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Abstract We put forward a model for cancer metastasis as a migration phenomenon
between tumor cell populations coexisting and evolving in two different habitats. One
of them is a primary tumor and the other one is a secondary or metastatic tumor. The
evolution of the different cell phenotype populations in each habitat is described by
means of a simple quasispecies model allowing for a cascade of mutations between
the different phenotypes in each habitat. The cell migration event is supposed to be
unidirectional and take place continuously in time. The possible clinical outcomes
of the model depending on the parameter space are analyzed and the effect of the
resection of the primary tumor is studied.
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1 Introduction

Metastasis comprises a sequence of linked steps leading to the dissemination of cancer
cells from a primary tumor to other distant tissues. From a clinical point of view it
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is directly associated with a poor prognosis of the disease; despite improvements in
surgical techniques, general patient care, and local and systemic adjuvant therapies,
the overwhelming majority of cancer-related deaths still result from the progressive
growth of metastasis that are resistant to conventional therapies.

In the metastatic cascade, a subpopulation of malignant cells within the primary
tumor first acquires the ability to move and degrade the surrounding extracellular
matrix and initiate an invasion process. The subsequent events allow migrating cancer
cells to penetrate the bloodstream through the blood vessels or via the lymphatic sys-
tem and settle at distant tissues of the body from the parent neoplasm, thus initiating a
secondary tumor. The process of metastasis is an obstacle race that tumor cells have to
overcome with different adaptations (Weiss 2000; Chambers et al. 2000, 2001, 2002;
Pantel 2004) and has traditionally been considered as a final stage in tumorigene-
sis (Hanahan and Weinberg 2000), since the ability to metastasize has been thought
to be acquired only when the tumor, nurtured by an angiogenic vasculature, reaches a
large number of cells. More recently, several lines of evidence suggest that the onset of
metastasis could, as well, be an early event in carcinogenesis (Bernards and Weinberg
2002; Chaffer and Weinberg 2011; Hanahan and Weinberg 2011), relating the spread
of cancer cells to the alteration of specific oncogenes and tumor suppressor genes
(Hüsemann et al. 2008; Podyspanina et al. 2008).

The connection between primary and secondary tumors goes even far beyond the
physical scatter/exchange of tumor cells. It is well known that the surgical resection
of the primary tumor is followed, in certain cases, by a rapid outgrowth of tumor
metastasis (Ebos et al. 2009; Peeters et al. 2004, 2005, 2006, 2008). This phenomenon
is thought to be related with the secretion of some metastatic suppressor factors (Cook
et al. 2011; Hurst and Welch 2011), although detailed clinical studies are still lacking.

From the mathematical point of view a number of papers have considered, with
different levels of sophistication, specific aspects of the metastatic cascade follow-
ing a variety of perspectives. Already in 1985, Koscielny et al. (1985), using both
exponential and Gompertzian growth patterns, studied the natural history of human
breast cancer in 2,648 patients, and proposed a very simple model in which metas-
tasis was initiated only after the primary tumor had reached a threshold volume. In
another model (Retsky et al. 1997), it was assumed that the growth of breast cancer
metastases passed through three sequential phases: an initial dormancy of isolated
metastatic cells, a second phase of avascular replication, and a third phase of vascular-
ized growth. This model was used to explain a bimodal relapse distribution from 1,173
cases of untreated early breast cancer and how chemoresistance to adjuvant therapy
leads to delayed relapse. More recently, several authors have addressed the compu-
tation of the probability for metastatic formation on the basis of stochastic models
of tumorigenesis: (Yorke et al. 1993; Kendal 2001; Iwasa et al. 2004; Michaelson et
al. 2005; Michor et al. 2006; Traulsen et al. 2006; Dingli et al. 2007; Basanta et al.
2008; Haeno and Michor 2010; Hanin and Korosteleva 2010). The same problem has
been approached using individual cell-agent based computational models in which the
metastasis progression is derived from the individual dynamics of stem cells and their
progeny by employing different tumor migration potentials (Enderling et al. 2009).
Finally, energy-statistical models considering the metastatic dissemination to be trig-
gered by an ‘energetic crisis’ undergone by the cancer cells after surpassing a certain
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primary tumor mass threshold have been recently developed (Dattoli et al. 2009). Other
models have instead dealt with tumor dissemination to surrounding tissues in terms
of spatial models (Gatenby and Gawlinski 1996; Boushaba et al. 2006; Frieboes et al.
2006; Jain et al. 2007; Gerisch and Chaplain 2008; Ramis-Conde et al. 2008; Bearer
et al. 2009; Eikenberry et al. 2009; Andasari et al. 2010). Finally, the computation of
the topographical patterns of metastasis development has also been considered using
network models (Chen et al. 2009).

All of the above mentioned approaches have proven to be useful descriptions of
different aspects of metastasis progression, although, one important difficulty present
in most of these models is the large number of parameters required and the limited
empirical information for their assessment. Besides, to the best of our knowledge,
only few works have been devoted to study the communication between primary and
metastatic tumors. Any realistic mathematical model of metastasis should reflect the
cellular phenotype and genotype heterogeneity encountered within the developing
ectopic neoplastic tissues. Taking all these considerations into account, in this paper
we address the issue of communication between primary and metastatic tumors from
the dynamical evolution of several tumor phenotypes where all cell populations are
governed by a system of Lotka–Volterra-like equations and investigate the possible
clinical outcomes depending on the parameter space. For the sake of clarity, the paper
follows a bottom-up approach, that is: firstly, we establish the main aspects to be
addressed as well as the capability of our approach to model them by an analytical
study of a reduced version. The number of parameters remains small and their bio-
logical meaning is thoroughly discussed. Once the main features predicted by the
simplest model are well understood we proceed to increase the complexity of the
model by incorporating a hierarchy in the way cell phenotypes emerge, interact and
disappear. As we shall see, the basic features of the simple model are preserved and
enriched within the more complicated ones.

The paper is organized as follows: First, in Sect. 2 we present a simple mathematical
model for metastasis consisting of two habitats with two cell subpopulations in each
of them: tumor and normal cells. By studying the phase plane we shall identify some
interesting phenomena related with the connection between the primary tumor and the
metastatic habitat as well as the effect on the latter after the resection of the primary
tumor. In Sect. 3 we extend the model to incorporate an arbitrarily large number of
tumor cell phenotypes, normal cells and necrotic tissue. By restricting the extended
model to few tumor phenotypes we will numerically check the solutions and find the
same basic features already encountered in the previous simpler scenario. The conclu-
sions and future perspectives are discussed in Sect. 4. For completeness, the structure
of the steady state solutions of the extended model as well as some other technical
aspects are addressed in Appendix 4.

2 Mathematical model for coupled primary and metastatic tumors evolution

To illustrate our ideas we begin with a simplified model describing the evolution of a
population of tumor cells coexisting with normal (healthy and well differentiated) cells
within two distant (yet weakly connected) habitats: a primary tumor and a secondary
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or metastatic tumor. The primary habitat is taken as the one where the tumor originates
and the malignant cells therein present may eventually disseminate with a rather small
migration rate toward a secondary tissue thus resulting in a metastatic tumor. Possible
reseeding of the primary tumor by its derived metastasis, although experimentally
observed in mouse models of breast carcinoma, colon carcinoma and malignant mel-
anoma (Kim et al. 2009), is thought to be a rare event and will not be included for
simplicity.

2.1 Evolution equations

The equations presented below are meant to dictate the evolution of local densities
of cell populations rather than the total number of them. This justifies the concept
of a maximum cell density that a given tissue can accommodate, say ρP,max for the
primary tissue and ρS,max for the secondary one. In the non-pathological scenario,
these correspond to the normal cell population densities for each specific tissue. How-
ever, it should be stressed that in some tumor types (e.g., small-cell lung carcinomas
usually leading to brain metastases Hayasida et al. 2006), the maximum cell densities
can achieve significantly higher values than those of the original normal tissue, say
ρP,T ≥ ρP,max for the primary habitat and ρS,T ≥ ρS,max for the secondary habitat,
respectively. Henceforth, rather than determining the absolute cell densities, we will
find more revealing, for describing the many possible outcomes within the primary and
secondary habitats, to consider instead the ratio between the distinct spatially averaged
tumor cell phenotype densities over the invaded organ and the average maximal normal
cell density in premalignant conditions, that is: Pi → Pi/ρP,max and Si → Si/ρS,max,
with Pi (Si ) representing any of the cell populations within the primary (secondary)
habitat.

In the primary habitat, PT will refer to the population density ratio corresponding
to the malignant cells, while PH will stand for the normal cells. Similarly, for the sec-
ondary habitat, ST will represent the malignant cells whereas the healthy population
will be labeled as SH . Hereafter, it will be understood that all population densities are
nonnegative quantities.

