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Summary

In this thesis we explore mathematical methods and models as a tool to unravel
the unknowns of tumour dynamics and relapse. We focus on leukaemia, a
cancer of the white blood cells which develops in the bone marrow. Leukaemic
tumours, together with brain cancer, are the leading cause of cancer death in
children and young adults.

We review several mathematical models, based on ordinary differential
equations and partial differential equations, describing the dynamics of cancer,
specifically leukaemia, one of the most common cancers in childhood. We develop
a model which describes the dynamics of healthy B lymphocytes, the white
cells causing B acute lymphoblastic leukaemia, the most frequent paediatric
leukaemia. We consider patients’ flow cytometry data, not only to describe
the development of B cells, but also to characterize biomarkers able to predict
patients relapse factors. We analyse them with machine learning methods as
well as topological ones, describing the differences between intensities of surface
cell markers as well as shape features predicting relapse in leukaemia patients.
Finally, we resort to the Lie classical method to obtain solutions of equations
describing tumour dynamics in general.

This study has been the result of the collaboration efforts between clinicians,
haematologists, immunologists and mathematicians. This multidisciplinary
research aims to understand tumour features in order to improve risk
stratification, and therefore the associated therapy protocols.
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Resumen

En esta tesis se exploran métodos y modelos matemáticos como herramientas
para descifrar interrogantes acerca de la dinámica tumoral y la recaída. Nos
centramos en la leucemia, cáncer de las células blancas sanguíneas que se
desarrolla en la médula ósea. Los tumores asociados a la leucemia, así como los
tumores cerebrales, son la primera causa de fallecimiento por cáncer en niños y
jóvenes adultos.

Se examinan múltiples modelos matemáticos, basados en ecuaciones
diferenciales ordinarias o parciales, dada su capacidad para describir dinámicas
tumorales, especialmente la de la leucemia, el cáncer más frecuente en la infancia.
Se desarrolla un modelo que describe la dinámica de los linfocitos B sanos,
células blancas causantes de la leucemia linfoblástica aguda B, una de las más
comunes en la edad pediátrica. Se consideran datos de citometría de flujo de
pacientes, no sólo para describir el desarrollo de las células B, sino también
para caracterizar biomarcadores capaces de predecir factores asociados a la
recaída en el cáncer. Para ello, se analizan las diferencias en la intensidad
de marcadores de superficie celular, tanto con técnicas de “machine learning”,
como con métodos topológicos, para así describir características de forma que
predigan la recaída en pacientes con leucemia. Para finalizar, se recurre al
método clásico de Lie para obtener soluciones de ecuaciones que describen de
manera general la dinámica tumoral.

Este estudio ha sido el resultado del esfuerzo colaborativo entre profesionales
clínicos, hematólogos, inmunólogos y matemáticos. Esta investigación
multidisciplinar tiene como objetivo el de entender las características tumorales,
para así mejorar la clasificación de factores de riesgo y, por lo tanto, los protocolos
terapéuticos asociados.
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CHAPTER 1

Introduction

Leukaemia is a cancerous disease in which blood cells display abnormal
proliferation and invade other tissues. It is one of the biggest health issues
globally. Almost half a million new leukaemia cases were diagnosed in 2018 [1].

Blood cancers affect the production and function of blood cells. They are the
most common cancer types in children from birth to 14 years of age and account
for around 3% of all cancers diagnosed in developed countries. Blood cancer
survival in adults is about 50%. Although survival in children is higher and
improving, blood cancer is still the major cause of cancer death in paediatric
patients [2, 3, 4].

Most types of blood cancer start in the bone marrow, which is where blood is
produced. In most blood cancers, the normal development process, starting from
stem cells and leading to a hierarchy of more differentiated cells, is interrupted
by the uncontrolled abnormal growth of specific types of blood cell.

There are three major types of blood cancer. Leukaemias are caused by
the rapid production of abnormal white blood cells. Lymphomas are a type
of blood cancer comprising abnormal lymphocytes, a type of white blood cells
that fight infections. These cells multiply and collect in lymph nodes and other
tissues and impair the lymphatic system’s functionality to remove unnecessary
fluids from the body and fight infections. Finally, myeloma is a cancer of the
plasma cells, which produce disease- and infection-fighting antibodies.

It is well understood how blood cells differentiate from stem cells into more
specialised cells (the so-called haematopoiesis process), as represented schemat-
ically in Fig. 1.1. At the top of the hierarchy governing normal haematopoiesis
there are the haematopoietic stem cells (HSCs) [5, 6]. Pluripotent haema-
topoietic stem cells can give rise to either lymphoid or myeloid progenitors.
Lymphoid progenitors can generate either lymphoblasts, which will become B
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1. Introduction

or T lymphocytes, or Natural Killer cells. These are all part of the specific
immune system. Myeloid progenitors can also lead to a broad variety of cells,
including erythrocytes, thrombocytes, or other cells of the non-specific immune
system.

Hematopoietic

Stem Cell

Lymphoid 
progenitor

Myeloid 
progenitor

Myeloblast Lymphoblast

Natural Killer

T lymphocyte B lymphocyte

Erythrocyte

Thrombocyte Monocyte Basophil Neutrophil Eosinophil

Figure 1.1: Differentiation tree for blood cells.

Although the classical understanding of haematopoiesis has considered cell
types to be discrete compartments, current knowledge of the process [7] considers
the evolution of cell types as a continuum process (see Fig. 1.2). This is because
haematopoietic cells acquire lineage features through a continuous process
involving the expression of different characteristic molecules [8].

In this framework, the type of cell that becomes cancerous determines
the specific type of blood cancer. For instance, leukaemia can be either
myeloid (or myelogenous), or lymphoid (or lymphoblastic, or lymphocytic). Also,
leukaemias can be distinguished by the maturation stage of the transformed cells.
Acute leukaemias affect blast cells (immature blood cells), and grow very fast.
Chronic leukaemias cause an accumulation of mature cells, leading to slowly
growing cancers. Thus, there are four different classes of leukaemias: Acute
Lymphoblastic leukaemia (ALL), Chronic Lymphocytic leukaemia (CLL), Acute
Myelogenous leukaemia (AML) and Chronic Myelogenous leukaemia (CML)
[9]. However, it is not completely clear whether the hierarchical organisation
is preserved in blood cancers. Myeloid leukaemias seem to be hierarchically
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T lymphocyte
B lymphocyte

Monocyte
Basophil

Neutrophil

Erythrocyte
Thrombocyte Natural Killer

Hematopoietic Stem Cells

Figure 1.2: Representation of continuum differentiation model. Each
dot represents a single cell and its location on a differentiation trajectory. Fig.
adapted from Ref. [7].

organised, whereas acute lymphoblastic leukaemias are not [10, 11, 12].
The origins of the mutations are essential to understanding self-renewal

and differentiation fractions for cancer cells [10, 13]. These probabilities
could be explained by some of the basic hallmarks of cancer [14], such as
sustaining proliferative signalling, resisting cell death, immortality, evading
growth suppressors, and metastasis. The detection of these hallmarks is essential
to tailoring treatments, which depend on classifying each patient within risk
groups [15]. Currently, patients are assigned to a risk group depending on
several factors, including the cell’s morphology, the results of molecular or
biochemical analysis, and the so-called flow cytometry techniques [16, 17]. This
is done by taking samples of the bone marrow (where the haematopoiesis process
occurs) which are then characterised in terms of immunophenotypic patterns
[18], which can be standardised [19].

Mathematical modelling may offer a new perspective in Oncology, specifically
in blood cancers, with a huge potential to develop new strategies to characterise
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tumours and personalise treatments [20, 21, 22]. The cancer hallmarks relevant
to each specific stage of development for each tumour type can be accounted for
in mathematical models, usually as parameters to be estimated or as equations
which model the dynamics of blood cancer development.

Blood cancers, and specifically leukaemias, have been one of the first types of
cancers that has been thoroughly studied by applied mathematicians. It should
be noted that there are many mathematically-grounded studies published in
this field in high impact medical and general-science journals.

Leukaemias are a ‘global’ disease of the bone marrow, and as such spatial
effects are usually ignored. They can be modelled mathematically, in an initial
approach, using ordinary differential equations. More complex models have
used partial differential equations, but to describe the evolution of some kind
of trait or subpopulation, rather than spatial variables. Furthermore, blood cell
counts are an easy way to gather information about the evolution of the disease.
Putting the data together has led to substantial interest in the disease from
modellers and clinicians managing the disease.

Only a small fraction of the data available during routine clinical procedures
is used for diagnosis and incorporated into the models developed so far. In this
thesis we will focus on the role of mathematical models based on differential
equations and in flow cytometry data analysis. Mathematical techniques for
(big-)data analysis [23] also have huge potential for providing answers to specific
questions of relevance to leukaemia, whether alone or in combination with
other mathematical methods. For instance, some studies have pointed out their
potential use in avoiding expert manual gating of the data to identify leukaemic
clones [24], analysing mass cytometry data [25, 26], or predicting treatment
response [27].

Considering all of the exposed above, the main objectives of this thesis read
as follows:

1. To review the current literature respecting leukaemia mathematical
modelling.

2. To develop a mathematical model describing the healthy development of
B lymphocytes, one of the main white blood cells causing leukaemia.

3. To find differences in the immunophenotypical distribution of flow
cytometry data in patients recurring in leukaemia with respect to those
who do not relapse.

4. To apply topological and machine learning methods in order to classify
patients in terms of their relapse risk.
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5. To obtain analytical solutions of tumour-related mathematical models via
the Lie classical method.

Thus, this thesis aims to expand the current methods and mathematical
approaches regarding leukaemia and tumour modelling. In Chapter 2 and
Chapter 3 (Part I) we include mathematical models based on differential
equations, while in Chapter 4 and Chapter 5 ( Part II) we incorporate methods
relying on leukaemia patients data. Moreover, in Chapter 6 (Part III) we consider
a theoretical background for the obtention of solutions of differential equations
describing tumour dynamics. Finally, in Chapter 7 and Chapter 8 (Part IV) we
gather all conclusions and results exposed and include new approaches related
to this thesis and considered as open problems.

Thus, this thesis is organised as follows:

Chapter 2 contains a review of mathematical models based on differential
equations describing the growth and treatment of the most common
leukaemias.

Chapter 3 develops a mathematical model which describes the normal beha-
viour of B lymphocytes, one of the common cells causing acute lympho-
blastic leukaemia.

Chapter 4 finds a collection of biomarkers showing significant differences in
expression levels between relapsed and non-relapsed leukaemia patients
on diagnosis.

Chapter 5 anticipates the risk of relapse in paediatric ALL patients by
combining methods from topological data analysis and machine learning.

Chapter 6 presents three applications of the Lie classical method to obtain
solutions of differential equations relevant in terms of its applicability in
cell dynamics and tumour invasion.

Chapter 7 and Chapter 8 summarise the most important conclusions of the
research and analyses the open problems generated by this study.

Chapter 9 presents the publications related to this thesis.

Appendix A features additional material of stability conditions for the model
presented in Chapter 3.

Appendix B consists of results related to the topological analysis performed
in Chapter 5.
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Appendix C includes additional results for the generators of the models
presented in Chapter 6.
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PART I

Mathematical models of
haematopoiesis and leukaemia





CHAPTER 2

Mathematical modelling of
leukaemia

This chapter is intended to expand the available literature on blood cancers [9,
28] to incorporate more studies and greater detail, by focusing on leukaemia.
Our plan is as follows. Firstly, we summarise mathematical models based on
differential equations describing the growth of myeloid leukaemias. This focus
reflects the fact that myeloid leukaemias are the commonest among adults. The
only models that exist for lymphoblastic leukaemia concern treatment. We then
review mathematical models for different types of leukaemia treatment. Finally,
we discuss the results and summarise our conclusions.

2.1 Mathematical models of myeloid leukaemias

Myeloid leukaemia arises from alterations of cells of the myeloid lineage, and
is considered a clonal disorder of the haematopoietic stem cells (HSCs). The
condition may lead to an increase in myeloid cell, erythroid cell or platelet
counts, not only in peripheral blood but also in the bone marrow. As described
above, the two general types are chronic myeloid leukaemia (CML) and acute
myeloid leukaemia (AML), depending on the maturation stage of the cells. In
CML cells mature during the chronic phase, while in AML blast cells fail to
mature, generating large amounts of blasts, i.e. immature cells [29, 30].

2.1.1 Stem-cell based models of myeloid leukaemias

Stem-cell based models for myeloid leukaemia are based on mathematical models
of the normal blood generation process, called haematopoiesis. The role of stem
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cells in cancer was recently reviewed in [31] in terms of mathematical models
which can characterise cell behaviour in normal cell development. For blood
cells, an important haematopoiesis model was proposed by Marciniak et al
[32]. The main assumption of this model was that the process of differentiation,
i.e., the ability of a cell to change from one type to another, was described in
several discrete maturation stages, beginning with stem cells as the first stage
of maturation.

As cells mature, their proliferation rate increases, while the self-renewal
fraction lowers, where self-renewal was understood as the probability of having
the same properties and fates as their parent cell. This process is summarised
in Figure 2.1. The model includes different cell subpopulations with n different
maturation stages and feedback signalling to regulate haematopoiesis.

Maturity

Proliferation

Self-renewal

c1 c2 c3 cn−2 cn−1 cn

. . .

. . .

Figure 2.1: Schematic representation of the assumptions behind the
model (2.1). Cells were grouped into n different maturation stages, ci with
i = 1, ..., n. As cells mature, and the j index increases, their proliferation rates
pcj increase, whereas the self-renewal fractions acj decrease.

The mathematical model describing the dynamics comprises a set of ODEs
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for the several compartments of normal cells (ci)

d

dt
c1(t) =(2ac1,maxs(t)− 1)pc1c1(t)− dc1c1(t), (2.1a)

d

dt
ci(t) =2(1− aci−1,maxs(t))pci−1ci−1(t)+ (2.1b)

+ (2aci,maxs(t)− 1)pcici(t)− dcici(t),
d

dt
cn(t) =2(1− acn−1,maxs(t))pcn−1cn−1(t)− dcncn(t), (2.1c)

and another set of ODEs for the leukaemic cells (lj)

d

dt
l1(t) =(2al1,maxs(t)− 1)pl1l1(t)− dl1l1(t), (2.1d)

d

dt
lj(t) =2(1− alj−1,maxs(t))plj−1lj−1(t) (2.1e)

+ (2alj,maxs(t)− 1)plj lj(t)− dlj lj(t),
d

dt
lm(t) =2(1− alm−1,maxs(t))plm−1lm−1(t)− dlmlm(t), (2.1f)

where ci = ci(t) denotes the density (or number) of healthy cells in each
maturation stage i = 1, .., n, pci are the proliferation rates of healthy
haematopoietic cells in mitosis, aci,max are the self-renewal fractions, and dci the
death rates for every cell maturation stage. The notation is analogous for the
leukaemic cells, lj = lj(t) for j = 1, ...,m, and the constants plj , alj,max and dlj
for j = 1, ...,m.

