura y Deportes de la Junta de Comunidades de Castilla La Mancha, y Fondo Europeo de Desarrollo Regional FEDER,

SBPLY/17/180501/000503); and (for O. Pedreira and A. S. Places) BIZDEVOPS-Global (Ministerio de Ciencia e Innovación MICINN-AEI/FEDER-

UE BIZDEVOPS: RTI2018-098309-B-C32), ETOME-RDF3 (Ministerio de Economía grant MINECO-AEI/FEDER-UE ETOME-RDFD3:

TIN2015-69951-R), and Xunta de Galicia grants Xunta de Galicia/FEDER-UE, ConectaPeme, GEMA: IN852A 2018/14, Centros singulares de

Investigación de Galicia-Xunta de Galicia/FEDER-UE CSI: ED431G/01 and Grupo de Referencia Competitiva 2017-Xunta de Galicia/FEDER-UE

GRC: ED431C 2017/58.

ORCID

Macario Polo https://orcid.org/0000-0001-6519-6196

Oscar Pedreira https://orcid.org/0000-0001-6176-4475
�Angeles S. Places https://orcid.org/0000-0001-8539-304X

Ignacio García Rodríguez de Guzmán https://orcid.org/0000-0002-0038-0942

REFERENCES

1. Grindal M, Offutt J, Andler SF. Combination testing strategies: a survey. Softw Test Verif Rel. 2005;15:167-199.

2. Polo M, Reales P. Mutation testing cost reduction techniques: a survey. IEEE Softw. May 2010;27(3):80-86. https://doi.org/10.1109/MS.2010.79

20 of 21 POLO ET AL.

https://orcid.org/0000-0001-6519-6196
https://orcid.org/0000-0001-6519-6196
https://orcid.org/0000-0001-6176-4475
https://orcid.org/0000-0001-6176-4475
https://orcid.org/0000-0001-8539-304X
https://orcid.org/0000-0001-8539-304X
https://orcid.org/0000-0002-0038-0942
https://orcid.org/0000-0002-0038-0942
https://doi.org/10.1109/MS.2010.79

3. Beizer B. Software testing techniques. London; Boston: International Thomson Computer Press; 1990.

4. Baresi L, Young M. Test oracles, technical report CIS-TR-01-02. University of Oregon, Dept. of Computer and Information Science. 2001.

5. Bertolino A. Software testing research: achievements, challenges, dreams. In Future of Software Engineering, 2007. FOSE'07. 2007;85-103. https://doi.

org/10.1109/FOSE.2007.25.

6. Barr ET, Harman M, McMinn P, Shahbaz M, Yoo S. The oracle problem in software testing: a survey. IEEE Trans Software Eng. May 2015;41(5):507-

525. https://doi.org/10.1109/TSE.2014.2372785

7. Pezzè M, Zhang C. Chapter one — Automated test oracles: a survey. In: Memon A, ed. Advances in Computers. Vol.95. USA: Elsevier; 2014:1-48.

8. Grieskamp W, Hierons RM, Pretschner A. 10421 summary— model-based testing in practice. Dagstuhl Seminar Proceedings. 2011.

9. Anand S, Burke EK, ChenTY, et al. An orchestrated survey of methodologies for automated software test case generation. J Syst Software. Aug. 2013;

86(8):1978-2001. https://doi.org/10.1016/j.jss.2013.02.061

10. Lebeau F, Legeard B, Peureux F, Vernotte A. Model-based vulnerability testing for web applications. In 2013 IEEE sixth international conference on

software testing, Verification and Validation Workshops. 2013;445-452. https://doi.org/10.1109/ICSTW.2013.58.

11. Ball T, Hoffman D, Ruskey F, Webber R, White L. State generation and automated class testing. Softw Test Verif Rel. 2000;10(3):149-170.

12. Offutt J, Liu S, Abdurazik A, Ammann P. Generating test data from state-based specifications. Softw Test Verif Rel. 2003;13:25-53.

13. Hong HS, Lee I, Sokolsky O, Cha SD. Automatic test generation from Statecharts using model checking. In Proceedings of FATES'01, Workshop on For-

mal Approaches to Testing of Software, volume NS-01-4 of BRICS Notes Series. 2001;15-30.

14. Burton McDermid S. Automatic generation of tests from statechart specifications. In Proc. of Formal Approaches to Testing of Software (FATES'01, Aal-

borg, Germany

15. Utting M. Practical Model-Based Testing: A Tools Approach. USA: Morgan-Kaufmann; 2010.

16. Weißleder S. Test Models and Coverage Criteria for Automatic Model-Based Test Generation with UML State Machines. Berlin: Humboldt-Universität zu

Berlin; 2010.

17. Hierons RM, Merayo MG. Mutation testing from probabilistic finite state machines. InTesting: Academic and Industrial Conference Practice and Research

Techniques - MUTATION, 2007. TAICPART-Mutation 2007. 2007;141-150. https://doi.org/10.1109/TAIC.PART.2007.20.

18. Salas PAP, Krishnan P, Ross KJ. Model-based security vulnerability testing. In 2007 Australian Software Engineering Conference (ASWEC'07). 2007;284-

296. https://doi.org/10.1109/ASWEC.2007.31.

19. Belli F. Finite state testing and analysis of graphical user interfaces. In Proceedings 12th International Symposium on Software Reliability Engineering.

2001;34-43. https://doi.org/10.1109/ISSRE.2001.989456.

20. Jahangirova G. Oracle assessment, improvement and placement. London: University College London; 2019.

21. Kilincceker O, Silistre A, Challenger M, Belli F. Random test generation from regular expressions for graphical user interface (GUI) testing. In 2019 IEEE

19th international conference on software quality, Reliability and Security Companion (QRS-C). 2019;170-176. https://doi.org/10.1109/QRS-C.2019.