The proposed set of equations governing the interacting populations is given by the
following autonomous first-order system

ṖT = ΓT (Ψ − PT − PH ) PT −ΔT PT − k PT , (1a)

ṖH = ΓH (1 − PT − PH ) PH −ΔH PT PH , (1b)

ṠT = γT (ψ − ST − SH ) ST − δT ST − εPT ST + k̃ PT , (1c)

ṠH = γH (1 − ST − SH ) SH − δH ST SH . (1d)

In general, we will use upper case greek letters to refer to the parameters of the primary
habitat while lower case letters will refer to parameters of the secondary habitat. In
Eq. (1), ΓT , ΓH , γT and γH denote the different proliferation rates whileΔT ,ΔH , δT

and δH are the death rates, all of them measured in units of inverse of time. The first
terms in the right-hand-side of Eq. (1) are the usual logistic forms describing the effect
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of population saturation due to limited cell density capacity. The normalized carry-
ing capacity values Ψ ≡ ρP,T/ρP,max and ψ ≡ ρS,T/ρS,max account for the ratio of
malignant relative to the normal maximum cell densities.

An essential ingredient in our model is the presence of the terms −k PT (t) and
k̃ PT (t) in Eq. (1a) and (1c), respectively. They represent cell emigration (from the
primary tumor) and immigration (invasion of the secondary tissue) and are taken to
depend on the instantaneous density of malignant cells in the primary tumor at time t .
A more accurate immigration term should include the average time τ of physical trans-
location of the circulating tumor cells from the primary to the secondary site. Thus,
one would expect a delayed term of the form k̃ PT (t − τ). However, we will be inter-
ested in examining the global evolution of the primary and secondary tumors for time
scales much longer than τ (days to weeks). For instance, τ is of the order of 1–2.4 h in
the case of patients with breast cancer dormancy (Meng 2004), and so we may safely
neglect this delayed effect. The constants k and k̃ are the corresponding emigration and
immigration (homing) rates, respectively. On a physiological basis, one may assume
that 0 ≤ k̃ ≤ k. Whether a minute or a significant fraction of the cells released from
the primary tumor will actually reach the secondary tissue (the parenchyma) remains
to be fully understood, although it is suspected to be an inefficient process in the sense
that a non-negligible fraction of tumor cells die during the course of migration. It is
known that cell spread to the anatomically distant sites appears to take place mainly
through the blood vessels via the process of hematogenous dissemination (Chambers
et al. 2002; Chaffer and Weinberg 2011), while lymphogenous metastasis (involving
the lymph nodes) would represent a dead end. Many patients with advanced primary
carcinomas contain circulating tumor cells in their blood samples; so it is expected that
at least a subset of these may be in transit from the primary tumor to other tissues for
colonization. For circulating tumor cells to be able to colonize distant sites they must
develop, among others, the capability to evade the immune system response and resist
the sieving action of the microvasculature when their diameters (20–30 µm) are larger
than the typical size of capillaries (∼8 µm). Whether these (and other) mechanisms
act as a phenotype selection driving force once the tumor cells are in the circulatory
system or, else, that immune avoidance and cell plasticity are traits acquired in the
primary tumor remain also unclear. Within our model, k̃ � k would be associated
with the former selection mechanism whereas k̃ � k would correspond to the latter
one. In our subsequent analysis we will retain the term −k PT although one would
expect that the emigration rate k satisfies k � ΔT , as the fraction per unit time of
tumor cells shed to the vasculature is much smaller than the tumor cells undergoing
apoptosis/necrosis.

The Eq. (1c) includes the term −εPT ST which exhibits a dependence on the (instan-
taneous) malignant population at the primary tumor that modulates the growth of the
metastasis. In some types of cancer, such as breast cancer and melanoma, it has been
observed that upon surgical resection of the primary tumor, secondary distant tumors
can display an explosive growth soon after the removal of the primary tumor or, else,
render dormant such micrometastases for decades (Folkman 2002; Demicheli et al.
2008). This process is thought to be related with the release of metastasis suppressors.
These are defined as molecules whose expression results in the inhibition of a neo-
plastic cell ability to metastasize while having little effect on primary tumor growth
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(Cook et al. 2011; Hurst and Welch 2011). As a mater of fact, over thirty metastasis
suppressors have already been identified although the precise mechanisms of action
for most of them are still unknown. These molecules are found within cells and in the
extracellular melieu and a subset of them are known to inhibit the growth of tumor
cells after they have already disseminated. Finally, some of the metastasis suppressors
are secreted by the tumor cells and it is hypothesized that the interplay with the stromal
population could induce the tumor growth inhibition (Cook et al. 2011).

In the context of our model, we will describe this suppression effect by assuming
that the metastatic growth is down-regulated by the interplay between the secretion
of metastasis suppressors from both the primary and the metastatic tumors and, for
the sake of simplicity of the model, we choose the above quadratic term, where ε is a
positive quantity standing for an effective suppression rate.

Finally, such suppression effect has not been included in the evolution equation for
the normal cells, Eq. (1d), since the tumor cells are strongly dependent upon genetic
alterations that distinguish them from their well differentiated normal counterparts
(for instance, showing a hyper sensitivity to extracellular factors that may, or may not,
allow them to metastasize successfully Cook et al. 2011) and as a consequence, we
expect the suppression effect to be marginal on them.

The issues of chemical communication between primary and secondary tumors and
the effect of the resection of the primary tumor has been addressed in few previous
works. For example, a spatial model described the spread of growth inhibitory fac-
tors secreted by the primary tumor and specialized on the development of polypoid
melanoma (Boushaba et al. 2006). The model predicted that if metastases are close
enough to the primary tumor (d � 5.5 cm) they will become extinct regardless of the
removal of the former. However, if the metastases are located at a moderate distance
(5.5 � d � 8.5 cm) the removal of the primary tumor induces the growth of those
metastases while they become extinct if the primary tumor is not resected. If, on the
other hand, the metastatic tumor is far enough (d � 50 cm) its growth is independent
of the primary tumor.

Eikenberry et al. (2009) proposed an exhaustive diffusion-reaction model for tumor-
immune system interaction applied to malignant melanoma. The authors suggested
that the aggressive metastasis growth following surgical excision of the primary tumor
could be understood within such interaction. The reaction of the immune system to
the presence of the primary tumor may suppress nearby metastases whereas after the
surgical resection most of the immune cells are removed and the previously checked
local metastases may resume their aggressive growth.

Our model also addresses the communication between the primary and metastatic
tumors, although using a simpler non spatial and semi-analytical model with various
malignant phenotypes. Yet we find, as will be shown below, non trivial features related
with the communication between both habitats, such as: a window for growth boost of
the secondary tumor after the resection of the primary tumor by means of the presence
of the term −εPT ST which weakly connects the metastatic and the primary sites. An
important difference is that within our model both the relative carrying capacity of the
secondary tumor, ψ , and the effective suppression rate, ε, play a key role in the inter-
action between both habitats. Finally, the death terms for the normal cells in Eq. (1b)
and (1d) take into account that the surrounding tumor cells, by releasing metabolites

123



Modeling the connection between primary and metastatic tumors 663

to the microenvironment (e.g. secretion of lactate contributing to the acidification of
the microenvironment), may promote or trigger apoptosis (Cairns et al. 2011).

Since the primary habitat is where the tumor originates, we will assume that a small
initial fraction of malignant cells arises embedded in a tissue of normal cells. Within the
secondary habitat, however, we will not regard any genetic alteration of normal cells;
the only source of malignant cells will be those ectopically settling from the circulating
ones. Accordingly, the initial value will be taken to be SH (0) = 1, ST (0) = 0.

2.2 Steady-state solutions

The possible steady-state solutions of our model equations (1a)–(1d) and their stability
will be analyzed by resorting to the PT − PH and ST − SH phase planes.

2.2.1 Primary habitat

Note that the primary habitat is essentially uncoupled from the secondary one, thus
it constitutes a second order autonomous dynamical system. The set of points on the
positive quadrant (PH , PT > 0) of the PT −PH plane at which ṖH and ṖT respectively
vanish verify the equations

ṖT = 0 →
{

PT = 0
PH = Ψ − k+ΔT

ΓT
− PT

(2a)

ṖH = 0 →
{

PH = 0
PH = 1 − ΓH +ΔH

ΓH
PT

(2b)

Since we assume that 0 ≤ PH ≤ 1 then 0 ≤ PT ≤ Ψ − (k + ΔT )/ΓT . Figure 1
shows the PT − PH plane for the populations in the primary habitat together with
the regions of increasing and decreasing populations. In the following plots (and all
the plots throughout this section) the dashed lines will represent the characteristics
in Eq. (2a) and (4a) while the dashed-dotted lines will account for the set of points
of vanishing time derivative of the normal population given by Eq. (2b) and (4b).
On the other hand, solid lines will account for the different integral curves when solv-
ing Eq. (1). Notice that, for the primary habitat, above the vanishing derivative lines
given in Eq. (2a)–(2b) both population densities decrease whereas below those lines
the population densities increase with time.