Feedback signalling was described in that study using the cytokine effect
function s(t). Cytokines are small proteins which assist in regulating fraction
chemical signalling in cells. Cytokine concentration is modelled by the equation

s(t) = 1
1 + kc cn(t) + kl lm(t) , (2.1g)

where kc and kl are the signalling regulation strength, for both normal and
leukaemic cells, respectively. These parameters are sensitive to the number
of mature healthy and leukaemic cells, cn(t) and ln(t). This signalling was
assumed to control the dynamics of cell proliferation and differentiation in the
mathematical model. Figure 2.2 shows an example of evolution towards the
homoeostatic equilibrium of the healthy haematopoietic cell compartments for
n = 6.
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Figure 2.2: Simulations of the healthy cell dynamics in model (2.1).
Simulations of the evolution of a set n = 6 compartments accounting for
six maturation stages according to the model (2.1). The insets A, B show
more the details of the dynamics of the same simulation. Following [32], the
parameter values were a1 = 0.0865, a2 = 0.1155, a3 = 0.1735, a4 = 0.3465 and
a5 = 0.693 for the self-renewal fractions. For the proliferation rates, p1 = 0.7,
p2 = p3 = p4 = 0.65 and p5 = 0.55 were considered. The death rate was d = 0.3
and signal strength kc = 1.6 · 10−10 cells-1. Cell initial values were c1(0) = 105,
c2(0) = 106 and c3(0) = 107 and null for the other initial values.

The model of Eqs. (2.1) in [33] was built on the basis of the haematopoiesis
model of [32]. The main conclusion of the mathematical study of [33] was that
both self-renewal fractions and proliferation rates could be indicators of poor
prognosis. Similar models were also studied in [34], where some mathematical
properties, including linear stability analysis, and necessary and sufficient
conditions for the expansion of malignant cell clones, were studied for related
models.

A similar model by the same group [35] described the differentiation process
as a two-stage process, but considered instead the multi-clonal nature of
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leukaemia, the feedback processes and the role of treatment. The study
performed numerical simulations for ‘in-silico’ virtual patients, and obtained
estimated parameters from the tumour growth data of two real patients. The
researchers concluded that self-renewal might be a key mechanism in the clonal
selection process. It was also stressed that late relapses could originate from
clones that were already present at diagnosis, a question that has been the
subject of discussion in the biomedical research literature. Stem cell self-renewal
has been reviewed in terms of their impact on the dynamics of cell populations
in [36], concluding that a high self-renewal fraction can lead to faster cancer
growth.

A similar model, [37], accounted for genetic instability through the inclusion
of the possibility of mutations, an essential hallmark in cancer evolutionary
dynamics. Through comparison of patient data and simulations, the authors
highlighted the fact that the self-renewal potential of the first emerging leukaemic
clone would have a major impact on the emergence of clonal heterogeneity so
that it might serve as a biomarker of patient prognosis. A recent study of
the group [38] on acute leukaemias formalised the clonal selection dynamics
via integro-differential equations. They concluded that clonal selection was
driven by the self-renewal fraction of Leukaemic Stem Cells (LSCs), constructing
numerical solutions based on patient data parameters from the existing literature.
These simulations showed that high self-renewal for LSC clones was a marker
of stability in the presence of interclonal heterogeneity.

The model set out in Eq. (2.1) was further used in [39] to study feedback
signals from myelodysplasic syndrome (MDS) clones and their effect on normal
haematopoiesis. The model was fitted using serum samples from 57 MDS
patients and five healthy controls. On the basis of the numerical simulations,
the authors reached the conclusion that a high self-renewal fraction of MDS-
initiating cells may be critical for the development of the disease. It was
conjectured that remission could be achieved if this parameter could be lowered.

Considering the dependence of leukaemic cell to cytokines, the model (2.1)
is compared in [40] to a mathematical model including cytokine-independent
leukaemic cell proliferation. In it, leukaemic cells are not controlled by cell
signalling as in Eq. (2.1g), but instead a death rate is included that increases
with the number of cells in the bone marrow, and acts on all cell types residing
in bone marrow. This allows the authors to explain unexpected responses in
some patients, such as blast crises or remission without chemotherapy. This was
done by assigning patient data to two different groups that differ with respect
to overall survival: those with cytokine-dependent or cytokine-independent
leukaemic cell populations.

13
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2.1.2 Cell-cycle-based mathematical models of myeloid
leukaemias

In some CML patients, symptoms may recur [41]. This is why periodicity is
specifically studied for this disease. Thus, several authors considered the cell
cycle in order to explain periodicity.

The cell cycle is the process regulating cell division. It is a multi-stage
process including, firstly, mitosis (M), the process of nuclear division; and a
stage called interphase, the interlude between two M phases. In the interphase,
three different substages occur: the G1 phase, in which the cell prepares DNA
synthesis; the S phase, where DNA replicates; and the G2 phase, where the cell
prepares for mitosis. Any cell, before going the S phase, can enter a resting state
called G0, where the cell becomes quiescent and remains in a non-proliferating
stage. This process is summarised in Figure 2.3.

Interphase

�  phaseS

�  phaseG1

�  phaseG2

�  phaseG0

�  phaseM

Figure 2.3: Overview of the cell cycle. The G1 phase prepares for DNA
replication and synthesis in the S phase. G2 prepares cells for the mitosis phase
M . While in G1, cells can become quiescent, entering a resting phase G0.

Many mathematical models have considered different aspects of the cell
cycle [42]. However, many of those models, arising from the so-called systems
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biology approach, are quite complex. Due to the periodic nature of the cell
cycle in proliferating cell populations, several mathematical models have tried
to account for this cycling behaviour in a simplified form. Periodicity and other
dynamic behaviours of haematological diseases are reviewed in [43].

Specifically, the model in [44] described the dynamics of blood pluripotential
stem cells. Their approach was to write equations for a population N(t) of cells
in the resting phase G0 and another P (t) of proliferating cells, described by

dN

dt
= −δN − β(N)N + 2β(Nτ )Nτe−γτ , τ < t (2.2a)

dP

dt
= −γP + β(N)N − β(Nτ )Nτe−γτ , τ < t, (2.2b)

where Nτ = N(t − τ), τ being the cell cycle time. The function β(N) =
β0/ (1 + (N/N∗)n) is the mitotic re-entry rate, i.e. the rate of cell entry into
proliferation, where β0, N∗, n are parameters. The parameter δ is the total
differentiation fraction from the G0 phase, and γ is the fraction of irreversible
cell loss from all portions of the proliferating-phase stem-cell population. Taking
values for these parameters from the literature, the authors concluded that
the origin of aplastic anaemia and periodic haematopoiesis could be related to
irreversible cell loss from the blood pluripotential stem compartment.

In [45], Eqs. (2.2) were studied to describe the existence and stability of
long-period oscillations of stem cell populations in periodic chronic myelogenous
leukaemia. This was made possible by studying a contractive return map, such
that a fixed point of the return map gave a stable periodic solution of the model
equation. This was computed in such a way that there was no analytic formula
for the periodic solution in the limiting case n→∞.

Other work based on the (2.2) model, such as [46], gives estimates of
the model parameters for a typical normal human, and explored the changes
in some of these parameters necessary to account for the quantitative data
on leukocyte, platelet and reticulocyte cycling in 11 patients with Periodic
Chronic Myelogenous leukaemia (PCML). Their results indicated that the
critical model parameter changes required to simulate the PCML patient data
were an increase in the amplification in the leukocyte line, an increase in the
differentiation fraction from the stem cell compartment into the leukocyte line,
and the rate of apoptosis in the stem cell compartment. In a companion study
[47], they found that the parameter changes that mimic untreated cyclical
neutropenia correspond to a decreased amplification (increased apoptosis)
within the proliferating neutrophil precursor compartment, and a decrease
in the maximal rate of re-entry into the proliferative phase of the stem cell
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compartment. The case of granulocyte colony stimulating factor treatment was
also studied. Safarishahrbijari and Gaffari [48] used the equations for red blood
cells and platelets from [46] and for leukocytes from [43] to identify parameters
in PCML. The inclusion of new parameters resulted in a better fit of clinical
data and from the data extracted from both platelet and leukocyte models.

Pujo-Menjouet and Mackey [49], performed a local stability analysis of the
model (2.2) and found the conditions for Hopf bifurcation to occur. Periodic
oscillations were studied depending on five haematopoietic stem cell parameters:
the mitotic rate sensitivity, the maximal rate of cell entry into proliferation
from the resting G0 phase, the differentiation and apoptosis rate and the time
to entry into mitosis. Extensions of this work [50], have proven that, under
periodic treatment, there is a periodic solution with the same period. This
could be related to the observed oscillatory behaviour of blood cells’ counts
under treatment in CML.

A different type of models to describe myeloblastic leukaemias have been
constructed on the basis of the work of Rubinow and Lebowitz [51]. The model
itself was based on granulocytopoiesis, also studied by these authors in [52].
In this first work, qualitative analysis was performed, supporting evidence for
alterations which presumably occurs in cyclic neutropenia. For both models they
considered four compartments for healthy cells as shown schematically in Figure
2.4: the active A and G0 cell compartments, representing the proliferative pools,
and the maturation M and reserve R cell compartments, which finally ended
in the blood pool B. For the leukaemic cells, only active and G0 cells were
considered, of which only a certain fraction were released into the blood, with
no further maturation stages.

For this model, and in terms of myeloid leukaemia, the presence of
a leukaemic population destabilises the homoeostatic state of the normal
population, which is stable in the absence of leukaemic cells. In [53], the
authors found differences between normal and leukaemic cell populations but
including treatment into the model from Figure 2.4: firstly, the recovery rate
was higher for normal cells, as compared to leukaemic cells from the action of
cytotoxic treatment. Secondly, the S-phase duration was different for the two
populations. This led the authors to the conclusion that, for patients with a
“slow” growing leukaemic cell population, remission could be achieved with one
or two courses of treatment, whereas for those with a “fast” growing leukaemic
cell population, a similar aggressive treatment achieved remission only at the
cost of great toxic effects on the normal cell population.

These mathematical models described both the processes of normal blood
and myelogenous leukaemia development. It was done the same in [54], but for
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Figure 2.4: Schematic view of the cell compartments in [51]. A,G0,M,R
and B represent different cell compartments, α, β, γ are the corresponding
coupling rates between them, and λ is the irreversible blood cell loss.

CML. The authors showed how CML cells could ultimately outnumber normal
cells. They used the model to study the relationship between proliferation and
maturation and proposed a solution to the apparent contradiction between
decreased proliferation and increased production, by assuming that a greater
fraction of CML cells is produced by division rather than by maturation.

Another mathematical model [55] included details on cyclins D, E and B,
a family of proteins that help to control the cell cycle. Their production has
a direct influence on the transition of a cell in the G0, G1 and G2 phases,
respectively. Flow-cytometry data profiles for three leukaemia cell lines were
analysed in this study (K-562, MEC-1, and MOLT-4, from AML, CLL and ALL
patients, respectively). For the S phase, DNA replication was considered, as
it is key before a cell can produce new daughter cells. The authors assumed
that G = G(CE , t) was the number of cells in G0/G1 at time t with a cyclin E
content CE . Similarly, they denoted by S = S(DNA, t) and M = M(CB , t) the
number of cells in the S and G2/M phases that had DNA content (represented
as the variable DNA) and cyclin B content CB at time t, respectively. These
assumptions taken together led to the model

∂G

∂t
+
∂

(
G · dCE

dt

)
∂CE

= −rG→S(CE) ·G, (2.3a)
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∂S

∂t
+
∂

(
S · dDNA

dt

)
∂DNA

= 0, (2.3b)

∂M

∂t
+
∂

(
M · dCB

dt

)
∂CB

= −rM→G(CB) ·M, (2.3c)

where rG→S , rM→G are the transition fractions from G2/M to G0/G1 and
from G0/G1 to the S phase, respectively. Good agreement was found between
experimental results and the model simulations. This could assist in developing
clonal models of leukaemogenesis. The authors claimed that the model could
help in the identification of heterogeneous leukaemia clones at diagnosis and
post-treatment, and that it could have the potential to predict future outcomes
in response to induction and consolidation chemotherapy as well as relapse
kinetics.

2.1.3 Other data-based mathematical models of myeloid
leukaemia

Myeloid leukaemia models are the most studied in the literature. In Ref.
[56], for example, acute myeloid leukaemia (AML) is described using a multi-
lineage multi-compartment model of the haematopoietic system and feedback
via cytokines and chemokines. Analysis of the model suggested that self-renewal
probabilities, mitotic rates and cytokine growth factors produced in peripheral
blood determined leukocyte homoeostasis. The mitosis rate of cancer was found
to be the parameter with the strongest prognostic value.

A comparison of three mathematical models that describe CML progression
and aetiology was undertaken in [57]. The authors sought to identify which
models could provide the best description of disease dynamics and their
underlying mechanisms. The first considered the following dynamic system

dx0

dt
= axx0(k − z)− bxx0, (2.4a)

dx1

dt
= bxx0 + cxc1(k − z)− dxx1, (2.4b)

dx2

dt
= dxx1 − exx2, (2.4c)

dy0

dt
= ayy0(k − z)− byy0, (2.4d)
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dy1

dt
= byy0 − eyy1, (2.4e)

where x0 were HSCs, x1 healthy progenitors, x2 differentiated cells, y0 LSCs
and y1 differentiated leukaemic cells, with parameters a, b, c, d, e as the
corresponding self-renewal, production and death rates. Also, k was the carrying
capacity and z = x0 + x1 + x2 + y1 + y2 the total number of cells. The second
model, in [58], was a shorter version of the (2.11) model, to be presented in
detail later. The third was [59], which allowed competition between HSC and
LSCs. This latter model was based on the following ODEs:

dx0

dt
= βxxq+

dy0

dt
= βyyq+

+(rxφx − d0 − αx)x0, +(ryφy − d0 − αy)y0,
dxq
dt

= αxx0 − βxxq
dyq
dt

= αyy0 − βyyq

dx1

dt
= axx0 − d1x1,

dy1

dt
= ayy0 − d1y1,

dx2

dt
= bxx1 − d2x2,

dy2

dt
= byy1 − d2y2,

dx3

dt
= cxx2 − d3x3,

dy3

dt
= cyy2 − d3y3.