00044.

22. Tuglular T, Muftuoglu A, Belli F, linschulte M. Model-based contract testing of graphical user interfaces. IEICE Trans Inf Syst. 2015;98(7):1297-1305.

https://doi.org/10.1587/transinf.2014EDP7364

23. Kirani S, Tsai WT. Specification and verification of object-oriented programs. 1994.

24. Polo M, Tendero S, Piattini M. Integrating techniques and tools for testing automation: research articles. Softw Test Verif Reliab. Mar. 2007;17(1):3-39.

https://doi.org/10.1002/stvr.v17:1

25. OMG. Unified modeliing language. UML 2.5.1, formal. Dec. 2017.

26. Kilinççeker O, Turk E, Challenger M, Belli F. Regular expression based test sequence generation for HDL program validation. 2018 IEEE International

Conference on Software Quality, Reliability and Security Companion (QRS-C). 2018; doi: https://doi.org/10.1109/QRS-C.2018.00103.

27. Belli F, Dreyer J. Program segmentation for controlling test coverage. In Proceedings The Eighth International Symposium on Software Reliability Engineer-

ing. 1997;72-83. https://doi.org/10.1109/ISSRE.1997.630849.

28. Belli F, Grosspietsch K. Specification of fault-tolerant system issues by predicate/transition nets and regular expressions-approach and case study.

IEEE Trans Software Eng. Jun. 1991;17(6):513-526. https://doi.org/10.1109/32.87278

29. Liu P, Ai J, Xu Z. A study for extended regular expression-based testing. In 2017 IEEE/ACIS 16th International Conference on Computer and Information

Science (ICIS), Los Alamitos, CA, USA. 2017;821-826. https://doi.org/10.1109/ICIS.2017.7960106.

30. Briand L, LabicheY. A UML-based approach to system testing. Softw Syst Model. Sep. 2002;1(1):10-42. https://doi.org/10.1007/s10270-002-0004-8

31. Tretmans J, Brinksma E. TorX: automated model based testing - Côte de Resyste. 2003.

32. de Vries RG. Towards formal test purposes. In Formal Approaches to Testing of Software 2001 (FATES'01). 2001;61-76.

33. Cohen D, Society IC, Dalal SR, Fredman ML, Patton GC. The AETG system: an approach to testing based on combinatorial design. IEEE Trans Software

Eng. 1997;23:437-444.

34. Myers GJ. The Art of Software Testing. 2nd ed. New Jersey, U.S.A.: Wiley; 2004.

35. Polo M. Regular expressions expansion engine. [Online]. Available:. https://bitbucket.org/macariopolo/expresionesregulares

36. Usaola MP, Romero FR, Aranda RR, Rodríguez IG. Test case generation with regular expressions and combinatorial techniques. In 2017 IEEE interna-

tional conference on software testing, Verification and Validation Workshops (ICSTW). 2017;189-198. https://doi.org/10.1109/ICSTW.2017.38.

37. Fowler M.The value object pattern, martinfowler.com. [Online]. Available: https://martinfowler.com/bliki/ValueObject.html. Accessed: 07-Oct-2019.

How to cite this article: Polo M, Pedreira O, S. Places �A, García Rodríguez de Guzmán I. Automated generation of oracled test cases with

regular expressions and combinatorial techniques. J Softw Evol Proc. 2020;e2273. https://doi.org/10.1002/smr.2273

POLO ET AL. 21 of 21

https://doi.org/10.1109/FOSE.2007.25
https://doi.org/10.1109/FOSE.2007.25
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1109/ICSTW.2013.58
https://doi.org/10.1109/TAIC.PART.2007.20
https://doi.org/10.1109/ASWEC.2007.31
https://doi.org/10.1109/ISSRE.2001.989456
https://doi.org/10.1109/QRS-C.2019.00044
https://doi.org/10.1109/QRS-C.2019.00044
https://doi.org/10.1587/transinf.2014EDP7364
https://doi.org/10.1002/stvr.v17:1
https://doi.org/10.1109/QRS-C.2018.00103
https://doi.org/10.1109/ISSRE.1997.630849
https://doi.org/10.1109/32.87278
https://doi.org/10.1109/ICIS.2017.7960106
https://doi.org/10.1007/s10270-002-0004-8
https://bitbucket.org/macariopolo/expresionesregulares
https://doi.org/10.1109/ICSTW.2017.38
https://martinfowler.com/bliki/ValueObject.html
https://doi.org/10.1002/smr.2273

	Automated generation of oracled test cases with regular expressions and combinatorial techniques
	1 INTRODUCTION
	2 RELATED WORK
	3 TEST CASE GENERATION WITH REGULAR EXPRESSIONS
	3.1 Regular expressions as phase-1 test cases
	3.2 Sequences of operations as phase-2 test cases
	3.3 Executable test cases as phase-3 test cases

	4 ANNOTATIONS IN PHASE-1 TO GET PHASE-3 TEST CASES
	4.1 Before, maxLength, and test values annotations
	4.2 Precode and postcode annotations
	4.3 When clauses
	4.3.1 Limitations of When clauses

	5 TOOL SUPPORT
	5.1 Metamodel for test cases
	5.2 Expanding regular expressions
	5.3 Combining test data values in phase-2 test cases
	5.4 Algorithmic complexity of the process

	6 APPLICATION EXAMPLE
	6.1 The SMACTesting platform
	6.2 System under test
	6.3 Specification of phase-1 test cases
	6.4 Oracle definition
	6.5 Test cases

	7 CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Euroscale Coated v2)
 /PDFXOutputConditionIdentifier (FOGRA1)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENG (Modified PDFX1a settings for Blackwell publications)
 /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