Accordingly, three possible regimes arise depending on the values of the quantity
Ψ − k+ΔT

ΓT
. In what follows we examine all three of them:

First, when Ψ − k+ΔT
ΓT

≥ 1 the straight curve of vanishing tumor density deriva-
tive (dashed line) remains above that corresponding to the vanishing of the growth of
normal cells (dashed-dotted line) and as a consequence there are only two possible

fixed points for the dominance of either the tumor
(

P∗
T = Ψ − k+ΔT

ΓT
, P∗

H = 0
)

or the

normal
(
P∗

T = 0, P∗
H = 1

)
cells, respectively.
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(a)

ṖT < 0

ṖT > 0
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ṖH < 0
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(b)
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Fig. 1 PT − PH phase plane for a P∗
T = 1.1 and b P∗

T = 0.7. The dashed lines correspond to the phase
space points where ṖT = 0 while the dashed-dotted lines stand for those points where ṖH = 0. The solid
lines represent examples of different integral curves

Within the region between the vanishing derivative curves, the tumor population
increases while the normal density decreases. Furthermore, any integral curve starting
within such region will not cross any of these lines, and therefore the tumor fixed point
is the only possible steady state for all of them. This makes the fixed point for only
normal cells unstable. On the other hand, any integral curve close enough to the tumor
fixed point will eventually approach this steady state and, as a consequence, the tumor
fixed point is stable.

A second regime corresponds to

ΓH

ΓH +ΔH
< Ψ − k +ΔT

ΓT
< 1, (3)

in which case a third fixed point arises for which both P∗
T and P∗

H are non zero.
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Table 1 Stability of the critical points for the different parameter regimes as a function of� in the primary
habitat

Parameter region Trivial Tumor cells only Normal cells only Coexistence

� − k+ΔT
ΓT

≥ 1 U S U N
ΓH

ΓH +ΔH
< � − k+ΔT

ΓT
< 1 U S S U

0 < � − k+ΔT
ΓT

≤ ΓH
ΓH +ΔH

U U S N

N , S and U stands for none, stable and unstable, respectively

The same reasoning as before shows that the new coexisting equilibrium is an unstable
fixed point, while the only malignant and the only normal cells fixed points are both
stable.

Finally, a third regime corresponding to 0 < Ψ − k+ΔT
ΓT

≤ ΓH
ΓH +ΔH

, leads again only
to malignant or normal equilibria, although in this case the disposition of vanishing
population derivatives is exactly the opposite to the first case. Thus, the tumor fixed
point is unstable while the normal cells equilibrium turns out to be stable.

Table 1 summarizes the previous discussion and contains all of the possible steady
solutions together with their stability.

In what follows we will assume that Ψ > 1, reflecting the fact that tumor cells
possess an increased advantage with respect to the normal cells to proliferate in the
primary habitat. Regarding the carrying capacity ψ of the tumor cell phenotype in the
secondary habitat, we will consider a more general situation in which either ψ > 1 or
else 0 < ψ ≤ 1; the invading tumor cells may or may not exhibit a survival advantage
in the secondary habitat.

2.2.2 Secondary habitat

Although the secondary habitat is not governed by an autonomous system, in the
steady state its behavior depends only on the equilibria of the populations in the
primary tumor. In general, for a given value of PT , namely, a time slice, the curves of
vanishing normal and tumor population derivatives (out of the ST axis) are given by

SH = ψ − ε

γT
PT − δT

γT
+ k̃

γT

PT

ST
− ST ,

(
ṠT = 0

)
. (4a)

SH = 1 − γH + δH

γH
ST ,

(
ṠH = 0

)
, (4b)

One can easily show that these two curves intersect at nonnegative values of ST

and SH if, and only if,

fmin ≡ 2

√
δH k̃ PT

γT γH
− δT

γT
− ε

γT
PT + ψ − 1 ≤ 0, (5)
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Stable fixed points

Unstable fixed point

Ṡ
T

=
0

ṠT > 0

ṠT < 0

Ṡ
H = 0

ṠH > 0

ṠH < 0

0.0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 2 Fixed points and their stability for the secondary habitat. We depict the phase plane for parameter
values: P∗

T = 1.2, δH /γH = 0.4, δT /γT = 0.2, k̃/γT = 0.025, ε 	 0.054 day−1 and ψ = 1.02

presenting a unique intersection when the equality holds, and crossing twice whenever
the above quantity is strictly negative. Notice that in the secondary habitat the stability
of the solutions follows a different pattern from that of the primary one. In particular, if
there is a coexistence solution, the first of the point cuts, that is, the one with the lowest
malignant component, is always a stable fixed point. Unlike in the primary habitat,
before the first coexistence solution, the curve of vanishing malignant population deriv-
ative lies above that corresponding to the normal population and otherwise after the first
intersection. The signs of the derivatives then dictate that around such solution all the
integral curves will eventually hit the corresponding fixed point as indicated in Fig. 2.

Figure 3 schematically shows the different behaviors, within the secondary habi-
tat, depending on the sign of fmin. In both Figs. 2 and 3 the particular choice of the
data has been made for the sake of clarity of the graphics and is not intended to be a
biologically accurate choice. The two roots of fmin = 0 for

√
PT are given by

√
R± =

√
δHγT k̃

ε2γH
±

√
δHγT k̃

ε2γH
+ γT

ε

(
ψ − 1 − δT

γT

)
. (6)

Now if P∗
T ∈ (R−, R+) the population of normal cells within the secondary habi-

tat is annihilated. If otherwise P∗
T ≤ R− or P∗

T ≥ R+ the populations will reach
a coexistence equilibrium. The transition from positive to negative values of fmin,
however, deserves a further comment. Unlike the reverse transition, it might happen
that some (ST , SH ) integral curves evolve fast enough to surpass the values of the
malignant components corresponding to the intersection points before PT (t) reaches
the value R+ (i.e., before rendering fmin negative), thus asymptotically approaching
the extinction of normal cells. However, our numerical simulations show that the evo-
lution within the primary habitat is in general much faster than that in the secondary
habitat, as a consequence this path to the extinction of the population of normal cells

123



Modeling the connection between primary and metastatic tumors 667

Coexistence

Extinction of normal cells

f min

PT0.5 1.0 1.5 2.0 2.5

0.03

0.02

0.01

0.01

0.02

0.03

Coexistence

Fig. 3 fmin as a function of
√

PT for a particular choice of parameter values: δTγT
= 0.2, δH

γH
= 0.4,

k̃
γT

= 0.02, ψ = 1.13 and ε 	 0.054 day−1

is quickly blocked. This fact sets a threshold for the carrying capacity value ψ in the
secondary habitat, given a value of the steady state P∗

T ,

ψc = ε

γT

⎛
⎝√

P∗
T −

√
δHγT k̃

γH ε2

⎞
⎠

2

− δH k̃

γH ε
+ δT

γT
+ 1, (7)

such that ifψ ≥ ψc the normal cell population disappears, whereas for lower values,
the steady state turns into an equilibrium between normal and tumor cell populations.
Figure 4 displays the behavior of the populations in the secondary habitat above and
below the threshold for a primary steady value P∗

T = 1.1 and threshold value for the
secondary carrying capacity ψc 	 1.13.

Figure 4a depicts the process of complete metastatic invasion of the secondary hab-
itat. Figure 4b shows a dormant metastatic tumor, that is: a coexisting equilibrium in
which the fraction of tumor cells is overwhelmed by that of normal cells.

2.3 Resection

Let us now consider the effect of the resection of the primary tumor on the dynamics
in the secondary habitat. If ψ > ψc the action of the resection is trivial in the sense
that it does not change the structure of the equilibria since the normal cells within
the secondary habitat become extinct in both scenarios. However, as we shall see, if
ψ < ψc there is a window of values for the carrying capacity in the secondary habitat
in which the resection of the primary tumor triggers the full metastatic invasion within
the secondary habitat. Specifically, the secondary tumor steady state density without
the presence of the primary tumor is given by

S∗
T = γH

δH

(
1 + δT

γT
− ψ

)
, (8)
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Ṡ
H

=
0

Ṡ
T = 0

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

(b)

0.001 0.002 0.003 0.004 0.005 0.006 0.007

0.96

0.97

0.98

0.99

1.00

Fig. 4 ST − SH phase plane corresponding to aψ 	 1.2 and bψ 	 1.12. In both cases the threshold value
for the carrying capacity of tumor cells in the secondary habitat is ψc 	 1.13. The solid lines represent
integral curves. Note the scales in (b). In both simulations ε 	 0.054 day−1

while, whenever the primary tumor is present, the secondary tumor density is

S̃∗
T = γH

2δH

[
1 + δT

γT
+ ε

γT
P∗

T − ψ

]
−
√
γ 2

H

4δ2
H

[
1 + δT

γT
+ ε

γT
P∗

T − ψ

]2

− γH k̃ P∗
T

γT δH
.

(9)

Now, if S̃∗
T < S∗

T , after the resection of the primary tumor the integral curve cor-
responding to the secondary habitat lies entirely on the region of decreasing tumor
population, hence inducing the extinction of the secondary malignant population. If
otherwise S̃∗

T > S∗
T , once the interaction with the primary habitat has been switched

off, the point
(

S̃∗
T , S∗

H (S̃
∗
T )

)
belongs to the region of increasing tumor population.