(2.5)

The healthy cells xi and leukaemic cells yi were considered at different stages
i = 0, ..., 3 of differentiation and a compartment of quiescent cells was also
added for each type, xq and yq. The authors found that it was not possible to
choose between the models based on fits to the data of 69 patients who had
experienced relapse or remission of the disease. They suggested experiments
directly probing the haematopoietic stem-cell niche that could help in choosing
the best model.

Finally, [60] described another model of cancer initiation for CML. The
authors assumed that the clonal expansion of mutant cells is given by a logistic
equation

dx

da
= r − 1

τ
x(1− x), with x(0) = 1

N
, (2.6)

where a is the time since mutation happened, x(a) the frequency of mutant
clones with r relative fitness, and N the total cell population with generation
time τ . q was the rate of detection and u the probability per cell division of
producing a mutant cell. Letting c = r−1

τ , and b = N u c
r , the probability of
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detecting cancer before time t was given by

P (t) =
∫ t

0
b exp(−bm) (1− exp(H(t,m))) dm, (2.7)

for
H(t,m) = −q N

∫ t−m

0

da

1 + (N − 1) exp(−c a) , (2.8)

with m a small probability that the first mutant arose early. Interestingly, this
simple model, based only on the Philadelphia translocation, gave rise to cancer
incidence curves with exponents of up to 3 as a function of age. This behaviour
had been previously thought to be associated necessarily with three mutations,
two of which were unknown. Thus, the model proved that CML incidence data
were consistent with the hypothesis that the Philadelphia translocation alone
could cause CML.

2.1.4 Other theoretical studies of myeloid leukaemias

Cancer initiation and maintenance are typically assumed to be related to cancer
stem cells (CSCs) [61, 62]. Two models for cancer initiation have been derived
using this assumption. The first is a genetic mutation model, where mutations
determine the phenotype of the tumour. In this conceptual framework different
mutations may result in different tumour morphologies, even when starting
from the very same stem cell. Cells inherit the molecular alteration and regain
the ability for self-renewal, which leads to a population of cancer cells. The
second model assumes that different cells serve as cells of origin for the different
cancer subtypes, the so-called CSCs. This model proposes that oncogenic events
occur in different cells, and these produce different kinds of cancer. In this
model, self-renewal potential is limited for the CSCs. Both conceptual models
are shown schematically in Figure 2.5.

[63] constructed a stochastic model that considered drug resistance for CML,
where the probability of treatment failure was approximated by

M0
n!(L−D)Ln−1un

(D +H − L)n , (2.9)

for M0 the initial non-mutant cells, n the quantity of drugs used, u the
probability of mutation after cell division, and finally, the measurable parameters
L, D and H as, respectively, the rate of growth, death and the drug-induced
death rate. From the analysis of the mathematical model, the authors claimed
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2.1. Mathematical models of myeloid leukaemias

Figure 2.5: Different representations of tumour proliferation models.
In the stochastic model, tumour cells are heterogeneous, so that genetic changes
that lead to tumour cells can originate from any cell. In the CSC model, only
a small subset of cancer cells has the ability to initiate new tumour growth.
Figure adapted from Ref. [5].

that although drug resistance prevented successful treatment, resistance could
be overcome with a combination of three targeted drugs.

Finally, several authors have built models of leukaemias using graph-
theoretical methods. Graphs can be used to describe the hierarchical
organisation observed in haematopoiesis, as seen in Figure 1.1. In Ref. [64]
a graph-theoretical model of haematopoiesis was parametrised using publicly
available RNA-Seq data in a high-dimensional space. The high-dimensional data
were later reduced to R2 or R3 using reduction techniques, such as principal
component analysis, diffusion maps and t-distributed stochastic neighbour
embedding, and a PDE model on a graph G was constructed. u(x, t) denoted
the cell distribution at the differentiation continuum space location x ∈ G and
time t. Then, for every cell distribution uk(x, t) on an edge ek, the cell density
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was modelled with advection-diffusion-reaction equations

∂uk
∂t

= Rkuk −
∂ (Vkuk)
∂x

+ Dk

2wk
∂

∂x

(
wk

∂uk
∂x

)
, (2.10)

for x ∈ ek = akbk, where each edge ek was parametrised from ak to bk, and
the following functions were considered: Rk = Rk(x) as the cell proliferation,
Vk = Vk(x) as the advection coefficient, and apoptosis and diffusion terms
Dk = Dk(x) and wk = wk(x), which respectively describe cell fluctuation and
width of a narrow domain around an edge. Using this model, the authors
performed simulations consistent with the evolution of AML populations. A
similar approach was used in [65], where the graphs constructed presented the
essential properties of functioning bone marrow.

2.2 Mathematical description of Chronic Myeloid
Leukaemia Treatments

2.2.1 Imatinib and its basic mathematical modelling

CML has been intensively studied in terms of therapy based on Imatinib. This
drug is a 2-phenyl amino pyrimidine derivative that inhibits a number of tyrosine
kinase (TK) enzymes. Imatinib is specific for the TK domain in ABL (the
Abelson proto-oncogene), c-kit and PDGF-R (platelet-derived growth factor
receptor). In chronic myelogenous leukaemia, the Philadelphia chromosome
leads to a fusion protein of ABL with the breakpoint cluster region, termed
BCR-ABL. Imatinib decreases the BCR-ABL activity. CML treatments have
been strongly influenced by the appearance of imatinib [66], that is now the
standard first-line treatment against the disease. It is a very effective drug with
up to about 70% of people having a complete cytogenetic response (CCyR)
within 1 year of starting imatinib. After a year, even more patients will have
had a CCyR. Many of these patients also have a complete molecular response
(CMR).

The capacity of the drug to impair the proliferation of leukaemic stem
cells was the basic assumption behind the mathematical model of Michor and
co-workers [58]. The model also included the development of resistance to
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therapy and was based on the following system of differential equations:

dx0

dt
= (λ(x0)− d0)x0,

dy0

dt
= (ry(1− u)− d0)y0,

dx1

dt
= axx0 − d1x1,

dy1

dt
= ayy0 − d1y1,

dx2

dt
= bxx1 − d2x2,

dy2

dt
= byy1 − d2y2,

dx3

dt
= cxx2 − d3x3,

dy3

dt
= cyy2 − d3y3,

dz0

dt
= (rz − d0)z0 + ryy0u,

dz1

dt
= azz0 − d1z1,

dz2

dt
= bzz1 − d2z2,

dz3

dt
= czz2 − d3z3.

(2.11)

Here, xi denotes the different populations of normal cells, yi the imatinib-
sensitive leukaemic populations and zi the tumour clones resistant to imatinib.
The indexes i = 0, 1, 2, 3, denote the subpopulations of stem cells, progenitors,
differentiated and terminally differentiated cells in each compartment. The
rate constants for each cell type (x, y, z) are given by a, b and c, and di are the
death rates for i = 0, 1, 2, 3. Cell division rates are given by ry and rz. The
parameter u is the fraction of resistant cells produced per cell division. Finally,
λ = λ(x0) is a decreasing function of x0 describing homoeostasis of normal stem
cells. It models the feedback signals controlling haematopoiesis. Data from 169
CML patients were used to fit the mathematical model in [58]. The authors
obtained numerical estimates for the turnover rates of leukaemic progenitors
and differentiated cells and showed that imatinib dramatically reduced the rate
at which these cells are being produced from leukaemic stem cells. They showed
that the probability of harbouring resistance mutations increases with disease
progression as a consequence of an increased leukaemic stem cell abundance,
and proposed that the time to treatment failure caused by acquired resistance
is given by the growth rate of the leukaemic stem cells. Their bottom line
was that multiple drug therapy is especially important for patients who are
diagnosed with advanced and rapidly growing disease.
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A simplified version of the model (2.11) was studied in [67] by considering
only the stem cell (0) and differentiated cell (1) compartments of healthy (x)
and leukaemic (y) cells, i.e.

dx0

dt
= (rxφ− d0)x0, (2.12a)

x1

dt
= axx0 − d1x1, (2.12b)

y0

dt
= (ryϕ− d0)y0, (2.12c)

y1

dt
= ayy0 − d1y1, (2.12d)

where φ = 1/ [1 + cx (x0 + y0)] and ψ = 1/ [1 + cy (x0 + y0)] are homeostasis
functions for normal and tumour stem cells respectively, and cx, cy are Michaelis-
Menten parameters. By a combination of analysis and simulation, the authors
discussed how any successful therapy would require the eradication of the
pool of leukaemic stem cells; otherwise, progressive disease is very likely. Thus,
successful therapeutic agents must enhance the death rate of this rare population
of cells. Therapies designed to target mitosis of malignant stem cells could not
eradicate the disease quickly. Nevertheless, there has been some controversy
surrounding the potential effectiveness of imatinib to achieve remission [68].

In [69], the immune response targeting leukaemic cells was added to Eqs.
(2.11). Using experimental data from the literature, a mathematical model was
fitted in which immune response was described by delay differential equations.
The authors considered that T cells targetting leukaemic cells could prevent
relapse, and combine with imatinib therapy. The more simplified model in
Eq. (2.12) was later used by [70] to study and numerically simulate treatment
interruptions as a potential therapeutic strategy for CML patients. In many
cases, strategic treatment interruptions led to the elimination of leukaemic cells
in silico. The conclusion was that strategic treatment interruptions could be
a feasible clinical approach to enhancing the effects of imatinib treatment for
CML.

A number of extensions of the (2.11) model have been developed for CML.
For example, in [71], four levels of cell differentiation were included and studied
for the BCR-ABL1 gene, necessary for the pathogenesis of CML. In that study,
data from 290 patients were used, 92 of them treated with dasatinib, 75 with
nilotinib and 123 with imatinib. All treatments elicited similar responses.
Another extension of the model was described in [72], with a focus on more
theoretical aspects, including a stability analysis, and an existence proof for
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positive solutions.
The global dynamics of normal and CML haematopoietic stem cells and

differentiated cells were also studied in [73]. The dynamic was assumed to be
governed by the following system of Lotka-Volterra equations

dx0

dt
= n

(
1− x0 + y0

K

)
x0 − d0x0, (2.13a)

dx1

dt
= rx0 − (d− d2)x1, (2.13b)

dy0

dt
= m

(
1− x0 + αy0

K

)
y0 − g0y0, (2.13c)

dy1

dt
= qy0 − (g − g2)y1, (2.13d)

where x0(t) represents haematopoietic normal stem cells (HSC), x1(t) normal
differentiated cells and y0(t) and y1(t) describe the same subpopulations of
cancer cells. In Eqs. (2.13) n, m, r, q are division rates, d0, d, g0, g death rates,
K the carrying capacity and α ∈]0, 1[ is a constant. The production rates for
differentiated cells are given by d2 and g2. Several optimal control problems
were solved for imatinib, whose effect on the division and mortality rates of
cancer cells produces a suboptimal response. The effect of cyclic combination of
two drugs in CML was studied in [74], and the modelling led to the conclusion
that treatments should start with the stronger drug, and the weaker one should
have cycles of longer duration.

An interaction model between naïve T cells (mature T cells from thymus),
effector T cells (cells which actively respond to stimuli) and CML cancer cells
was described in [75], where Latin hypercube sampling was used to estimate
parameter values due to the lack of data. This is a statistical technique for
generating parameters from a multidimensional distribution. In their conclusion,
the authors explained that the growth rate of CML and the natural death rate
were the most important parameters, suggesting that treatment for CML
patients should focus on these rates. Any drug with a high cost that is included
in the model could be studied in order to obtain optimal treatment, and reduce
not only radiation but also financial benefits. This model was later used in
[76], focusing on cancer x = x(t) and effector y = y(t) cell population dynamics,
by considering a combined treatment with imatinib and the interferon-alpha
(IFN-α) therapy. This last is a protein whose activation produces a cytogenetic
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response in CML patients. The model considered the following ODEs

dx

dt
=β1x(t) ln K

x(t) − γ1x(t)y(t)− ωγ3x(h(t)), (2.14a)

dy

dt
=β2

x(t)
η1 + x(t)y(t)− γ2x(t)y(t)+ (2.14b)

+ inαγ4
y(t)

η2 + y(t)y(t− τ)− µyy(t),

where β1, β2 were the respective reproduction rates, K the maximal tumour
population, η1, η2 Michaelis-Menten terms and γ1, γ2 the cell loss rates due
to interaction. The death rate for effector cells is µy, while tumour death is
modelled by the constants ωγ3 and a function h(t). This function is modelled as
h(t) = t−θe−λt, so that the influence of drugs tends to zero over time. The dose
of IFN-α is modelled as inαγ4, which increases the effector cell population with
a delay τ of about 7 days. The stability analysis proposed, as well as the results
obtained, were able to describe the influence of two types of the treatment. The
authors claimed that the dose of IFN-α has an inhibitory effect on the number
of cancer cells, but its replacement with another type of treatment should be
considered in order to avoid resistance.

Finally, [77] studied optimal control problems for CML, in a model with a
molecular targeted therapy such as imatinib. Naïve T cells, which are already
differentiated T cells, but are precursors for more mature cells called effector
cells, were also included in the model. The cancer cell population was then
activated by the presence of the CML antigen. Aiming to minimise the cancer
cell population and the detrimental effects of the drug, they found that a high
dose level from the beginning was optimal. Also, combination therapy was
better than single dosing.

2.2.2 Modelling the effect of quiescence on Imatinib treatments

Quiescence, which corresponds to the G0 phase of the cell cycle, and its
relationship to drug therapy (in this case, imatinib) is an important factor in
leukaemia because quiescent cells might not be affected by therapy, as drugs
target proliferative cells, and a possible relapse may occur.