Thus, a late resection triggers a metastatic cascade within the secondary tissue, where
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Fig. 5 ST − SH phase plane. a Phase plane for ψ 	 1.12 showing the extinction of normal cells induced
by the resection of the primary tumor. b Phase plane for ψ 	 1.02 showing the tumor extinction within
the secondary habitat after the resection of the primary tumor. In both cases the resection of the primary
tumor is considered to occur 100 days after the emergence of the malignant cells in the primary habitat.
Both cases correspond to a steady primary tumor value of P∗

T = 1.1 and ε 	 0.054 day−1

the earliness or lateness of the resection is referred to the time the secondary tumor
population requires to surpass the density S∗

T . As a matter of fact, by imposing S̃∗
T > S∗

T
one finds that the following constraints must be simultaneously satisfied

P∗
T >

δHγT k̃

γH ε2 , (10a)

1 + δT

γT

(
1 − γT δH k̃

δT γH ε

)
< ψ < ψc. (10b)

This situation is shown in Fig. 5, where again the dashed lines account for the set of
points of vanishing time derivative of the tumor population while the dashed-dotted
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lines represent the corresponding vanishing time derivative of the normal population.
Solid lines describe integral curves. Figure 5a illustrates the effect of the resection
when the above constraints are satisfied, whereas the subplot (b) accounts for the
extinction of population of tumor cells in the secondary habitat after the resection of
the primary tumor.

2.4 Relation between tumor malignancy and parameter values

Some of the parameters furnishing our model, such as growth and death rates: Γ̂ ≡
ΨΓT , γ̂ ≡ ψγT ,ΔT , δT , ΓH , γH , can be reasonably determined upon some available
experimental data. Nevertheless, there are five of them: Ψ,ψ, k, k̃ and ε for which the
biological information available is still limited.

While P∗
T and S∗

T give an idea of how proliferative the tumors are, they can not be
taken as a direct measure of their malignancy. Within our model, a more accurate mea-
sure of the malignancy of a tumor can be given by the constraints (10) which indeed
dictate when the resection of the primary tumor will induce the outgrowth of the local
(and probably non observable) metastases. These constraints allow us to establish the
region within the space of the ‘unknown’ parameters where the metastastatic cascade
is induced after the resection of the primary tumor. Let us define the following useful
quantities

A = δH k̃

γH ε
, (11a)

B = P∗
T ε

γ̂
(

1 − δT
γ̂

) , (11b)

C =
√√√√ δH k̃ P∗

T

γH γ̂
(

1 − δT
γ̂

) , (11c)

ρ0 =
(

− C

1 − B
+

√
C2

(1 − B)2
+ 1

1 − B

)2

, (11d)

ρ± =
(

C

B − 1
±

√
C2

(B − 1)2
− 1

B − 1

)2

, (11e)

S̄ =
{

1 − A, if A ≤ B
1+B ,

A
B , if A > B

1+B .
(11f)

Then, for given values of P∗
T , k̃ and ε, the metastatic outgrowth after the resection of

the primary tumor is triggered whenever the malignant fixed point within the secondary
habitat, S∗

T , lies in the set
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B > 1 + C2, S∗
T ∈ (

S̄,∞)

1 < B ≤ 1 + C2,

⎧⎨
⎩

S̄ ≥ ρ+, S∗
T ∈ (

S̄,∞)
ρ− ≤ S̄ < ρ+, S∗

T ∈ (ρ+,∞)

S̄ < ρ−, S∗
T ∈ (

S̄, ρ−
) ∪ (ρ+,∞)

B = 1,

{
1

4C2 > S̄, S∗
T ∈

(
S̄, 1

4C2

)
1

4C2 ≤ S̄, No metastatic cascade

B < 1,

{
ρ0 > S̄, S∗

T ∈ (
S̄, ρ0

)
ρ0 ≤ S̄, No metastatic cascade

Although this classification of the parameter space in terms of the potential malig-
nancy of the system primary-metastatic tumors is absolutely accurate within our model,
it should be taken as a guidance for a possible explanation of the outgrowth of local
metastases after the resection of (some types of) primary tumors. The rationale would
be that those cancers whose parameters verify the constraints are susceptible to develop
metastatic outgrowth after the resection of the primary tumor.

Although the model put forward in this section is very simplistic some of the ideas
behind it may be useful for a better understanding of the complex phenomena involved
in the outgrowth of metastatic tumors after resection of a primary tumor. Its main
interest is that it enabled us to furnish a complete analytical study of various possible
metastatic scenarios. Our classification of these scenarios was motivated by what is
observed in the natural history of most metastatic cancers. In the following section we
will present a more sophisticated model incorporating more malignant phenotypes.

3 Extension of the model to several malignant phenotypes

3.1 General model equations

In the previous section we have presented and analyzed a simple model for can-
cer metastasis comprising the signalling link between the primary and the secondary
tumors and its predictive capability to account for the possible acceleration of met-
astatic growth after the resection of the primary tumor. However, it is known that
in vivo tumors show a vast phenotypic dispersion even in early stages of cancer pro-
gression (Hanahan and Weinberg 2011). This wide phenotypic dispersion constitutes
the tumor microenvironment. Accordingly, henceforth we shall extend the previous
equations to a more realistic situation by incorporating several tumor phenotypes coex-
isting with normal cells and necrotic tissue, following the same structure as that of
the system given by the Eq. (1) albeit with some differences; the more important new
ingredient being the presence of a cascade of mutations among malignant phenotypes
within the same habitat in a way to be discussed later. As we shall see, the new model
still includes the main features found within the previous simplistic system. Although
our model has some common aspects with previous works on parallel mutation and
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selection quasispecies theory (Baake and Wagner 2001; Waclaw et al. 2010), the find-
ings in those works are not applicable to the problem of metastatic progression.

The proposed extension of our model consists of the following system of equations.
For the primary tumor

Ṗi = Γi Pi

(
Ψ − Ph − P† −

M∑
l=1

Pl

)
+

M∑
l=1

Mil Pl −
M∑

l=1

Mli Pi

−Δi Pi − ki Pi , (12a)

Ṗh = Γh Ph

(
1 − Ph − P† −

M∑
l=1

Pl

)
−Δh Ph

M∑
l=1

αl Pl , (12b)

Ṗ† = −ωp P† +
M∑

l=1

Δl Pl +Δh Ph

M∑
l=1

αl Pl , (12c)

and for the secondary tumor

Ṡi = γi Si

(
ψ − Sh − S† −

M∑
l=1

Sl

)

+
M∑

l=1

Nil Sl −
M∑

l=1

Nli Si − δi Si −
M∑

j=1

εi j Si Pj + k̃i Pi , (12d)

Ṡh = γh Sh

(
1 − Sh − S† −

M∑
l=1

Sl

)
− δh Sh

M∑
l=1

βl Sl , (12e)

Ṡ† = −ωs S† +
M∑

l=1

δl Sl + δh Sh

M∑
l=1

βl Sl . (12f)

As pointed out previously, the extended model incorporates M different malignant
phenotypes whose population densities are denoted as Pi , within the primary tumor,
and Si for the secondary habitat with i = 1, . . . ,M . These malignant cells coexist
with normal differentiated cells and necrotic tissue, denoted as Ph (Sh) and P† (S†),
respectively. In addition, Γi , Γh , γi and γh denote the different proliferation rates
while Δi , Δh , δi and δh are the death rates. The constants ωp and ωs account for
the inverse of the characteristic times that the primary and secondary habitats require
for complete clearance of the necrotic debris, respectively. The matrices M and N
represent the transitions among different phenotypes within each of the two habitats.
They are defined as Mi j = P ( j → i), that is: the switching rate from phenotype j
to phenotype i within the primary habitat, the matrix N being analogously defined.1

1 The probability for phenotype i to not change at all is superfluous as far as the equations are concerned
since such diagonal term does not appear in the combination

∑M
l=1 Mil Pl − ∑M

l=1 Mli Pi . Therefore,
without loss of generality we can ignore it.
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The transition matrices M and N capture the emergence of a new phenotype i from
already existing phenotypes j , with i > j , thus imposing a lineage of phenotypes
which can coexist within each tumor for a certain period of time until extinction
of a subset of them occurs. The switching processes actually encompass a highly
complex dynamical system by itself; the internal cell interactions and the changing
environmental conditions playing a key role. As before, the terms −ki Pi and +k̃i Pi in
Eq. (12a) and (12d), respectively, account for cell migration. The current model nat-
urally assumes the possibility that the values of the migration rates ki and k̃i do not
necessarily increase with the phenotype i . The view that metastasis constitutes the final
step in a cumulative process of genetic alterations within cells forming a primary tumor
lesion has been challenged in recent years (Weinberg 2008; Coghlin and Murray 2010).
This has given rise to a new paradigm of metastatic dissemination of cancer cells. For
decades, the migration of tumor cells from the primary site to secondary ectopic tis-
sues was regarded as the late-stage event of a sequential process in which genetic
and epigenetic changes were acquired by the primary tumor cells over a long period,
conferring them a number of capabilities. Namely, loss of cellular adhesion, increased
invasiveness, intravasation and survival in the circulatory system, extravasation, sur-
vival and proliferation in distant and new tissues from the parent one. An alternative
interpretation proposes that the ability to metastasize could be furnished by genetic
changes taking place at an early stage during tumorigenesis. Again, in our model this
is reflected by the fact that the values of ki and k̃i , though small, could already be
significant for low phenotype indexes i , thus accounting for early metastatic events.