Imatinib treatment was studied using Roeder model [78, 79, 80] accounting
for quiescent and proliferative cell compartments. Firstly, in [78] a stochastic
model of haematopoiesis was developed. On the basis of that model, another
was built to describe imatinib-treated patients [79].
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A more advanced model based on partial differential equations (PDEs)
was studied in [80]. This model considered quiescent and cycling stem cells,
denoted by A and Ω, respectively. The authors included a cell-intrinsic function
a(t), which determined the affinity of a cell for residing in A or Ω. With
a(t) ∈ [amin, amax], a quiescent stem cell would enter the cell cycle with
probability ω and a cycling cell would become quiescent with probability α.
These terms were modelled as

ω(Ω(t), a(t)) = amin

a(t) fω(Ω(t)), (2.15a)

α(A(t), a(t)) = a(t)
amax

fα(A(t)), (2.15b)

where the sigmoidal functions fω and fα were defined by

fω(Ω(t)) = 1
ν1 + ν2 exp

(
ν3

Ω(t)
Nω

) + ν4, (2.15c)

fα(A(t)) = 1
µ1 + µ2 exp

(
µ3

A(t)
Nα

) + µ4, (2.15d)

for specific values of the parameters νj , µj , for j = 1, 2 and the scaling factors
Nω and Nα. The dynamics of the HSCs, quiescent (A) and proliferating (Ω),
were governed by these equations:

∂nA
∂t

+ vA ·
∂

∂a
nA = −

(
dvA
da
− ω

)
· nA + α · nΩ, (2.15e)

∂nΩ

∂t
+ vΩ ·

∂nΩ

∂a
=
(
−dvΩ

da
+ τ − α

)
· nΩ + ω · nA. (2.15f)

The functions nA = nA(a, t) and nΩ = nΩ(a, t) represent the cell densities
at affinity a and time t within A and Ω, respectively. Also, vA = vA(a) and
vΩ = vΩ(a) were the corresponding velocities that make vA · nA and vΩ · nΩ
the corresponding cell fluxes for each compartment. Finally, τ was a parameter
which simulates average cell division depending on cell cycle duration. Eqs.
(2.15e) and (2.15f) were the basis for studying leukaemia and how the imatinib
treatment affect its dynamics, in a highly efficient way when it comes to huge
cell populations. They considered the dynamics for every cell subpopulation in
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the following system:

∂n
(i)
A

∂t
+v(i)

A

∂n
(i)
A

∂a
= −

(
dv

(i)
A

da
− ω(i)

)
n

(i)
A + α(i)n

(i)
Ω , (2.15g)

∂n
(1)
Ω
∂t

+v(1)
Ω
∂n

(1)
Ω
∂a

= ω(1)n
(1)
A + (2.15h)

+
(
−
dv

(1)
Ω
da

+ τ (1) − α(1)

)
n

(1)
Ω ,

∂n
(2)
Ω
∂t

+v(2)
Ω
∂n

(2)
Ω
∂a

= ω(2)n
(2)
A + (2.15i)

+
(
−
dv

(2)
Ω
da

+ τ (2) − α(2) − rinh − rdeg

)
n

(2)
Ω ,

∂n
(3)
Ω
∂t

+v(3)
Ω
∂n

(3)
Ω
∂a

= ω(3)n
(3)
A + rinhn

(2)
Ω + (2.15j)

+
(
−
dv

(3)
Ω
da

+ τ (3) − α(3) − rdeg

)
n

(3)
Ω ,

where the super indexes i represent the different cell populations as normal cells
(i = 1), imatinib-affected leukaemic cells (i = 2) and non-affected leukaemic cells
(i = 3). Induced cell death is denoted by a constant rdeg, while the constant rinh
denotes the proliferation inhibition on the proliferating cells n(2)

Ω . The model
in Eq. (2.15) was proved to qualitatively and quantitatively reproduced the
results of the agent-based approach for imatinib-treated patients in [79]. This
was fitted to 894 peripheral blood samples, where the authors claimed that the
therapeutic benefits of imatinib can, under certain circumstances, be accelerated
by being combined with proliferation-stimulating treatment strategies.

[81] described an extension of the (2.15) model. This was done by considering
the cycling cells Ω to be dependant, among other variables, on a counter c(t),
that indicates the position in the cell cycle, with a 49-hour cell cycle. An imatinib
treatment was then incorporated into the model. The authors conclude that
PDE formulation provided a more efficient way of simulating the dynamics
of the disease. In fact, in simulations of imatinib treatment, the PDE and
the discrete-time models diverged more, as in this case a continuous-time
description of the disease dynamics may be more realistic than discrete-time
models. This latter model was later extended [82] by including feedback from
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cells and asymmetric division for stem cells and precursors. The general idea
for this work was also to combine imatinib with a drug that induced cancer
stem cells to cycle. Furthermore, the fact that many patients do relapse after
being taken off imatinib motivates the study methods by which this therapy
can be improved. [83] performed a stability analysis of the model in [81], where
the authors could set differences between AML and CML in terms of transition
from stable equilibrium to unstable periodic behaviour.

2.2.3 Whole body mathematical description of leukaemia and its
treatment

Leukaemia treatment may affect blood flux in several tissues on the body. In
order to understand the behaviour of these body parts during therapy, we
set out a highly descriptive model of leukaemia, chemotherapy and blood flux
throughout the entire body [84]. The inflow rate of drug j is

inflowj = uj
durationj

, (2.16a)

where uj is the drug dose over durationj . This equation was then incorporated
into the following equation, which models drug concentration in the blood CB,j :

VB ·
dCB,j
dt

=
∑

i=H,Li,M,Le,K

Qi · Ci,j −QB · CB,j+ (2.16b)

+ inflowj .

In this equation, VB is total patient blood volume, and Qi the blood flow in
the organs i, such as heart (H), liver (Li), bone marrow (M), lean muscle (Le)
and kidneys K, and so Ci,j was the concentration of drug j in the organs i,
modelled as

Vi ·
dCi,j
dt

=Qi · CB,j −Qi · Ci,j (2.16c)

− kk,j · CB,j − kL,j · Ci,j · Vi,T ,

for every organ i and drug j, where kk,j is the urine excretion rate, kL,j the
elimination rate in the liver, and Vi,T the volume of organ tissue where drug
metabolism occurs. This model, along with many others, are useful in clinical
terms, as it could provide guidance for optimising treatment for each patient in
terms of their characteristics, as explained in Figure 2.6.
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Figure 2.6: Schematic view of the use of mathematical models to help
in patient treatment. Certain features are acquired from leukaemia, and
specific ratios from each patient could be implemented in the mathematical
model as parameters. After the simulation, several parameters might arise that
could be advantageous for specific treatment protocol, optimised for the specific
patient, who could benefit from the personalised drug. This cycle could be
useful for following the disease in the patient. Figure adapted from Ref. [84].

This pharmacokinetic model was reinforced by a pharmacodynamic model,
which took into account the effect of the drug. Drug concentration at the
location of the tumour, which for leukaemia would be the concentration of drug
in the bone marrow (CM,j), was considered for the j effect of the drug as the
function effectj . It was included in the cell cycle as

dPy
dt

= ky−1 · Py−1 − ky · Py − effectj · Py, (2.16e)

where Py was the cell population in phase y (G1, S,G2,M) and ky the transition
term from phase y to y + 1.

Although these equations are described in a general sense, for the specific
case of chemotherapy cycles of intravenous (IV ) daunorubicin (DNR) and
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cytarabine (Ara − C), typical drugs in leukaemia treatment, the reactions
occurred at a subcutaneous level. That is, the drug is injected under the
skin and not below muscle tissue. This drug and its subcutaneous effect
have also been addressed in other studies, such as [85], fitting data from 44
AML patients during consolidation therapy to a pharmacokinetic mathematical
model, obtaining optimised treatment schedules. However, the authors of [84]
considered, when simulating the subcutaneous effect of the therapy, that Eq.
(2.16c) could then be replaced by the following two:

dS

dt
=inflow− ka · kb · S, (2.16f)

VB ·
dCB
dt

=
∑

i=H,Li,M,Le,K

−Qi · Ci,j −QB · CB,j+ (2.16g)

+ ka · kb · S,

where S is the subcutaneous tissue drug delivery, ka the absorption delay and kb
the drug bioavailability. However, the simulations performed were adapted for
two acute myeloid leukaemia patients. Sensitivity analysis method was applied
on the model to identify the most crucial parameters that control treatment
outcome. The results clearly showed benefits from the use of optimisation as
an advisory tool for treatment design.

The whole (2.16) model was a clear example of the usefulness of mathematical
models for therapy planning.

2.3 Mathematical models of Acute Lymphoblastic
Leukaemia treatments with cytotoxic drugs

The current standard treatment of acute lymphoblastic leukaemia involves
different treatment stages: induction, consolidation, re-induction whenever
needed, and maintenance [86]. The aggressiveness of treatments depends on
the classification of patients into risk groups: standard, average or high (Figure
2.7).

The goal of the induction stage is to achieve a rapid reduction in tumour
cell numbers. Next, the consolidation phase should ideally remove any trace of
leukaemic cells in flow-cytometry or blood cell count studies. Re-induction is
considered whenever leukaemic clones reappear early. The maintenance phase
is administered when the first two phases are completed, and is intended to kill
any possible remaining non-measurable quantities of cancer cells. Every phase
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Figure 2.7: Stages of treatment administration for ALL. These statges
depend on the patient risk group.

includes specific treatments, the doses and timings of drugs depending on the
patient’s risk group.

Using one mathematical model or another to describe therapy may lead
to a different understanding of how treatment affects cells in terms of relapse
[87]. For example, if relapse occurs and we consider a Cancer Stem Cell (CSC)
model, a drug might not affect CSCs, or might only affect cells with specific
mutations (in the genetic mutation model). This can be better seen in Figure
2.8.

In ALL, two drugs are used as part of these treament phases: 6-
Mercaptopurine and Methotrexate. Some mathematical models of their actions
are now summarised.

2.3.1 Describing the effect of mercaptopurine

Mercaptopurine (6MP) is an antimetabolite antineoplastic agent with immun-
osuppressant properties. It interferes with nucleic acid synthesis by inhibiting
purine metabolism and is used, usually in combination with other drugs, in the
treatment of or in remission maintenance programmes for leukaemia.
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Figure 2.8: Different representations of tumour proliferation models
through the effect of therapy. Figs. adapted from Ref. [87].

A mathematical model of the effect of 6MP in leukaemia cells was described
in [88]. In this model, the number of cells in the G0/G1-phases was denoted by
G; S in the S-phase, and M in the G2/M -phase. The suffixed variables GI , SI
and MI were the equivalent variables for the thioguanine (TGN) nucleotides,
which were considered as the main active metabolites. That is, the most active
molecules involved in the metabolic process. Apoptotic cells A, and non-viable
cells N (cells that are unable to live), were also included in the model.

The equations for the viable phases of cells are

dG

dt
= −αSG+ 2βM, (2.17a)

dS

dt
= αSG− (αM + γ1)S, (2.17b)

dM

dt
= (1− f)αMS − βM ; (2.17c)
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while those for the cells with TGN incorporated are
dGI
dt

= fαMS + αMISI − βIMI , (2.17d)

dSI
dt

= −αSIGI + 2βIMI , (2.17e)

dMI

dt
= αSIGI − (γMP + αMI)SI . (2.17f)

Finally, the apoptotic and non-viable phases are modelled as
dA

dt
= γ1S + γMPSI − γ2A, (2.17g)

dN

dt
= γ2A− γ3N. (2.17h)

G

GI

SI

S

M

MI

A N

β

γ1 γ2 γ3
αS

(1 − f ) αM

f αM

βI

αSI

αMI

γMPWith TGN
Without TGN

Apoptotic Non-viable

Figure 2.9: Diagram of the model (2.17). The different phases of the cell
cycle are represented for cells with and without TGN incorporated into their
DNA, before they reach the apoptotic and finally the non-viable state.

The dynamics of the model are summarised in Figure 2.9. The model
parameters describe the transition between phases, except for f ∈ [0, 1],
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which measures the fraction of cells continuing the cell cycle after TGNs were
incorporated into the cell DNA. To estimate these parameters, the model was
fitted to data for different cell lines treated with MP. The mathematical model
provided a quantitative assessment to compare the cell cycle effects of MP in
cell lines with varying degrees of MP resistance.

In a different study [89], semi-mechanistic mathematical models were also
designed and validated for MP metabolism, by studying red blood cell mean
corpuscular volume (MCV) dynamics, a biomarker of treatment effectiveness
and leukopenia, a major side effect related to very low percentages of leukocytes.
The model was validated with real patient data obtained from literature and a
local institution. Models were individualised for each patient using nonlinear
model-predictive control. The authors claimed that their approach could
be implemented with routinely measured complete blood counts (CBC) and
a few additional metabolite measurements. This would allow model-based
individualised treatment, as opposed to a standard dose for all, and to prescribe
an optimal dose for a desired outcome with minimum side-effects.

2.3.2 Mathematics of methotrexate treatments

Methotrexate (MTX) is an antimetabolite of the antifolate type. It is thought to
affect cancer by inhibiting dihydrofolate reductase, an enzyme that participates
in the tetrahydrofolate synthesis. This leads to an inhibitory effect on the
synthesis of DNA, RNA, thymidylates, and proteins.

A first mathematical model of MTX effect in ALL was constructed in
[90]. The authors based their approach on the fact that within cells, MTX is
metabolised to more active methotrexate polyglutamates (MTXPG), and these
polyglutamates are subsequently cleaved in lysosomes by glutamyl hydrolase
(GGH). GGH acts as either an endopeptidase or an exopeptidase. To better
define the in-vivo functions of GGH in human leukaemia cells, GGH activity
was characterised with different MTXPG substrates in human T- and B-lineage
leukaemia cell lines and primary cultures. Parameters estimated from fitting
a series of hypothetical mathematical models to the data revealed that the
experimental data were best fitted by a model where GGH simultaneously
cleaved multiple glutamyl residues, with the highest activity on cleaving the
outermost or two outermost residues from a polyglutamate chain. The model
also revealed that GGH has a higher affinity for longer chain polyglutamates.

Further research led to the development of an improved model in [91]:

dMTX

dt
=− (ke + k12)MTX + k21MTXp, (2.18a)
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dMTXp

dt
=k12MTX − k21MTXp, (2.18b)

dMTXPG1

dt
= Vmax−inMTX/V

Km−in +MTX/V
+ kpMTX/V− (2.18c)

− keffMTXPG1 + kGGHMTXPG2−7−

− Vmax−FPGSMTXPG1

Km−FPGS +MTXPG1
,

dMTXPG2−7

dt
= Vmax−FPGSMTXPG1

Km−FPGS +MTXPG1
− (2.18d)

− kGGHMTXPG2−7.

This latter model simulated the concentration of MTXPGi, where the subscripts
denoted the number of glutamates attached to each MTX molecule. This
provided new insights into the intracellular disposition of MTX in leukaemic
cells and how it affects treatment efficacy. The variables MTX and MTXp

denoted the central and peripheral compartments of MTX. The parameters
described: an elimination of plasma (ke); transition between peripheral and
central compartments of MTX (k12, k21); systemic volume (V ); influx of MTX
into the leukaemic blasts (Vmax−in, Km−in); first order influx and efflux (kp and
keff , respectively); FPGS activity (Vmax−FPGS , Km−FPGS) and γ-glutamyl
hydrolase activity (kGGH). Data from 791 plasma samples from 194 patients
were used to validate the model. The study of the mathematical equations
revealed that GGH activity had a higher affinity for longer chain polyglutamates
and FPGS activity was higher in B-lineage ALL in comparison to T-lineage
ALL.