Notice that Eq. (12d) also includes the generalized term −∑
l εil Pl Si , character-

izing the metastasis suppression effect. The ‘suppression matrix’, εi j , accounts for the
fact that the interplay between the metastasis suppressors released by the tumor cells
may yield different outcomes depending on the phenotypes involved. Finally, in the
death term for the normal cells in Eq. (12e), the constants αi take into account that
distinct malignant phenotypes may accelerate the death of normal cells differently;
for instance by releasing wastes, such as those that increase the acidification of the
tumor microenvironment (Smallbone et al. 2008; Mendoza-Juez et al. 2012).

3.2 Particular model for a small number of metabolic phenotypes

Notwithstanding that the model equations (12) allow for an arbitrarily large number of
tumor cell phenotypes, it also includes a substantial set of parameters for which bio-
logical data are not readily available. Thus, to consider a more complicated scenario
than the one described in Sect. 2 while keeping the system size limited, we henceforth
particularize the general model (12) to study the evolution of three different malignant
phenotypes which will be classified according to their metabolic pathways: oxidative
(Po, So), glycolytic (Pg , Sg) and irreversibly glycolytic (Pig , Sig) tumor cells.

This is motivated by the well known fact that, during tumorigenesis, the initially
well oxygenated population of tumor cells experience an increased number of hypoxic
episodes, after reaching a critical size in which the existing vascular network is no
longer able to feed the extra cells generated during the neoplastic proliferation (Wilson
and Hay 2011). Hypoxia triggers many phenotypical changes but, remarkably, in the
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absence of oxygen cells become predominantly glycolytic to facilitate proliferation
and to obtain their energetic resources with a minimal oxygen cost (Gatenby and Gillies
2004; Mendoza-Juez et al. 2012). During angiogenesis, due to the irregular function-
ality of the tumor-induced neovasculature, cells are subjected to cycles of hypoxia and
reoxygenation and, thus, a change of phenotypes occurs until the glycolytic pheno-
type may eventually end up in an irreversible state, also known as the Warburg pheno-
type (Warburg et al. 1924; Warburg 1956; Koppenol et al. 2011). Accordingly with that
phenomenology, the switching matrices among our three phenotypes will be taken as

M =
⎛
⎝ 0 Mog 0

Mgo 0 0
0 Migg 0

⎞
⎠ , N =

⎛
⎝ 0 mog 0

mgo 0 0
0 migg 0

⎞
⎠ , (13)

thus leading to a set of model equations of the form

⎛
⎝ Ṗo

Ṗg

Ṗig

⎞
⎠ =

⎛
⎝ Πo Mog 0

Mgo Πg 0
0 Migg Πig

⎞
⎠ ·

⎛
⎝ Po

Pg

Pig

⎞
⎠ , (14a)

Πl = Γl

⎛
⎝Ψ − Ph − P† −

∑
j∈{o,g,ig}

Pj

⎞
⎠ −Δl − kl − M̂l ,

l ∈ {o, g, ig} , M̂o = Mgo, M̂g = Mog + Migg, M̂ig = 0

Ṗh = Γh Ph

⎛
⎝1 − Ph − P† −

∑
j∈{o,g,ig}

Pj

⎞
⎠ −Δh Ph

∑
j∈{o,g,ig}

α j Pj ,(14b)

Ṗ† = −ωp P† +
∑

j∈{o,g,ig}
Δ j Pj +Δh Ph

∑
j∈{o,g,ig}

α j Pj , (14c)

⎛
⎝ Ṡo

Ṡg

Ṡig

⎞
⎠ =

⎛
⎝ πo mog 0

mgo πg 0
0 migg πig

⎞
⎠ ·

⎛
⎝ So

Sg

Sig

⎞
⎠ +

⎛
⎝ k̃o Po

k̃g Pg

k̃ig Pig

⎞
⎠ , (14d)

πl = γl

⎛
⎝ψ − Sh − S† −

∑
j∈{o,g,ig}

S j

⎞
⎠ − δl − m̂l −

∑
j∈{o,g,ig}

εl j Sl Pj ,

l ∈ {o, g, ig} , m̂o = mgo, m̂g = mog + migg, m̂ig = 0,

Ṡh = γh Sh

⎛
⎝1 − Sh − S† −

∑
j∈{o,g,ig}

S j

⎞
⎠

− δh Sh

∑
j∈{o,g,ig}

β j S j , (14e)

Ṡ† = −ωs S† +
∑

j∈{o,g,ig}
δ j S j + δh Sh

∑
j∈{o,g,ig}

β j S j . (14f)
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The metabolic classification and the structure of the switching matrices are further
supported by a series of experiments performed by Sonveaux et al. ( 2008) using two
different tumor cell lines: human colorectal adenocarcinoma, which turns out to pref-
erentially follow the glycolytic pathway and human cervix squamous cell carcinoma
which, in contrast, is preferentially oxidative. As the experiments show, the cells met-
abolic behavior may change depending on the surrounding conditions which, in turn,
vary with the availability of resources and the presence of oxygen. The inclusion of
the competition for the resources, however, does not substantially alter the solutions
admitted by the present model, although it makes the treatment of these much more
complicated. Thus, for the sake of simplicity, here we codify this phenotypic switch
through the above transition matrices. Finally, for the case under consideration, we
choose the suppressor matrix to be

εi j =
{
ε, if i = j
rε, if i �= j

, 0 ≤ r ≤ 1,

which may describe phenotypic affinity in the growth suppression effect, correspond-
ing to r < 1.

The steady malignant configuration within the primary habitat (see Appendix 4)
verifies the eigenvalue problem

⎛
⎜⎜⎝

Do +Λ(P ∗) Mog
Γo

0
Mgo
Γg

Dg +Λ(P ∗) 0

0
Migg
Γig

Dig +Λ(P ∗)

⎞
⎟⎟⎠ ·

⎛
⎝ P∗

o
P∗

g
P∗

ig

⎞
⎠ =

⎛
⎝0

0
0

⎞
⎠ , (15)

with

Do = −Δo + Mgo + ko

Γo
, (16a)

Dg = −Δg + Mog + Migg + kg

Γg
, (16b)

Dig = −Δig + kig

Γig
, (16c)

Λ
(
P ∗) = Ψ − 1 + Δh

Γh

(
αo P∗

o + αg P∗
g + αig P∗

ig

)
, (16d)

and the eigenvalues are given by

Dig, Λ± = 1

2

(
Do + Dg ±

√(
Do − Dg

)2 + 4
Mgo Mog

ΓoΓg

)
. (17)
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The generic stationary solution for the malignant populations hence reads

P∗
g = − Γig

Migg

(
Dig −Λ

)
P∗

ig, (18a)

P∗
o = ΓgΓig

Mgo Migg

(
Dig −Λ

) (
Dg −Λ

)
P∗

ig, (18b)

P∗
ig = 1 − Ψ −Λ

Δh
Γh

[
αig + αg P̂g + αo P̂o

] , (18c)

P̂g = − Γig

Migg

(
Dig −Λ

)
, (18d)

P̂o = ΓgΓig

Mgo Migg

(
Dig −Λ

) (
Dg −Λ

)
, (18e)

with Λ ∈ {
Dig,Λ±

}
.

ForΛ = Dig we have an asymptotically ‘specialized’ malignant population within
the primary tumor where only the Warburg phenotype is present, while for Λ = Λ±
an asymptotical coexistence between all metabolic pathways is achieved. In the next
subsection, however, we will see that this last solution is not reachable from a non neg-
ative initial condition since, in general, it contains negative components. As a matter
of fact, Dig −Λ± is in general positive.

For the secondary malignant populations one finds the equation

⎛
⎝ do + λ mog/γo 0

mgo/γg dg + λ 0
0 migg/γig dig + λ

⎞
⎠ ·

⎛
⎝ S∗

o
S∗

g
S∗

ig

⎞
⎠ = −

⎛
⎜⎝

k̃o P∗
o /γo

k̃g P∗
g /γg

k̃ig P∗
ig/γig

⎞
⎟⎠ , (19a)

with

do = −mgo

γo
− δo

γo
− ε

γo

[
r
(

P∗
g + P∗

ig

)
+ P∗

o

]
, (19b)

dg = −mog

γg
− migg

γg
− δg

γg
− ε

γg

[
r
(

P∗
o + P∗

ig

)
+ P∗

g

]
, (19c)

dig = − δig

γig
− ε

γig

[
r
(

P∗
o + P∗

g

)
+ P∗

ig

]
, (19d)

and λ given by the restriction

λ = ψ − 1 + δh

γh

(
βoS∗

o + βg S∗
g + βig S∗

ig

)
. (19e)

Similarly to the primary habitat, the eigenvalues are given by dig and

λ± = 1

2

(
do + dg ±

√(
do − dg

)2 + 4
mgomog

γoγg

)
.
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At this point we find two non equivalent solutions. If λ /∈ {−dig, −λ±
}

we obtain a
‘deterministic solution’ where the asymptotic populations within the secondary habitat
are

S∗
o = −

(
dg + λ

)
k̃o P∗

o − mog
γo

k̃g P∗
g

(do + λ)
(
dg + λ

) − mogmgo
γgγo

, (20a)

S∗
g = −

(do + λ) k̃g P∗
g − mgo

γg
k̃o P∗

o

(do + λ)
(
dg + λ

) − mogmgo
γgγo

, (20b)

S∗
ig = −

k̃ig P∗
ig + migg

γig
S∗

g

dig + λ
, (20c)

S∗
h =

1 − ∑
l∈{o,g,ig}

(
1 + δl

ωs
− δh

γh
βl

)
S∗

l

1 + δh
ωs

∑
l∈{o,g,ig} βl S∗

l

. (20d)

The term deterministic reflects the fact that the matrix in Eq. (19a) has a non vanish-
ing determinant. As a matter of fact, this solution follows the structure of the primary
solution in the sense that coexistence arises only if it already appears within the primary
habitat.
There is still a ‘singular solution’ for the secondary habitat if the following (geometric)
conditions

⎛
⎜⎜⎜⎝

k̃o
γo

P∗
o

k̃g
γg

P∗
g

k̃ig
γig

P∗
ig

⎞
⎟⎟⎟⎠

T

·
⎛
⎜⎝

miggmgo
γigγg

migg
γig

(do + λ)

(do + λ)
(
dg + λ

) − mogmgo
γoγg

⎞
⎟⎠ = 0, (21a)

(
dig + λ

) [
(do + λ)

(
dg + λ

) − mogmgo

γoγg

]
= 0, (21b)

are met. In particular, for P∗
o = P∗

g = 0 and (do + λ)
(
dg + λ

)−mogmgo/(γoγg) = 0
the singular solution is given by the equations

S∗
o = − γg

mgo

(
dg + λ

)
S∗

g , (22a)

S∗
ig = − 1

dig + λ

(
k̃ig

γig
P∗

ig + migg

γig
S∗

g

)
, (22b)

S∗
g =

ψ − λ+
(

1 + δig
ωs

) k̃ig P∗
ig

γig(dig+λ)
1 + δg

ωs
−

(
1 + δo

ωs

)
γg(dg+λ)

mgo
−

(
1 + δig

ωs

)
migg

γig(dig+λ)
, (22c)

S∗
h = 0. (22d)
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It can be shown that, since P∗
ig > 0, the singular steady solution corresponding to

dig + λ = 0 from the geometric constraint (21b) necessarily has negative compo-
nents and thus it cannot be reached by any non negative initial value of the population
densities (see Appendix 4).

The above phenotypically diverse asymptotic solution is somehow a surprising
equilibrium since, even when from the primary tumor only the Warburg phenotype
(which is a steady phenotype in both habitats) is asymptotically migrating, we may
still find a phenotypically sparse population within the secondary habitat.

3.3 Parameter estimation and numerical studies of the solutions

In this section we will present a set of numerical simulations of the solutions allowed
by the model given by Eq. (14). As we shall see, the basic features arising within
the simple model having a single tumor phenotype in Sect. 2 are also found within
this extended model. In particular, we still obtain the existence of a threshold for the
secondary carrying capacity dividing the extinction of the population of normal cells
from the coexistence equilibrium and, as far as the resection of the primary tumor
is concerned, again we find a window for the metastatic cascade to occur within the
secondary habitat. To estimate the proliferation/death constants of malignant cells we
use the fact that, for population densities close to zero, the evolution equations adopt
the generic simple form ṅ/n = Γ −Δ from which the time of doubling population
verifies Γ − Δ = ln 2

T2
. Moreover, the corresponding necrotic population increases

according to n†(t)/n(t) = Δ T2
ln 2 (1 − exp(−t ln 2/T2)).

It is well known that glycolytic phenotypes are typically more proliferative (Van
der Heiden et al. 2010) than oxidative ones. We will thus take a doubling time of
2 days for oxidative cells while for glycolytic phenotypes we will consider a doubling
time of 1 day. In addition, the cell death fraction can be estimated to be around 7 %
common to both oxidative and glycolytic phenotypes. For the normal cells the dou-
bling times have an enormous variance from about 1 day to years depending on the
specific type of tissue. For epithelial tissues we will take a doubling time of around
4 days. Finally, we will assume that the time needed by both habitats to absorb half
of the necrotic population is around 3 days. That is: ωp = ωs 	 0.23 day−1. Table 2
lists the parameter values chosen for the simulations presented in this section for the
primary and secondary habitats and some of the derived quantities.

From the values of Table 2 we get Dig −Λ+ 	 0.02, Dig −Λ− 	 70.5 and hence
for the primary habitat only the Warburg-like phenotype is asymptotically selected.
As a consequence, the secondary malignant deterministic steady solutions given in
Eq. (20) reduce to

S∗
o = S∗

g = 0, S∗
ig = − k̃ig P∗

ig

θ
,

with θ verifying the constraint θ2 − (
ψ − 1 + dig

)
θ + δh k̃ig

γhγig
βig P∗

ig = 0, which has
real (and negative) solutions only for
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Table 2 Parameter values and derived quantities for the primary and secondary tumor used in the
simulations of Sect. 3.3

Primary tumor Secondary tumor Units Remark

Quantity Value Quantity Value

Γoψ 0.4 γoψ 0.4 day−1

Γgψ = Γigψ 0.8 γgψ = γigψ 1 day−1

Γh 0.2 γh 0.2 day−1 See Sonveaux et al. ( 2008),

Δo 0.04 δo 0.05 day−1 Mendoza-Juez et al. (2012)

Δg = Δig 0.06 δg = δig 0.1 day−1 and notes on text

Δh 1 δh 1 day−1

ωp 0.2 ωs 0.2 day−1

ko 0 k̃o 0 day−1

kg = kig 10−3 k̃g = k̃ig 10−4 day−1

Mog 5 mog 5 day−1

Mgo 20 mgo 20 day−1 Estimated

Migg 0.1 migg 0.1 day−1

αo 0.1 βo 0.1

αg = αig 1 βg = βig 1

� 1.2 ε 0.056 day−1

– – r 0.5

ε/γig ≥
ψ − 1 + 2

√
δhβig k̃ig P∗

ig/(γhγig)− δig
γig

P∗
ig

	 0.05. (23)

On the other hand, for the singular solution given in Eq. (22) to be non negative
we need dg + λ ≤ 0 and dig + λ < 0. The first constraint is guaranteed by one of
the solutions to the restriction (do + λ)

(
dg + λ

) − mogmgo/(γoγg) = 0. The second
constraint, however, requires

ε/γig >
B − √

B2 − 4AC

2AP∗
ig

	 0.032,

A = (1 − r)

(
1 − r

γg

γo

)
,

B = mog + migg

γg

(
1 − r

γg

γo

)
+ (1 − r)

(
δo

γo
− δg

γg
+ mgo

γo

)
,

C = mgomigg

γgγo
+ mog + migg

γg

(
δo

γo
− δg

γg

)
.

(24)

In the following subsection we will numerically show the existence of these
thresholds.
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3.4 Threshold for the carrying capacity ψ in the secondary habitat

In this subsection we present numerical simulations confirming the existence of a
threshold for the carrying capacity, ψ , in the secondary habitat already found in the
single-species tumor model. Our results are summarized in Figs. 6 and 7. In all of the
plots, the solid curves represent the normal cell population while the tumor population
is represented by dashed lines with the following particular assignment: from thinnest
to thickest, the dashed lines represent oxidative, glycolytic and Warburg phenotypes,
respectively.

Figure 6a shows numerical solutions for the primary habitat where the initial con-
dition is 70 of normal cells, 20 of oxidative tumor cells and 10 of glycolytic cancer
cells. This choice corresponds to an early stage of the tumor development where most
of the (still not dominant) tumor population are oxidative. In addition, we have taken
Ψ = 1.2. Figures 6b, c display the corresponding solution for the secondary tumor
where the initial value is, instead, taken to be So(0) = Sg(0) = Sig(0) = S†(0) = 0
and Sh(0) = 1. As the graphics thereby show, we still find a critical value for the sec-
ondary carrying capacity, ψ , which, for the case under consideration, takes the value
ψc 	 1.104. Notice that below such threshold the cancer cells proliferate to an equi-
librium with normal cells in which the latter population is much larger [see Fig. 6c].
Whereas above the threshold the proliferation of cancer cells induce the extinction of
the normal population after some time (Fig. 6b) and the malignant population asymp-
totically approaches a coexistence between all three metabolic phenotypes, corre-
sponding to the singular steady solution given in Eq. (22). Figure 7, on the other hand,
shows the (stable) steady solutions within the secondary habitat as a function of the
suppressor rate, ε. Figure 7a displays the transition between tumor extinction and the
extinction of normal cells taking place around ε/γig ∼ 0.032 (constraint (24)) where
the malignant steady population turns out to be the metabolic coexisting equilibrium
given in Eq. (22). Figure 7b depicts the transition between tumor extinction and the
malignant-normal coexistence at a value of ε/γig ∼ 0.05 (cf. Eq. (23)). Notice that
the malignant component within the coexistence equilibrium corresponds to the deter-
ministic steady solution given in Eq. (20). Moreover, in analogy with the coexistence
equilibrium found with the single tumor phenotype model in Sect. 2 (cf. Fig. 2), only
the upper branch solution (the one with lowest malignant component) turns out to be
a stable solution.