Finally, [92] constructed a model involving a combination of several drugs,
for chemotherapy-induced leukopenia in paediatric ALL patients. The model
accounted for the action of both 6-MP and MTX and their cytotoxic metabolites
6-TGNc and MTXPGs during maintenance therapy. The equations were built
on the basis of the previously discussed models [89, 91]. The model predicted
WBC counts for the available patient data surprisingly well, given the large
variation of individual response patterns in the clinical data. The mathematical
model and algorithmic procedure proposed could be used to guide personalised
clinical decision support in childhood ALL maintenance therapy. Another model
based on Refs. [89, 91] gave rise to a compartmental model in [93], including
pharmacokinetics and a myelosuppression model for ALL, considering both
6-MP and MTX. The model was cross-validated with data from 116 patients,
and simulations of different treatment protocols were performed to exploit the
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optimal effect of maintenance therapy on survival.

2.4 Modelling immune response and immunotherapy in
leukaemias

2.4.1 Immune response mathematical models

Immunotherapy is a type of therapy that stimulates cells within the immune
system in order to help the body fight against cancer or infections. Interactions
between cells are key in understanding processes such as, for example,
proliferation or resource competition between cells. The immune system is one
way in which the body may influence external agents and a greater understanding
of it could be useful in fighting leukaemia.

An extension of the model already described, (2.11), was introduced in [94],
where the CML populations were distributed as stem cells (y0), progenitor (y1)
and mature leukaemic cells (y2). In this study, the concentration of immune
cells was also included and denoted as z. The authors designed a mathematical
model integrating CML and an autologous immune response to the patients’
data by considering the following system

dy0

dt
= b1y1 − a0y0 −

µy0z

1 + εy2
3
, (2.19a)

dy1

dt
= a0y0 − b1y1 + ry1

(
1− y1

K

)
− d1y1 −

µy1z

1 + εy2
3
, (2.19b)

dy2

dt
= a1y1 − d2y2 −

µy2z

1 + εy2
3
, (2.19c)

dy3

dt
= a2y2 − d3y3 −

µy3z

1 + εy2
3
, (2.19d)

dz

dt
= sz − dzz + αy3z

1 + εy2
3
, (2.19e)

where a0, b1 represents transition terms; dz and di, for each cell type i = 1, 2, 3,
denotes cell death; and a logistic growth for progenitor cells y1 was included,
with a reproduction rate r. The immune system action rate µ was included in the
mass action term “µ yi z” in the last term of the leukaemic population equations
from Eq. (2.19a) to Eq. (2.19d). The proliferation of the immune system pool
included a constant factor sz and was activated by mature leukaemia cells with
the term “α y3 z” in Eq. (2.19e). These latter terms included an inhibition of
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the immune cells expansion, as they were divided by “1 + εy2
3”, where ε was the

strength of the immunosuppression. This model included data from patients
treated with imatinib, and their BCR-ABL transcripts, related to leukaemia
diagnosis. The authors considered that variations in BCR–ABL transcripts
during imatinib therapy may represent a signature of the patient’s individual
autologous immune response. The use of immunotherapy was then considered
to be a useful complement to the usual treatment, playing a significant role in
eliminating the residual leukaemic burden.

A general mathematical model for tumour immune resistance and drug
therapy was proposed in [95]. By including tumour cells, immune cells, host
cells and drug interaction, an optimal control problem was constructed. This
would provide a basis for the study of leukaemia immune cell interaction,
shedding some light on the modelling for B leukaemia. For B-cells, fundamental
in both acute and chronic lymphocytic leukaemia diagnosis, a more extensive
model was presented in [96], including four different cell populations in the
peripheral blood of humans: B cells, able to bind to antigens which will initiate
antibody responses; NK cells, critical to the immune system; cytotoxic T cells,
able to kill cancer cells; and helper T cells, which may help other immune
cells by releasing T cell cytokines. This model was considered a tool that may
shed light on factors affecting the course of disease progression in patients, and
focused on sensitivity analysis for parameters and bifurcation analysis. Based on
[95], an immunotherapy approach was considered in [97] by developing a model
focused on B and T lymphocytes and their relation with a chemotherapeutic
agent. The ODE system for this model was the following

dN

dt
= rN

(
1− N

k

)
− c1NI −

µNQ

a+Q
, (2.20a)

dI

dt
= s(t) + s0 − dI + ρNI

γ +N
− c2NI −

δIQ

b+Q
, (2.20b)

dQ

dt
= q(t)− λQ, (2.20c)

where N = N(t) represented the neoplastic B lymphocytes, I = I(t) the healthy
T lymphocytes (this is, the immune cells), and Q = Q(t) the amount of a
chemotherapeutic agent in the bloodstream. In Eq. (2.20a) N follows a logistic
growth with a proliferation rate r, and dies due to both interaction with immune
cells at a rate c1 and with the chemotherapeutic agent at a rate µ. Immune
cells in Eq. (2.20b) have a constant source s0 and die naturally at a constant
rate d and also due to interaction with cancer cells at a rate c2, and with drugs
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at a rate δ. However, there is a production rate ρ of immune cells stimulated by
cancer cells. Both N and I have Michaelis-Menten terms with rates a, γ and b.
For the case of the chemotherapeutic agent Q in Eq. (2.20c), λ is considered
as the washout rate of a given cycle-nonspecific chemotherapeutic drug with
λ = ln(2)/t 1

2
, where t 1

2
is the drug elimination half-life. Finally, the functions

s(t) and q(t) are source terms, which can be considered to be constants. These
parameters were all taken from the literature and claimed to simulate CLL
behaviour. This model reinforces the option of combining treatments such as
chemo- and immunotherapy, where the first may decrease cells to a point where
immune cells may act.

A model for AML was considered in [98] by including the role of leukaemic
blast cells (L), mature regulatory T cells (Treg) and mature effector T cells
(Teff), this last also including cytotoxic T lymphocytes and Natural Killers. The
aim of including such cells was to create an activated immune cell infusion
with selective Treg depletion. This was done by converting the intracellular
interaction into a model, as the following system:

d[L]
dt

= aL

(
kp1

kp1 + [Teff]p
)
− dL[L], (2.21a)

d [Teff]
dt

= aTeff

(
kp2

kp2 + [rreg]p
)
− dTeff [Teff] , (2.21b)

d [Treg]
dt

= aTreg

(
[L]p

kp3 + [L]p

)
− dTreg [Treg] , (2.21c)

where aL, aTeff , aTreg represented influx rates, and dL, dTeff , dTreg the decay
rates. Intercellular interactions were modelled as Hill functions with threshold
constants (k1, k2, k3) with strength p. Two existing steady states were found
for this model in [98], corresponding to leukaemia diagnosis or relapse, and
to complete remission. The authors considered that the model explained the
influence of the duration of complete remission on the survival of patients with
AML after allogeneic stem cell transplantation. In [99], simulations were run for
this model by performing Monte Carlo simulation of trajectories in the phase
plane, and generated relapse-free survival curves, which were then compared
with clinical data. This provided valuable information for the future design of
immunotherapy in AML.
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2.4.2 Including interleukins in mathematical models

Interleukins (ILs) are a group of cytokines first seen to be expressed by white
blood cells (leukocytes). The immune system depends on interleukins as these
signals between cells are useful for acting against several pathogens.

The interaction between the actively responding effector cells E = E(t),
tumour cells (T = T (t)) and the concentration of the cytokine IL-2 (IL = IL(t))
was the basis for the latter study, influenced by [100]. The reason behind the
modelling of this cytokine is due to the fact that IL-2 might boost the immune
system to fight tumours. This was described via the following system:

dE

dt
= cT − µ2E + p1E IL

g1 + IL
+ s1, (2.22a)

dT

dt
= r2(T )− aE T

g2 + T
, (2.22b)

dIL
dt

= p2E T

g3 + T
− µ3IL + s2. (2.22c)

In this model, c was antigenicity or ability to provoke an immune response, 1
µ2

was the average natural lifespan, a the loss of tumour cells by interaction, µ3 the
degraded rate of IL-2, and s1, s2 were treatment terms. The fraction terms were
of the Michaelis-Mentis form, to indicate saturation effects. The function r2(T )
could be described as a constant for linear growth, or with limiting-growth
as logistic or Gompertz terms. With this model, the authors concluded that
with only IL-2 treatment, the immune system might not be enough to clear
tumours. These and other models were reviewed in [101] in terms of equilibrium
points, considering T lymphocytes and their interaction with other cells, and it
was found that there are two stable equilibrium points, one where there is no
tumour, and the other where there is a large one.

Interaction between cells via interleukins was also studied in [102], as IL-21
is being developed as an immunotherapeutic cancer drug. Its effect has been
studied in relation to Natural Killer (NK) cells, and CD8+ T-cells, which have
the ability to make cytokines, with the model

du

dt
= input− µ1u, (2.23a)

dx

dt
= r1x

(
1− x

h1(u)

)
, (2.23b)

dy

dt
= r2y

(
1− y

h2(m)

)
, (2.23c)
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dm

dt
= au− µ2m, (2.23d)

dp

dt
= b1u

b2 + u
− µ3p, (2.23e)

dn

dt
= g(n)− k1pxn− k2pym, (2.23f)

where Eq. (2.23a) represented the concentration of IL-21, Eq. (2.23b) the
concentration of NK in the spleen, Eq. (2.23c) the antitumour CD8+ T-
cells in the lymph, Eq. (2.23d) a facilitating T-cell memory factor useful for
expressing the recognition of foreign invaders for memory T-cells, Eq. (2.23e) a
cytotoxic protein affecting tumour lysis, and finally tumour mass at any time
was represented by Eq. (2.23f). The functions involved were defined in the
monotonic decreasing function

h1(u) = p1u+ p2

u+ q1
, (2.23g)

the function of the memory factor m

h2(m) = h2(0) + σm

1 + m
D

, (2.23h)

and g(n) the dynamics of tumour cell number, which is constructed separately
for each tumour type according to the observed growth curves. Parameters were
estimated in terms of certain values from the literature, so that simulations
were run to show IL-21 as a promising antitumour therapeutic. For more
immunotherapeutic approaches towards cancer modelling, we highlight the work
in [103], where some general aspects of cancer were also reviewed, including
diffusion, angiogenesis and invasion.

Finally, for the case of immune response to leukaemia, other studies have
been undertaken, though not specially in the form of an ODE or PDE system.
Some numerical simulations were run in [104] by proposing an integro-differential
equation model. This study proposed a new possibility for defining the activation
states for cancer, cytotoxic T and T helper cells. Using these definitions, the
authors suggested that it would be easier to organise experiments suitable
for measuring cell states. They also claimed that cell-mediated immunity is
one of the most crucial components of antitumour immunity. Immune T-cells
were studied in [105] in terms of a stochastic model from which was derived a
Fokker-Planck equation. Stability analysis and behaviour of the solutions of the
model led to the conclusion that more accurate simulations of cancer genesis
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and treatment were needed. Lastly, in [106], cytotoxic T cells were dynamically
and structurally analysed in terms of a Boolean network model for T cell large
granular lymphocyte leukaemia. Nineteen potential therapeutic targets were
found, and these were versatile enough to be applicable to a wide variety of
signals and regulatory networks related to diseases.

2.4.3 Novel therapies for leukaemia models: CAR-T cells

Immunotherapy based on chimeric antigen receptor T (CAR-T) cells has been
especially successful in patients who did not respond to the usual types of
chemotherapy. This technique is based on the patient’s own T-cells, which are
extracted from them, genetically modified and reinfused. This modification
allows T-cells to kill tumour cells in a more effective way than the usual
chemotherapies.

We have designed a general model for CAR-T cells in [107] considering
several cell compartments. Firstly, for T-cell leukaemia, the number of CAR-T
cells was denoted by C, leukaemic T cells by L, and normal T-cells by T . The
dynamics of the model were as follows

dC

dt
= ρC(T + L+ C)C − 1

τC
C − αC2 + ρIC, (2.24a)

dL

dt
= ρLL− αLC, (2.24b)

dT

dt
= g(T, L,C)− αTC. (2.24c)

The parameter ρL represents leukaemic proliferation rate, while ρC represents
stimulation of CAR-T cell mitosis after encounters with target cells; τC is
the finite lifespan of CAR-T cells; the parameter α represents death due to
encounters with CAR-T cells; parameter ρI is the external cytokine signal
strength used for division of CAR-T cells; finally, the function g(T, L,C) denotes
the rate of production of normal T cells, assumed to contribute only at a
minimal residual level. The stability analysis of the cell dynamics leads to
several conclusions: firstly, CAR-T cells allow for control of T-cell leukaemia in
the presence of fratricide; secondly, the initial number of CAR-T cells injected,
as well as re-injections, does not affect the outcome of therapy, while higher
mitotic stimulation rates do; lastly, tumour proliferation rates have an impact
on relapse time. A second, similar model was constructed for B cells, in [108],
where CAR-T and now leukaemic B cells where again denoted as C and L, but
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the inclusion of mature healthy B cells B, CD19- B cells P , and CD19+ cells I
was considered. The initial autonomous system of differential equations was

dC

dt
= ρC(L+B)C + ρβIC −

1
τC
C, (2.25a)

dL

dt
= ρLL− αLC, (2.25b)

dB

dt
= 1
τI
I − αBC − 1

τB
B, (2.25c)

dP

dt
= ρP (2aP s(t)− 1)P − 1

τP
P, (2.25d)

dI

dt
= ρI (2aIs(t)− 1) I − 1

τI
I + 1

τP
P − αβIC, (2.25e)

where parameters ρC , τC , ρL and α were the same as the considered in the
previous model. Parameter ρB = βρC , where 0 < β < 1, accounts for the fact
that represented B cells are located mostly in the bone marrow and encounters
with CAR-T cells will be less frequent. Parameters ρP and ρI represent growth
rates for P and I cells, while τI , τB and τP represent the finite lifespan of I,B
and P cells respectively. A signalling function s(t) = 1/[1 + ks(P + I)], with
ks > 0 was constructed as in [32], also including the asymmetric division rates
aP and aI for P and I. This general model is reduced, in order to understand the
dynamics of the expansion of CAR-T cells and their effect on the healthy B and
leukaemic cells, neglecting the contribution of the haematopoietic compartments.
Parameters are estimated from the literature and the main conclusion obtained
is that not only does CAR-T cell persistence depend on T-cell mean lifetime,
but also that reinjection may allow the severity of relapse to be controlled. The
dynamics of the model from Eq. (2.25) are summarised in Figure 2.10.