3.5 Effect of the primary resection on local metastases

The effect of the resection of the primary tumor is shown in Fig. 8. Figure 8a shows
the solution for the secondary habitat for ψ = 1.1 < ψc, corresponding to the solu-
tion for the primary habitat shown in Fig. 6a, where a metastatic cascade takes place
around 130 days after the resection of the primary tumor. In this case the metastatic
evolution selects the Warburg phenotype to survive, as it corresponds to the steady
state of the primary habitat, since after the resection the interaction with the primary
tumor is obviously switched off. Nevertheless, if we take ψ = 1.05 instead, the effect
of the resection of the primary tumor on the local metastasis is the extinction of the
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Fig. 6 a Solution for the primary habitat for ψ = 1.2 and initial values Pg(0) = 0.1, Po(0) = 0.2,
Pig(0) = 0, Ph(0) = 0.7 and P†(0) = 0. The dashed lines represent, from thinnest to thickest, oxidative
tumor cells, glycolytic malignant cells and Warburg phenotype, respectively. The solid line describes the
normal cells. b Corresponding solution for the secondary habitat with a carrying capacity value above the
threshold (ψ = 1.105). c Corresponding solution for the secondary habitat with a carrying capacity value
below the threshold (ψ = 1.1). In both cases the initial values are: So(0) = Sg(0) = Sig(0) = S†(0) = 0
and Sh(0) = 1 and the line-type distribution is the same as that in the subplot (a)
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Fig. 7 Diagram of stationary solutions for the secondary habitat as a function of ε. a Transition to the extinc-
tion of normal cells with a coexistence among all three malignant phenotypes whenever ε/γig � 0.032.
This stationary solution turns out to be stable. b Transition to the coexistence equilibrium between the
Warburg-like phenotype and the normal cells for ε/γig � 0.05. Analogously to the simplified model in
Sect. 2, only the upper branch is a stable solution. The coexistence with lower normal cell density (lower
branch) is an unstable solution. In both graphics ψ = 1.105

malignant cells (Fig. 8b), confirming that the metastatic outgrowth after the resection
of the primary tumor occurs under certain conditions as found with the single tumor
model developed in Sect. 2.
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Fig. 8 Solutions for the secondary habitat with the resection of the primary tumor taking place 100 days
after the initiation. a Solutions for ψ = 1.1 < ψc . In this case a metastatic cascade is triggered around
130 days after the resection of the primary tumor. b Solutions for a carrying capacity value ψ = 1.05.
In this case, the resection of the primary tumor induces the extinction of the cancer cells within the meta-
static tissue. In both cases the resection of the primary tumor takes place 100 days after the emergence of
the malignant cells within the primary habitat

4 Conclusions and perspectives

In this paper we have addressed the issue of communication between the primary
and metastatic tumors from an evolutionary perspective where the phenomenon of
tumor cells dissemination is considered as a migratory event from the primary hab-
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itat to the metastatic site. Furthermore, the growth of the metastasis is assumed to
be down-regulated by the interplay between metastasis suppressors secreted by both
tumors (Cook et al. 2011). The main results of the 2 + 2 model are the following:
In the primary habitat only the cancer or the normal cells are the stable solutions, but
not both. In contrast, in the secondary habitat, the solutions can exhibit a different
stability; there can be a coexistence depending on whether the value of the carrying
capacity ψ is smaller or larger than a critical value ψc. The malignant component
in the coexisting equilibrium is much smaller than the normal one and, therefore,
this coexistence can be interpreted as a dormant metastatic tumor. The effect of the
resection of the primary tumor has been considered in the framework of this model
and we have found that: if ψ > ψc there is no impact on the secondary tumor in the
sense that the normal population cannot be recovered. If, otherwise, ψ < ψc there is
a window of values for ψ , given by Eq. (10), in which the resection triggers the full
metastatic invasion of the secondary habitat while, out of the window, the extinction
of the secondary tumor occurs. This is in accordance with experimental observations
in clinical studies (Ebos et al. 2009; Peeters et al. 2006, 2008, 2004, 2005). In those
works, it was observed that, in certain tumor lines, the surgical resection or even
chemotherapeutic treatment of the primary tumor was followed, in some cases, by
an explosive outgrowth of the local metastases. Our work suggests the existence of
distinct regimes where this phenomenon takes place. It is remarkable that even with
the inclusion of a term restraining the growth of the secondary tumor whenever the
primary tumor is present, the resection of the latter only induces the metastatic explo-
sion under limited circumstances. We want to stress that our present model has not
been directly applied to those situations because further biological data are required.
Nevertheless, the model is appealing as it provides well defined conditions for such
regimes to take place depending on the various parameters (most of them can be
reasonably estimated).

Our model has also been extended to several tumor phenotypes while still keeping
the same basic features. The main results of the extended model can be summarized as
follows: Within the primary habitat the evolution of the populations tends to a steady
solution that still presents the extinction of the normal population and where the irre-
versible glycolytic phenotype (Warburg phenotype) is asymptotically selected among
the malignant population (Fig. 6a).

In the secondary habitat, however, the situation is much richer: our numerical sim-
ulations, within the explored parameter space, do show the existence of a threshold
value for the secondary carrying capacity, ψc, such that below this value the system
approaches a coexistence equilibrium between normal and tumor cells in which the
malignant population remains in a dormant state (see Fig. 6c). If ψ > ψc the nor-
mal population becomes extinct and the secondary malignant population approaches
an equilibrium between all phenotypes. This occurs even when the only phenotype
asymptotically migrating from the primary habitat is the Warburg phenotype (see
Fig. 6b). The effect of the resection of the primary tumor is also considered within
the extended model and we again find a dependence on ψ : depending on its value the
resection of the primary tumor may induce the full metastatic invasion of the second-
ary habitat (Fig. 8a) or, else, the extinction of the secondary tumor (Fig. 8b). In the
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first case, the resection induces the selection of the Warburg phenotype to fully invade
the secondary habitat which is a remarkable result.

Our model reflects the phenotypic heterogeneity observed in tumors. It indicates
that among the huge variety of cancer cells that may coexist at a given time in a
primary tumor, only a selected subpopulation of these may be the relevant one in
the outcome of distant metastases. For instance, it has been recently shown that
a small population of cancer stem cells is critical for metastatic colonization and
that stromal niche signals are crucial to this expansion process (Malanchi et al.
2012).

The understanding of the dependence of the metastatic outgrowth on the differ-
ent parameters may assist in identifying appropriate therapeutic targets and help in
understanding why, beyond other reasons such as physical proximity or ‘chemical
affinity’, some tumors choose to metastasis to specific distant organs and not oth-
ers. Our multiphenotypic model provides an underlying structure for this behavior.
While the main applications have been to present and develop a complete analysis
of a family of reduced cases of the general framework, in future works we intend
to study specific examples of tumors using data from real metastatic patterns when
the primary site is an adenocarcinoma (Hess et al. 2006; DiSibio and French 2008).
In that sense, our model could be straightforwardly extended to account for tumor
cells migration from a single primary tumor to several secondary sites by simply con-
sidering a matrix of migration rates, say: k j

i , giving rise to a network of metastases
(Chen et al. 2009).

As it has been already emphasized, tumors show a huge phenotypic dispersion. In
that sense, rather than incorporating a large amount of phenotypes it is more interest-
ing to check whether the present model can be extended to a continuous phenotypic
landscape, where the phenotype label is no longer a discrete variable. It is even more
interesting to consider higher dimensional phenotypic landscapes, where the different
phenotypes may be labeled according to several properties (variables). For that matter
we propose, as a first approach, the following landscape extension

∂t P(t, z) = 1

2
(p + q) D ∂2

z P(t, z)+ v ∂z [(p − q)P(t, z)]

+Γ (z) P(t, z)

⎡
⎣Ψ − Ph − P† −

zmax∫
zmin

dζ P(t, ζ )

⎤
⎦

−
(
Δ(z)+ 1

2
D ∂2

z (p + q)

)
P(t, z)− k(z) P(t, z), (25a)

Ṗh = Γh Ph

⎡
⎣1 − Ph − P† −

zmax∫
zmin

dζ P(t, ζ )

⎤
⎦

−Δh Ph

zmax∫
zmin

dζ α(ζ ) P(t, ζ ), (25b)

123



686 D. Diego et al.

Ṗ† = −ωp P† +
zmax∫

zmin

dζ Δ(z) P(t, ζ )