A general model taken from the literature and applied to CAR-T cells is
set out in [109]. The authors denote s = s(t) as the population of susceptible
blood cells, i = i(t) as the population of infected blood cells, c = c(t) as the
population of leukaemic cells (abnormal cells), and w = w(t) as the population
of white blood cells or immune cells. The dynamics are modelled as

ds

dt
= A− a0s− βsc, (2.26a)

di

dt
= βsc− β0i− β1ci, (2.26b)

dc

dt
= k − k0c− k1cw, (2.26c)

43



2. Mathematical modelling of leukaemia

Blood

Bone marrow

CD
19

P

I

B

L

ρL

ρβ

τP

τI

τB

C

α α

αβ

ρP

ρI

s(t)

ρC

Figure 2.10: Illustration of the dynamics in model (2.25). B cells (in blue)
develop in the bone marrow, arising from progenitor CD19- cells (P ), then
turning, with rate τP , into CD19+ cells I and reaching, with rate τI a mature
stage of healthy B cells B, finally dying after a time τB . During this process, a
signalling effect s(t) affects the proliferation rates of the early stages ρP and
ρI . Leukaemic cells L develop in the bone marrow with rate ρL, invading this
tissue as well as the blood compartment. CAR-T cells C attack mature B
cells and leukaemic cells with rate α, also inducing growth, with rate ρC . In
the bone marrow, they also attack CD19+ cells I, with a lower rate αβ. This
interaction induces growth with rate ρβ . Solid lines represent cell growth and
change between compartments. The dotted line represents the natural death
of the healthy B cells. Dashed lines represent cell death due to CAR-T cell
interaction.

dw

dt
= B + bc− b0w − b1wc, (2.26d)
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where a0, β0, k0, and b0 are the natural death rate of susceptible blood cells,
infected cells, cancer cells, and immune cells, respectively; for susceptible cells,
A is the recruitment rate and β is the loss rate of susceptible blood cells due
to infection; β1 is the decay rate parameter of infected cells; k is the constant
recruitment rate of cancer cells, while k1 and b1 are the loss rates of cancer
and immune cells due to interaction; finally, parameter B is considered as the
external re-infusion rate of immune cells (CAR-T). This model was studied in
terms of stability, and it was observed that the external re-infusion of immune
cells by adoptive T-cell therapy reduces the concentration of cancer cells and
infected cells in the blood.

With the success of T-cell-engaging immunotherapeutic agents, there has
been growing interest in the so-called cytokine release syndrome (CRS), as it
represents one of the most frequent serious adverse effects of these therapies.
CRS is a systemic inflammatory response that can be caused by a variety
of factors, such as infections and certain drugs. A more specific model that
included the action of cytokines was studied by considering Tisagenlecleucel, a
personalised cellular therapy of CAR-T cells for B-cell ALLs, associated with a
high remission rate. It was modelled in [110] by considering the interaction of a
CAR-T cell population cT = cT (t) with B-cell leukaemic population l = l(t), as
well as with healthy B cells h = h(t), both marked with CD19, a characteristic
of B lymphocytes. Other circulating lymphocytes were denoted as c = c(t),
while the number of cytokines, key to understanding inflammatory processes,
was generally considered as s = s(t). The dynamics of the model were as follows:

dcT
dt

= d1cT − d2cT − α1cT l − β1cTh, (2.27a)

di

dt
= kl − α2cT l, (2.27b)

dh

dt
= ah(1− bh)− d3h− β2cTh, (2.27c)

dc

dt
= λ− σc+ α3

cT c

β3 + cT
, (2.27d)

ds

dt
= α4 − β4s+ d4

(
cT

cT +m

)
, (2.27e)

where Eq. (2.27a) represented the dynamics of CAR-T cells with growth rate d1
and natural death rate d2, while α1 and β1 were cell death given by interaction
with leukaemic and healthy cells, respectively. Eq. (2.27b) includes a growth
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rate of leukaemic cells k and a cell death α2 by interaction with cT . Eq. (2.27c)
described a logistic growth of healthy cells with rates a and b, as well as a
natural death rate d3 and death β2 due to interaction with cT . Circulating
lymphocyte dynamics were considered in Eq. (2.27d) to have a constant input
λ, death rate σ and growth dependant on cT , attenuated via a Hill function
with constants α3 and β3. Finally, for Eq. (2.27e), cytokines were secreted at a
maximum rate α4 and altered by a negative feedback mechanism corresponding
to the term −β4s. Furthermore, the stimulation of CAR-T cells increased the
levels of cytokines with rate d4 and a constant m from the correspondent Hill
function. Optimal control theory was applied for this model, controlling the
injection of CAR-T cells and cytokines, to finally minimise the level of cancer
cells and to keep healthy cells above a desired level.

Effector T cells are a group of cells including several T-cell types that actively
respond to a stimulus. Following an infection, memory T cells are antigen-
specific T cells that remain in the long term. This distinction is considered to
help understand the dynamics of CAR-T cells in several models. For instance, a
general description of Tisagenlecleucel was performed in [111], where data from
91 paediatric and young adult B-ALL patients were used for the analysis. The
model describes the expansion of CAR-T cells up to a time Tmax, and then two
phases: a first contraction phase, with rapid decline; and a second persistence
phase, declining more gradually. This was represented by a dynamic system
considering effector E and memory CAR-T cells M , as

dE

dt
= ρ · F (t) · E, for T ≤ Tmax, (2.28a)

dE

dt
= −α · E, for T > Tmax, (2.28b)

dM

dt
= k · E − β ·M, for T > Tmax, (2.28c)

and M = 0, for T ≤ Tmax. After Tmax, effector cells rapidly decline at a rate α
and convert to memory cells at a rate k, which decline at a rate β. However,
before Tmax, only effector cells grow at a rate ρ and proportionally to a function
F (t) which simulates the inclusion with step-wise functions of the co-medication
of corticosteroids and tocilizumab (anti–IL-6 receptor antibody). This simple
model was able to show the long-term persistence used in CAR-T therapies.

The authors in [112] also considered a division between tumour T , effector
CAR-T cells CT and memory CAR-T cells CM in the following model

dT

dt
=Tf(T )− dT (T,CT ) , (2.29a)
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dCT
dt

=pCT (CT )− aCT (CT ) + (2.29b)

+ pCT (T,CM )− dCT (T,CT ) ,
dCM
dt

=pCM (CM )− dCM (T,CM )− aCM (CM ) , (2.29c)

where f(T ) is the density dependence growth of tumour cells, and respectively
for effector and memory CAR-T cells, we have the following: pCT (CT ) and
pCM (CM ) as cell production functions, dCM (T,CM ) and dCT (T,CT ) as cell
inhibition functions, and aCM (CM ) and aCT (CT ) as natural death functions.
For this model, most functions were considered to be linear, except for the
tumour growth function, considered to be logistic growth. Simulations were run
for mice data found in the literature, showing different outcomes depending
on tumour burden or initial therapy dose. The authors considered that a high
CAR-T cell inhibition from tumour leads to tumour escape and absence of
CAR-T cell memory. The same CAR-T cell division was considered in the model
from [113], not only showing a distinction between effector and memory, but
also between the cytotoxic (CD8+) and helper (CD4+) cells. Again, parameter
values were not obtained from actual data, but from simulated clinical data.
Their results suggest the hypothesis that initial tumour burden is a stronger
predictor of toxicity than the initial dose of CAR-T cells. Also, the authors
considered an inflammatory immune response regulated via a Hill function to
maintain a realistic bound on the activation rate of T cells. This function gave
rise to tumour-burden-correlated toxicity, while the correlation of CAR-T cell
dose alone and toxicity was poor.

The pharmacological model in [114] considered both the influence of CAR-T
cells in inflammatory responses with cytokines (such as interleukins IL6, IL10
or interferon IFNγ), as well as the distinction between CAR-T cells into effector
and memory cells. This was also done in order to understand toxicity related to
cytokine release syndrome. In the model, the variable B represents CLL tumour
B cells in peripheral blood (PB). CAR-T cells in PB are divided into effector
EPB and memory MPB cells. This division is also performed for the CAR-T
cells in the tissue compartments (ET and MT ). The complete mathematical
model is shown in Figure 2.11, and reads

dBPB
dt

=rBBPB − dBBP −KBCEPBBPB , (2.30a)

dIL6

dt
=ρendo IL6 + ρmax IL6BPBEP − dIL6IL6, (2.30b)
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dIL10

dt
=ρendo IL10 + ρmax IL10BPEP − dIL10IL10, (2.30c)

dIFNγ
dt

=ρendo IFNγ − dIFNγ IFNγ+ (2.30d)

+ ρmax IFNγBPBEPB

(
aG + (1− aG) bG

IL10 + bG

)
,

dEPB
dt

=Dinj + rEEPBBPB − dEEPB − kinEPB+ (2.30e)

+ koutET − aEEPB(1− f(BPB)) + aMMPBf(B),
dET
dt

=kinEPB − koutET , (2.30f)

dMPB

dt
=rMMPB − dMMPB − kinMPB + koutMT+ (2.30g)

+ aEMPB(1− f(BPB))− aMMPBf(BPB),
dMT

dt
=kinMPB − koutMT . (2.30h)

In this model, parameters rB , rE and rM represent growth rates, while
dB , dE and dM are death rate constants, respectively for B, EPB and MPB

cells. Parameter KBC is the is the effector CAR-T-mediated B-cell CLL
degradation rate constant in peripheral blood. For the inflammatory immune
responses we have, respectively for IL6, IL10 and IFNγ the following constants:
ρendo IL6 , ρendo IL10 and ρendo IFNγ as endogenous synthesis rates; parameters
ρmax IL6 , ρmax IL10 and ρmax IFNγ as production rates; and finally, dIL6 , dIL10

and dIFNγ are the natural death rates by the activated CAR-T cells. Constants
aG and bG are the inhibitory parameters of IL10 on IFNγ production. PB
and tissue compartments are distributed via rate constants kin and kout after
intravenous infusion. Peripheral blood effector memory CAR-T cells are
activated via activation rates aE and aM . Finally, function f(BPB) is chosen as
a Hill function such that f(BPB) = BPB

BPB+h , with h the half-saturation constant
of the tumour. This model was adjusted to data from 3 patients obtained
from the literature. Its main conclusion is that toxic inflammatory response is
correlated to disease burden, i.e. the number of tumour cells in bone marrow,
and not with CAR-T cells doses, contrary to what is observed with most cancer
chemotherapies. Other models have also considered these hypotheses, such as
the discretised model in [115] for CAR-T cells. In this study, a logistic equation
of growth was considered to explain the interaction between CAR-T cells and
malignant tumour cells. The binding affinity of the CAR-T cell construct
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B

EPB

ET MT

MPB

IL6

IL10

IFNγ

ρmax IL6

ρmax IL10

ρmax IFNγ (aG + (1 − aG) bG

IL10 + bG )

rMrE

kin kout kin kout

aE(1 − f(B))

aM f(B)

KBC

dB

rB

dIL10

dIL6

dIFNγ

ρendo IL10

ρendo IFNγ

ρendo IL6

dMdE

Dinj

Figure 2.11: Illustration of the dynamics in model (2.30). The grey
irregular shape represents tumour B-cells in CLL. Yellow triangles represent
the inflammatory cytokines IL6 = IL6(t), IL10 = IL10(t) and interferon
IFNγ = IFNγ(t). The green circle and pentagon represent respectively effector
CAR-T cells from the PB and from the tissue. Squared, blue shapes represent
memory CAR-T cells, also from PB and tissue. Solid lines represent promotion
of cell production, while dotted lines represent cell loss due to natural death or
due to encounters between cells. Short-dashed lines represent exchange between
cell compartments, and finally long-dashed lines represent constant production
in the cell compartments.

(the so-called single-chain variable fragment) and the antigenic epitope (the
molecule binding to the antibody) on the malignant target was considered a
critical parameter for all T-cell subtypes modelled. Both studies show the need
for CAR-T cell doses to account for tumour burden, which would require a
relatively low number of infused CAR-T cells to achieve the desired target.

49



2. Mathematical modelling of leukaemia

2.5 Theoretical studies of leukaemia treatment models

In previous sections we have described leukaemia growth and response to
therapy models that are careful to account for experimental facts or available
data. There have been also many studies of models that focus their attention
more on methodological mathematical aspects, and provide insight of a more
fundamental type. For instance, some of them do not specify which type of
leukaemia or treatment they describe.

For instance, some optimal control problems for general leukaemia treatment
models have been discussed in the literature. In [116] the authors describe the
dynamics of a healthy cell population N(t), a leukaemic population L(t) and a
drug h(t) governed by the equations

dL(t)
dt

=rlL(t) ln
(
La
L(t)

)
− γlL(t)− fl(h)L(t), (2.31a)

dN(t)
dt

=rnN(t) ln
(
Na
N(t)

)
− γnN(t)− (2.31b)

− cN(t)L(t)
1 + L(t) − fn(h)N(t),

dh(t)
dt

=− γhh(t) + u(t), (2.31c)

for L(0) = L0, N(0) = N0, h(0) = 0 and γh the drug dissipation rate. The
effect of the drug was described differently for diseased and healthy cells by
the therapy functions fl(h) and fn(h), respectively. Here, La and Na were the
maximum number of diseased and healthy cells respectively, and γl and γn were
respectively the death rates for the two kinds of cells. Interaction between these
subsets was expressed by the parameter c. Finally, the control function u(t)
is the quantity of drug given to the patient. The authors solved the optimal
control problem using the Pontryagin maximum principle. Later research
provided additional results along these lines in [117], by using a non-Gompertz
interaction term and several phase constraints. Analysis of the switching points
was performed, as well as several simulations. Some optimal therapy protocols
are shown by introducing a ‘shifting-variable’, which avoids the violation of the
normal cell constraint. Other studies have considered the combined effect of
Haematopoietic Inducing Agents (HIA) and Chemotherapeutic Agents (CTA)
on stem cells, with the goal of minimising leukopenia [118]. Proliferating (P )
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and non-proliferating cells (N) were included in the model:

dP

dt
=− γP + β(N)N − exp(−γt)β(Nτ )Nτ+ (2.32a)

+ βHIA(P )N − βC(P )N, τ < t,

dN

dt
=− [β(N)N + δN ] + 2 exp(−γt)β(Nτ )Nτ− (2.32b)

− βHIA(P )N + βC(P )N, τ < t,

for t < τ , where τ was the time for a cell to complete one cycle of proliferation,
γ the apoptosis rate, and δ the random cell loss. The expression Nτ stood for
N(t− τ), introducing a time delay into the equation, and

β(N) = β0
θn

θn +Nn
; (2.32c)

βHIA(P ) = β0,HIA
θm1

θm1 + Pm
gHIA(t); (2.32d)

βC(P ) = β0,C
Pw

θw2 + Pw
gC(t); (2.32e)

were Hill functions measuring the rate of cell re-entry into proliferation, the
effect of HIA, and the effect of CTA on stem cells, respectively. Also,

gHIA(t) =
{

1, 0 < t ≤ τ1,
exp(−s1(t− τ1)), t > τ1,

(2.32f)

simulated the time decay of HIA. Finally, CTA time decay was modelled by

gC(t) =

 1, 0 < t ≤ τ2,
exp(−s2(t− τ2)), τ2 < t ≤ τ3,
exp(−s3(t− τ3)), t > τ3.