+Δh Ph

zmax∫
zmin

dζ α(ζ ) P(t, ζ ), (25c)

and similar formulae for the secondary habitat. The parameters v = limδt→0 δz/δt
and D = limδt→0 δz2/δt play the role of advection velocity and diffusion coeffi-
cient, respectively. The quantity p measures the probability density for a cancer cell
to mutate with increasing malignancy (from phenotype z to phenotype z +dz) while q
measures the probability density mutation towards decreasing malignancy. The suit-
ability and predictive power of the present extension as well as the investigation of
possible alternative proposals is left for future works.
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Appendix A: Fixed points and positivity of the solutions

Consider again the evolution equations for the extended model (12)

Ṗi = Γi Pi

(
Ψ − Ph − P† −

M∑
l=1

Pl

)

+
M∑

l=1

Mil Pl −
M∑

l=1

Mli Pi −Δi Pi − ki Pi , (26a)

Ṗh = Γh Ph

(
1 − Ph − P† −

M∑
l=1

Pl

)
−Δh Ph

M∑
l=1

αl Pl , (26b)

Ṗ† = −ωp P† +
M∑

l=1

Δl Pl +Δh Ph

M∑
l=1

αl Pl , (26c)

Ṡi = γi Si

(
ψ − Sh − S† −

M∑
l=1

Sl

)

+
M∑

l=1

Nil Sl −
M∑

l=1

Nli Si − δi Si −
M∑

l=1

εil Si Pl + k̃i Pi , (27a)

Ṡh = γh Sh

(
1 − Sh − S† −

M∑
l=1

Sl

)
− δh Sh

M∑
l=1

βl Sl , (27b)
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Ṡ† = −ωs S† +
M∑

l=1

δl Sl + δh Sh

M∑
l=1

βl Sl , (27c)

For the primary tumor, from the vanishing of Eq. (26b) we deduce the form of the
asymptotic population densities to be

M∑
j=1

1

Γi
Mi j Pj − 1

Γi

(
M∑

l=1

Mli +Δi + ki

)
Pi = −Λ(P ) Pi , (28)

[
1 + Δh

ωp

M∑
l=1

αl Pl

]
Ph = 1 − Δh

Γh

M∑
l=1

αl Pl −
M∑

l=1

(
1 + Δl

ωp

)
Pl , (29)

ωp P† =
M∑

l=1

Δl Pl +Δh Ph

M∑
l=1

αl Pl , (30)

where the eigenvalue reads

Λ(P ) = Ψ − 1 + Δh

Γh

M∑
i=1

αi Pi . (31)

For the secondary tumor we have similar expressions

M∑
j=1

1

γi
Ni j S j − 1

γi

(
M∑

l=1

Nli + δi +
M∑

l=1

εil Pl

)
Si + λ (S) Si = − k̃i

γi
Pi , (32)

[
1 + δh

ωs

M∑
l=1

βl Sl

]
Sh = 1 −

M∑
l=1

(
1 + δl

ωs

)
Sl − δh

γh

M∑
l=1

βl Sl , (33)

ωs S† =
M∑

l=1

δl Sl + δh Sh

M∑
l=1

βl Sl , (34)

where the function λ (S) is given by

λ (S) = ψ − 1 + δh

γh

M∑
i=1

βi Si . (35)

In a stationary situation the system will reach one of the possible steady-state solu-
tions found above. However, some of these have negative components, as we we have
shown in Sect. 3.3. Nonetheless, we will prove that the above system of ODEs under
consideration leaves the positive quadrant invariant, that is: any non negative initial
value will reach a non negative steady solution.
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Let us define R
n+ as:

R
n+ = {

(x1, · · · , xn) ∈ R
n
∣∣ xi ≥ 0, ∀i = 1, · · · , n

}
, (36)

then we have the following result:

Proposition 1 Let C ⊂ R
2(M+2) be an integral curve of the system of ODEs given

by the equations (26a)–(27c) and suppose that at some time t0 we have that C(t0) ∈
R

2(M+2)
+ , then C(t) ∈ R

2(M+2)
+ for all t ≥ t0.

Proof We will assume any explicit time dependence through some or all of the param-
eters to be differentiable, thus the solutions to the equations will be defined over R.
For simplicity we will prove the statement restricted to the primary habitat given by
the equations (26a)–(26c). Analogous arguments apply to the secondary habitat.

Let Pi (t), Ph(t), P†(t) be a solution to the system of ODEs (26a)–(26c) and let t0
be such that Pi (t0) ≥ 0, Ph(t0) ≥ 0, P†(t0) ≥ 0 for all i ∈ {1, · · · ,M}. Without loss
of generality, t0 can be taken as the initial time.

From the continuity of the solutions to a Lipschitz system of ODEs, as it is our
case, it is clear that if P1, · · · , Pk are all of the population densities being positive at
t0 all of them will remain positive throughout the interval
(t0 − ε+, t0 + ε+), for some ε+ > 0. Accordingly, the positivity is critical only for

those population densities vanishing at t0.
Taking this into account and considering first the healthy population, if Ph(t0) = 0,

the uniqueness theorem guarantees the existence of εh > 0 such that Ph(t) = 0,∀t ∈
(t0 − εh, t0 + εh).

Let us focus now on the malignant populations. Their evolution equations can be
generically written as

Ṗl = fl Pl +
M∑

j=1

Ml j Pj , (37)

with fl = Γl

(
Ψ − Ph − P† − ∑M

j=1 Pj

)
− ∑M

j=1 M jl −Δl − kl .

Let O0 = {l1, l2, · · · lk} ⊂ {1, · · · ,M} be the subset of malignant indices2 for
which Pl j (t0) = 0 and define O1 ⊆ O0 as O1 = {

i ∈ O0| ∀ j /∈ O0, Mi j = 0
}
.

Thus, ∀ j ∈ O0\O1 it holds that Ṗj (t0) > 0 while Ṗl(t0) = Pl(t0) = 0 for all l ∈ O1.
Now we have three possibilities depending on which set is O1:

1. O1 = ∅.
In that case the first derivative of every vanishing component is positive at t0 and
by the mean value theorem there will be ε∅ > 0 such that Pi (t) > 0 for all
t ∈ (t0, t0 + ε∅) and every i ∈ O0.

2 We assume this set is not empty, otherwise there would be an open interval for which Pl (t) > 0.
If, instead, O0 = {1, . . . ,M} then the solution would be the trivial one.
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2. O1 = O0.
In that case, for all l ∈ O0, Ṗl = fl Pl +∑

k∈O0
Mlk Pk and hence the uniqueness

theorem tells us that, for some εeq > 0, Pi (t) = 0 over
(
t0 − εeq , t0 + εeq

)
for

every i ∈ O0.
3. ∅ �= O1 ⊂ O0.

In that last case the mean value theorem guarantees that there is ε0 > 1 for which
Pl(t) > 0 over the interval (t0, t0 + ε1) and for every l ∈ O0\O1.
In addition, since Ṗl(t0) = Pl(t0) = 0 for all l ∈ O1, Ṗs (t0) > 0 for
any s ∈ O0\O1 and, by definition, Mi j = 0 for every i ∈ O1 and every
j /∈ O0, we can start over the whole process by defining a new subset O2 ={
i ∈ O1| ∀ j /∈ O1, Mi j = 0

}
. Notice that for every k ∈ O2, P̈k(t0) = Ṗk(t0) =

Pk(t0) = 0 while P̈j (t0) > 0 for all j ∈ O1\O2.

This iteration must come to an end since the original set is finite, meaning that there
is m ∈ N for which Om+1 is either empty or the same subset as Om . Moreover, for every
1 ≤ j ≤ m and for every l ∈ O j it holds that Pl(t0) = Ṗl(t0) = · · · = P( j)

l (t0) = 0

whereas for all s ∈ O j\O j+1 we have P( j+1)
s (t0) > 0. Using then the Taylor’s

theorem,

Ps(t > t0) = (t − t0) j+1

( j + 1)! P( j+1)
s (τ ), τ ∈ [t0, t] , (38)

we can assure that for 1 ≤ j ≤ m and for all s ∈ O j−1\O j , there is ε j > 0 for
which Ps(t) > 0 over

(
t0, t0 + ε j

)
. Taking ε̄ = min {ε1, . . . , εm} we have that for

every i ∈ O0\Om , Pi (t) > 0 over (t0, t0 + ε̄), while for Om , and according to the
conditionals 1 and 2 above, there is ε̃ > 0 such that Pr (t) ≥ 0 over (t0, t0 + ε̃) for all
r ∈ Om . Therefore, if ε′ = min {ε̄, ε̃, ε+} then Pi (t) ≥ 0, Ph(t) ≥ 0 over

(
t0, t0 + ε′

)
and for all i ∈ {1, · · · ,M}.

Having that Pi (t), Ph(t) ≥ 0 the non negativity of the necrotic population fol-
lows straightforwardly. Regarding the secondary tumor, similar arguments show the
positivity of the solutions provided that k̃i ≥ 0.

Thus we can assure that for some ε > 0 all of the population densities will be non
negative over (t0, t0 + ε) and by the continuity of the solutions we have that those are
again non negative at t1 = t0 + ε. The same arguments show that the solutions will be
again non negative over [t0, t0 + ε + ε1] for some ε1 > 0 and hence the non negativity
is guaranteed for any t ≥ t0.
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