(2.32g)

Using this set of equations the authors found that HIA administration increases
the nadir observed in the proliferative cell line compared with when CTA
treatment alone is administered. This is significant in preventing patients
undergoing chemotherapy treatment from experiencing secondary effects.
Furthermore, the steady state value of the proliferating cells was found to be
significantly lower in silico after CTA treatment. The model and accompanying
analysis give rise to an interesting question: Is concurrent administration of
an HIA during chemotherapy a prudent approach for reducing toxicity during
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chemotherapy? There is substantial clinical evidence to suggest that HIAs could
be useful in cases of anemia. They argued that prophylactic benefits of HIAs
use together with chemotherapeutic agents at the onset of treatment, although
rational, should be balanced with the treatment cost and the risk that HIAs
will cause adverse side effects such as venous thromboembolism and tumour
progression.

2.6 Conclusion

Mathematical models have proved to be a essential asset in biomedicine.
Haematological diseases are well suited to mathematical modelling, not only
with differential equations, but also with stochastic models or other techniques.
Therefore, there is a huge amount of data to combine with the mathematical
models already in the current literature. Even so, these models may not be
sufficient to characterise specific disease behaviours in leukaemia diagnosis:
one could take, for example, acute lymphoblastic leukaemia dynamics as a
particularly undeveloped issue, as studies of chronic myeloid leukaemia appear
to us to have attracted more attention. This is probably because myeloid
malignancies are most common in adults.

Despite the importance of the models presented, the only way to integrate
them into clinical practice successfully is to through collaboration between
mathematicians, biomedical scientists and clinicians. This can lead to new
questions and conclusions for both mathematical models and biological problems.
The development of such a useful weapon against cancer should be unified, so
that the models can be useful for the actual observation and treatment of disease
in patients, beyond the theoretical framework. Mathematical models require
refinement in terms of being included in hospital protocols, as a diagnostic
or prognostic tool and this can only be achieved by cooperation between the
mathematical and medical world.

The review exposed in this Chapter can be found in Ref. [119].
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CHAPTER 3

A mathematical model of B
lymphopoiesis

Blood is a tissue under continuous regeneration, and its renovation is one of
the most studied developmental processes in biology [120]. It is initiated by
haematopoietic stem cells and develops through a multi-step differentiation
cascade [7], resulting in the generation of red blood cells, platelets and cells
of the immune system. Figure 3.1(A) shows the standard representation of
haematopoiesis as a tree. At the top, stem cells with the potential for self-renewal
give rise to respective lineage progenitors. These cells become progressively
more specialised as they move towards the bottom of the tree. There are two
major cell lineages: the myeloid line and the lymphoid line. The latter generates
lymphocytes, involved in adaptive immune response, which is responsible for
‘targeted’ reactions to infections.

In this work, we will focus on the description of B lymphopoiesis, i.e. the
development and maturation of B cells. These cells have a range of roles, being
mainly associated with the secretion of antibodies, the elements in charge of
the neutralisation of foreign invaders [121]. Figure 3.1(B) shows a schematic
representation of the route from common lymphoid progenitor to immature B
cells, which eventually exit the bone marrow to complete maturation elsewhere.
Alterations in the generation of B cells are related to diseases like autoimmune
reactions, immunodeficiencies or lymphoproliferative disorders like lymphomas
or leukaemias [122]. The latter have especial incidence in children and constitute
around one third of all childhood cancer cases [123].

Haematopoiesis is a perfect example of self-renewal and stemness in tissues
[6]. Mathematical descriptions have been performed using multi-compartmental,
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Figure 3.1: Representation of haematopoiesis and B-cell lineage in
study. (A) Schematic representation of haematopoiesis. (B) B-cell lineage
starts from a common lymphoid progenitor and then progresses towards
immature B cells, which eventually leave the bone marrow. Hallmarks of
this process are the acquisition of the immunophenotypic cell surface markers
CD19 for the whole B line and CD10 for immature B cells.

continuously structured models [28, 38, 124]. In those models, each cell type in
Figure 3.1(A) can be thought of as a cell compartment that receives input from
the upper elements and sends its output to the lower compartments [125, 126,
127, 128, 129, 130, 131]. Some models have focused explicitly on the B-cell line
[132, 133]. Unlike full haematopoiesis, this process is sequential, simplifying its
mathematical conceptualisation. The compartmental models described above
become nonlinear when the interactions between the different cell stages are
included. Indeed, this process requires some kind of negative regulatory feedback
in order to ensure steady production [134, 135]. This feature is common in the
modelling of biological systems since they normally consist of a considerable
number of interacting components [136].

In the case of B cells, their development depends on the joint action of a
number of factors that support or inhibit B-cell growth and differentiation [137].
A clear description of the participants at each stage of development is lacking
[122], which is in part due to the difficulties in recreating in-vivo conditions
in experimental designs [138]. Mathematical models can help in elucidating
which processes are more influenced by a given type of signal, as has been done
for a number of lineages and scenarios [35, 139, 140, 141, 142], and a better
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comprehension of these interactions can be useful in understanding progression
to malignancies [143].

In this context, a complete picture of B lymphopoiesis would be a useful
complement to those modelling scenarios that consider an input of B cells
or that represent B-cell-related phenomena [108, 133, 144, 145, 146]. Precise
knowledge of the dynamical behaviour of each stage of differentiation stage can
also be of help in clinical situations where disorders are especially linked to the
characteristics of the cell of origin. In leukaemias, for instance, the phenotype
of the tumour cells is an important diagnostic criterion [147]. Our aim in this
paper is thus to develop a model of B lymphopoiesis in the bone marrow. We
will construct and investigate the properties and dynamical behaviour of a series
of models. This will be complemented with data from the literature, which
mainly comes from in-vitro assays and immune reconstitution studies, and with
clinical data from haematological patients.

This chapter is structured as follows: In Sec. 3.1 we explain basic
haematological models, going from a general model to a reduced family of
models more suitable for lymphopoiesis. In Sec. 3.2 we perform a mathematical
analysis of these models, including positivity, boundedness and stability. In
Sec. 3.4 we carry out numerical simulations, taking into account clinical data
and information from the literature. In Sec. 3.5 we discuss these results and
examine the potential of these models to describe the process, concluding with
the kind of research opportunities that this analysis paves the way for.

3.1 Mathematical models and methods

Our aim here is to describe B-cell development taking into account what the
data can tell us about the structure of the population of this haematopoietic
line. An illustration of the representation of cell development can be found in
[32, 36], where the authors proposed n maturation stages for a cell population
un = un(t), with t ∈ R representing time. In this case, u1 would represent
stem cell population, un a mature specialised cell and ui (i = 2, . . . , n − 1)
intermediate stages.

The model was studied in terms of proliferation rates pi = pi(t) and the
so-called self renewal fraction ai = ai(t), for each maturation stage i = 1, ..., n.
The latter is considered to be the probability of a cell remaining in the same
cell compartment after mitosis. The authors assumed that cells at stage i
enter mitosis with a rate pi, resulting in a total number of 2piui after mitosis.
Then, with probability ai, they remain in the same compartment, whereas with
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probability 1 − ai they go on to the next maturation stage. Therefore, each
cell compartment has an output of piui and an input 2piaiui from their own
compartment. Consequently, the previous compartment (except at the first
stage) provides the input corresponding to the number of cells that go on to
the next maturation stage after mitosis: 2pi−1(1− ai−1)ui−1. Lastly, mature
cells die at a rate d, and they are not considered to enter mitosis. If we consider
n = 3 stages for stem cells (u1), intermediate cells (u2) and specialised cells
(u3), the result is the following system of equations:

du1

dt
= p1(2a1 − 1)u1, (3.1a)

du2

dt
= p2(2a2 − 1)u2 + 2p1(1− a1)u1, (3.1b)

du3

dt
= 2p2(1− a2)u2 − du3. (3.1c)

B cells are far from the haematopoietic stem cells since they are already
committed to the B line, thus losing part of their potential for self-renewal.
We then choose to specify cell behaviour in each compartment in terms
of proliferation and maturation, i.e. progression to the next stage, and
to restrict the system to three different cell compartments, considering the
most common immunophenotypical characterisation used in clinical practice
[18]. The first compartment would also receive input from previous lymphoid
progenitors. However, this early compartment is smaller and thus a constant
source term contribution would be less significant [148]. Furthermore, this input
is also regulated, which would require adding an equation from the previous
compartment, and similarly for even earlier compartments. Our aim was to
restrict the analysis to the CD19+ fraction of the B-cell line, as suggested by
the data (see Section 3.3).

Thus we will consider three compartments accounting for the different
maturation stages: early B cells (C1 = C1(t)), intermediate B cells (C2 = C2(t)),
and finally late B cells (C3 = C3(t)), where t ∈ R represents time. A
compartmental model can then be written as

dC1

dt
= ρ1C1 − α1C1, (3.2a)

dC2

dt
= ρ2C2 + α1C1 − α2C2, (3.2b)

dC3

dt
= α2C2 − α3C3. (3.2c)
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Note that this formulation is equivalent to the model from Eq. (3.1) with
ui = Ci for i = 1, 2, 3 and parameters ρi = pi, αi = 2pi(1− ai) for i = 1, 2, and
α3 = d.

Early B cells, described here by Eq. (3.2a), have a proliferation rate ρ1 and
a transition rate into intermediate B cells of α1. Analogously, the proliferation
rate for intermediate B cells and transition rate into the late compartment are
ρ2 and α2, as described in Eq. (3.2b). In this equation, a fraction of α1C1 cells
comes from the early B compartment. This also happens with the α2C2 cells
that change their phenotypes from the intermediate B-cell into the late B-cell
compartment. Late B cells in Eq. (3.2c) are not considered to enter mitosis
and they go into the blood flow with a blood transition rate α3.

This compartmental model needs to be complemented with a regulatory
system involving cell feedback signalling s(t). Different types of signalling and
the importance of the regulation of self-renewal in homeostatic (steady) state
have been previously studied in the literature [35, 129, 134, 135, 139, 140,
141]. In our case, there are different ways of specifying which cells participate
in signalling and through which processes. In this Chapter we consider two
different hypotheses. The first is that signals are produced either by late cells
(model 1) or by all cells (model 2). The second is that signals can alternatively
affect either the proliferation rate (model A) or the transition rate of the model
(model B). Therefore, we will consider four possibilities regarding feedback
signalling. This is summarised in Figure 3.2.

Figure 3.2: Representation of the different feedback signalling possib-
ilities. (A) The signal may be produced by the most mature cells and then
affect the previous compartments (model 1); or it may be produced by all cells,
influencing the whole population (model 2). (B) Signalling can alternatively
affect either the proliferation rate (model A) or the transition rate (model B).
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As stated in the introduction, the precise number and role of interacting
elements is unclear. The basic immune system chemical messengers are the
cytokines, proteins that control cell production. They can be generated by
microenvironmental elements but also from cells themselves [149]. For B cells,
a number of cytokines have been shown to be relevant: IL-7 for proliferation,
differentiation (transition) and survival [150], and SCF and FLT3LG [151] for
proliferation of early stages [152]. Evidence in this regard comes mainly from
in-vitro and murine models and differences with humans can be significant
[138]. Due to this uncertainty and complexity we decided to follow an implicit
formulation for the signalling as in [133], where instead of including each
contributor explicitly we consider the systemic action of each, and gather them
together in a single function s(t).

With respect to the form of this signalling function s(t), we follow the
development set out in [32]. First, let us consider a maximal signal ρS , which
is self-limited with rate αS . Consider then a number of cells N = N(t) that
regulates the production of this signal in such a way that it decreases when
there is a large number. Thus, a general signalling S = S(t) can be modelled as

dS

dt
= ρS − αSS − βSN, (3.3)

where β is the inhibitory influence of cells N . By making a change of variables
s(t) = αS/ρS · S(t) and k = β/αS , we obtain a differential equation whose
quasi-steady state is s(t) = 1/(1 + kN(t)). A rigorous analysis of this quasi-
steady state approximation can be found in [153]. Signal concentration depends
on the number of cells of type N . Following the explanation in Figure 3.2 we
will consider the case when only the late cells participate in signalling, i.e.

s1(t) = 1
1 + kC3

, (3.4)

or the case where all cells participate

s2(t) = 1
1 + k

∑3
i=1 Ci

. (3.5)

Note that s(t) is a decreasing function of the cell numbers Ci so it has an
inhibitory role. The parameter k measures the strength of the inhibitory
feedback.

To sum up, we will consider the models:
dC1

dt
= sρρ1C1 − sαα1C1, (3.6a)
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dC2

dt
= sρρ2C2 + sαα1C1 − sαα2C2, (3.6b)

dC3

dt
= sαα2C2 − sαα3C3. (3.6c)

Feedback signalling affects either proliferation (signal sρ = sρ(t)) or transition
rates (signal sα = sα(t)). The form of the signals sρ, sα depends on the signalling
source, either s1(t) or s2(t). This yields four possible models, summarised in
Table 3.1.

Signalling 1. Late cells 2. All Cells

A. Affecting proliferation Model A1 Model A2
(sρ = s1, sα = 1) (sρ = s2, sα = 1)

B. Affecting transition Model B1 Model B2
(sρ = 1, sα = s1) (sρ = 1, sα = s2)

Table 3.1: Mathematical models considered depending on signalling.

3.2 Theoretical results

3.2.1 Existence, boundedness and positivity of solutions

Models A can be written as
dC1

dt
= ρ1C1

1 + kN
− α1C1, (3.7a)

dC2

dt
= ρ2C2

1 + kN
+ α1C1 − α2C2, (3.7b)

dC3

dt
= α2C2 − α3C3, (3.7c)

and models B have the form
dC1

dt
= ρ1C1 −

α1C1

1 + kN
, (3.8a)

dC2

dt
= ρ2C2 + α1C1

1 + kN
− α2C2

1 + kN
, (3.8b)

dC3

dt
= α2C2

1 + kN
− α3C3

1 + kN
. (3.8c)
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Feedback signalling can depend on cells from the late stage with N = C3 (models
A1 and B1 with signal s1(t) as in Eq. (3.4)) or on all cells with N =

∑3
i=1 Ci

(models A2 and B2 with signal s2(t) as in Eq. (3.5)).

Theorem 3.2.1. Let us consider the following set

Q = {(C1, C2, C3) ∈ R3 : C1, C2, C3 > 0}, (3.9)

and the initial values in Q

C1(t0) = C0
1 , C2(t0) = C0

2 , C3(t0) = C0
3 , (3.10)

Then, the initial value problem for either Eqs. (3.7) or Eqs. (3.8) has a unique
local-in-time solution for each t ∈ [t0 − ε, t0 + ε], for some value ε > 0.

Proof. The existence of a solution for systems from Eq. (3.7) and Eq. (3.8) is
guaranteed for each (C1, C2, C3) ∈ Q by continuity of the functions

fρ1 = fρ1 (C1, C2, C3) = ρ1C1

1 + kN
− α1C1, (3.11a)

fρ2 = fρ2 (C1, C2, C3) = ρ2C2

1 + kN
+ α1C1 − α2C2, (3.11b)

fρ3 = fρ3 (C1, C2, C3) = α2C2 − α3C3, (3.11c)

and

fα1 = fα1 (C1, C2, C3) = ρ1C1 −
α1C1

1 + kN
, (3.12a)

fα2 = fα2 (C1, C2, C3) = ρ2C2 + α1C1

1 + kN
− α2C2

1 + kN
, (3.12b)

fα3 = fα3 (C1, C2, C3) = α2C2

1 + kN
− α3C3

1 + kN
, (3.12c)

where again N = C3 or N =
∑3
i=1 Ci. Boundedness of the respective partial

derivatives of fαi and fρi for i = 1, 2, 3 proves that they satisfy the Lipschitz
conditions, and therefore the solutions of systems from Eq. (3.7) and Eq.
(3.8) with initial values as in Eq. (3.10) are unique by the Picard-Lindelöf
theorem. �

Henceforth we will consider that all parameters ρi, αi and initial conditions
C0
i are positive for i = 1, 2, 3.
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Theorem 3.2.2. The solutions of Eqs. (3.7) and Eqs. (3.8) with (C0
1 , C

0
2 , C

0
3 ) ∈

Q are positive.

Proof. Let us consider the functions fρi , fαi with i = 1, 2, 3 from Eqs. (3.11)
and Eqs. (3.12), respectively. As fρi , fαi > −αiCi, we know that

dCi
dt

> −αiCi. (3.13)

By integrating both sides of the equation from t0 to t we obtain

Ci(t) > C0
i exp(−αit) > 0. (3.14)

And therefore all solutions Ci(t), i = 1, 2, 3 are positive over their domain of
definition. �

Theorem 3.2.3. The solutions C1(t), C2(t), C3(t) of Eqs. (3.7) with
(C0

1 , C
0
2 , C

0
3 ) ∈ Q are bounded.

Proof. In model from Eq. (3.7) if we consider C1 to be unbounded, then

lim
C1→∞

dC2

dt
=∞, (3.15)

which would imply that C2 would also be unbounded, and analogously for the
case of C3. We could then write

lim
Ci→∞

Ci
1 + kC3

= lim
Ci→∞

Ci

1 + k
∑3
j=1 Cj

= 1
k

for i = 1, 2, 3. (3.16)

Let us now consider the functions fρi from Eq. (3.11). From Eq. (3.16) we get

fρ1 <
ρ1

k
− α1C1, (3.17)

and then for all t
C1 < Ae−α1t + ρ1

kα1
, A ∈ R, (3.18)

which yields that C1(t) is bounded. Considering C1(t) < M1 ∈ R, for all t, then

fρ2 <
ρ2

k
+ α1M1 − α2C2, (3.19)

and integrating as above implies C2 is bounded. Considering C2 < M2 ∈ R,

fρ3 < α2M2 − α3C3, (3.20)

and thus C3 is also bounded. �
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For the models B, ruled by Eqs. (3.8), we can sum the three equations to
obtain

dCT
dt

= ρ1C1 + ρ2C2 −
α3C3

1 + kN
, (3.21)

where CT = C1 + C2 + C3. It is clear that for C1 and C2 sufficiently large
the negative term makes only a small contribution and thus solutions are not
bounded. This implies that models in which signalling affects only transition
rates are not appropriate for representing biological processes of this kind.

3.2.2 Steady States and stability conditions

Biological processes in homeostasis are stable and robust. In addition to being
mathematically well posed, we need to ensure that the models have a positive
stable equilibrium in which the three populations coexist. In this Section we
study the existence of such states and their local stability. We focus on models
A (Eq. (3.7)), since models B (Eq. (3.8)) do not lead to biologically relevant
dynamics. An expanded analysis of the stability conditions for certain steady
states of models A can be found in Appendix A.1. Further analysis of models B,
showing that they have only unstable non-trivial positive equilibria, is presented
in Appendix A.2.

Model A1. Let us consider last stage signalling sρ = s1(t) as in Eq. (3.4)
affecting the proliferation term, i.e. we study Eq. (3.7) with N = C3. The
three steady states for this model are

PA1
1 = (0, 0, 0), (3.22a)

PA1
2 =

(
0, α3(ρ2 − α2)

kα2
2

,
ρ2 − α2

kα2

)
, (3.22b)

PA1
3 =

(
α3(ρ1 − α1)(α2ρ1 − α1ρ2)

kα2
1α2ρ1

,
α3(ρ1 − α1)
kα1α2

,
ρ1 − α1

kα1

)
. (3.22c)

The Jacobian matrix of the system at any point (C1, C2, C3) is

JA1(C1, C2, C3) =


ρ1

C3k + 1 − α1 0 − C1kρ1

(C3k + 1)2

α1
ρ2

C3k + 1 − α2 − C2kρ2

(C3k + 1)2

0 α2 −α3

 .

(3.23)
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Substituting PA1
1 = (0, 0, 0) in Eq. (3.23) we get the eigenvalues

λA1
1,1 = −α3, (3.24a)
λA1

1,2 = ρ1 − α1, (3.24b)
λA1

1,3 = ρ2 − α2. (3.24c)

This is the trivial equilibrium that would be unstable in normal homeostatic
processes. Instability conditions are

ρ1 > α1, or ρ2 > α2. (3.25)

As we consider PA1
2 > 0, it must be ρ2 > α2, and therefore PA1

1 is unstable.
For PA1

2 , we obtain

λA1
2,1 = α2ρ1

ρ2
− α1, (3.26a)

λA1
2,2 = −α3

2 −
√
α3(4α2

2 − 4α2ρ2 + α3ρ2)
2√ρ2

, (3.26b)

λA1
2,3 = −α3

2 +
√
α3(4α2

2 − 4α2ρ2 + α3ρ2)
2√ρ2

. (3.26c)

This equilibrium point corresponds to a situation where the less differentiated
compartment disappears and the system is maintained only by the proliferation
of the second, leading to mature cells. As before, this is not a biologically
feasible situation, thus this equilibrium must be unstable. Since R(λ2,2) < 0
and R(λ2,3) < 0, then α2ρ1

ρ2
− α1 > 0, which means that for PA1

2 to be unstable
we must have

α2ρ1 − α1ρ2 > 0. (3.27)

From the positivity of the non-trivial equilibrium point PA1
3 we require

ρ1 > α1, (3.28a)
ρ1

ρ2
>
α1

α2
. (3.28b)

Conditions (3.28b) and (3.27) are identical which means that the existence of
this positive equilibrium implies the instability of PA1

2 . Stability conditions for
PA1

3 are lengthy and can be found in Appendix A.1.
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Model A2. Let us know focus on the model given by Eqs. (3.7) with
N =

∑3
i=1 Ci. The equilibria are

PA2
1 = (0, 0, 0), (3.29a)

PA2
2 =

(
0, α3(ρ2 − α2)
kα2(α2 + α3) ,

ρ2 − α2

k(α2 + α3)

)
, (3.29b)

PA2
3 =

(
α3(ρ1 − α1)(α2ρ1 − α1ρ2)

α1kβ
,
α3ρ1(ρ1 − α1)

kβ
,
α2ρ1(ρ1 − α1)

kβ

)
,

(3.29c)

where
β = (α2α3ρ1 + α1(α2ρ1 + α3(ρ1 − ρ2))) . (3.30)

The Jacobian matrix is

JA2 =

 −α1 + (s−1 − kC1)s2ρ1 −C1ks
2ρ1 −C1ks

2ρ1
α1 − C2ks

2ρ2 −α2 + (s−1 − kC2)s2ρ2 −C2ks
2ρ2

0 α2 −α3

 .

(3.31)
Substituting PA2

1 in Eq. (3.31) we obtain

λA2
1,1 = −α3, (3.32a)
λA2

1,2 = ρ1 − α1, (3.32b)
λA2

1,3 = ρ2 − α2. (3.32c)

As before, for this equilibrium to be unstable we should have either ρ1 > α1
or/and ρ2 > α2. From the positivity of PA2

2 , it must be the case that ρ2 > α2.
For PA2

2 , we obtain the eigenvalues

λA2
2,1 = α2ρ1

ρ2
− α1, (3.33a)

λA2
2,2 = α2

2α3 − 2α2α3ρ2 − α2
3ρ2 + h(α2, α3, ρ2)

2ρ2(α2 + α3) , (3.33b)

λA2
2,3 = α2

2α3 − 2α2α3ρ2 − α2
3ρ2 − h(α2, α3, ρ2)

2ρ2(α2 + α3) . (3.33c)

where h = h(α2, α3, ρ2) such that

h = √α3

√
2α2

2α3(α3 − 2ρ2)ρ2 + 4α3
2(α3 − ρ2)ρ2 + α3

3ρ
2
2 + α4

2(α3 + 4ρ2).
(3.34)
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As in the previous model, the existence of PA2
3 as a positive equilibrium

influences the stability of PA2
2 . For the positivity of PA2

3 we have a first set of
conditions

β > 0, (3.35a)
ρ1 > α1, (3.35b)

α2ρ1 > α1ρ2; (3.35c)

or a second set of conditions

β < 0, (3.36a)
ρ1 < α1, (3.36b)

α2ρ1 < α1ρ2. (3.36c)

Let us first consider that Eq. (3.35) holds. Then, in Eq. (3.33), the eigenvalue
λA2

2,1 is positive and PA2
2 would be unstable. On the other hand, if Eq. (3.36)

holds, then in Eq. (3.33) the eigenvalue λA2
2,1 < 0. Then PA2

2 would be stable
whenever

|R(h)| > α2
2α3 − 2α2α3ρ2 − α2

3ρ2 (3.37)

for h as defined in Eq. (3.34).
In this case, for the stability of PA2

2 , the difference with model A1 is the
existence of a denominator β (Eq. (3.30)). The stability conditions for PA2

3
are not shown here for reasons of space, but they are presented in Appendix
A.1. Stability conditions related to model B, as well as a summary of all the
stability conditions depending on both models, can be found in Appendices A.2
and A.3, respectively.

3.3 Data

3.3.1 Patients

Bone marrow samples from six individuals of paediatric age (1 to 13 years)
were used to estimate cell subset proportions. Four patients diagnosed with
Idiopathic Thrombocytopenic Purpura (1 from Jerez Hospital and 3 from Niño
Jesús Hospital) and two patients with neutropenia (Jerez Hospital). Due to the
difficulty in obtaining healthy bone marrow samples from patients of paediatric
age, we selected the above as surrogate examples of normal B-cell development.
Bone marrow samples were extracted from these patients in order to check
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for more severe disorders, but they were later diagnosed with B cell-unrelated
diseases. Sample inspection further ensured lack of B-line affection. Instances
of this can be found in the literature [154, 155].

3.3.2 Flow Cytometry

Bone marrow samples were analysed by flow cytometry. This technique
measures the expression of the immunophenotypic markers that characterise
each maturation stage. Marker expression for both hospitals’ data was acquired
on a FACSCanto II flow cytometer following the manufacturer’s specifications
Becton Dickinson (BD) for sample preparation. Samples were stained using an
8-colour panel consisting of the following six fluorochrome-conjugated antibodies
provided by BD: CD38 FITC/ CD10 PE/ CD34 PerCP-Cy5-5/ CD19 PE-Cy7/
CD20 APC/ CD45 V-450. This panel allows for the identification of B cell
subpopulations [147]. Forward (FSC) and side scatter (SSC) were also measured.

Samples were preprocessed removing debris, doublets and marginal events as
is routinely done in clinical and computational flow cytometry [23]. CD19+ cells
were then gated in order to select B lymphocytes [156]. Since the model consists
of three B cell populations, we performed k-means clustering on each sample,
including all B cell markers, with 3 predefined clusters. The algorithm was
initialised randomly and 100 random sets were generated, selecting the one with
lower within-cluster variation. Following standard immunophenotyping of B
cells [18], clusters were classified into early (CD45-/CD10+), intermediate
(CD45+/CD10+) or late (CD45+/CD10-) B cells. Proportions were then
computed with respect to the total B lymphocyte count (CD19+ population),
which correlates with experimental data [148]. Figure 3.3 shows the three stages
of the process. All computations were carried out in RStudio using packages
flowCore [157] and flowPeaks [158].

3.4 Numerical results

3.4.1 Parameter estimation

In the models presented above there are two parameters related to proliferation
ρi (i = 1, 2), three related to compartmental transitions αi (i = 1, 2, 3), and
another related to the strength of signalling, the inhibition constant k.

A direct measure of the proliferation rates for the specific subsets considered
in this Chapter is lacking, but we can provide an estimation based on qualitative
biological information. Normal B-cell development can be compared to data
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Figure 3.3: CD19+ B cell subpopulation gating in flow cytometry data.
(A) B Lymphocyte selection in grey (CD19+ population). Y-axis represents
cellular complexity, which is low for lymphocytes, and X-axis represents B
Lymphocyte surface antigen CD19. (B) Within B population, three clusters
were found corresponding to three maturation stages: early, intermediate and
late populations. As B cells mature, they gain expression of CD45 antigen and
lose expression of CD10 antigen [18]. (C) Boxplots with proportions of each
maturation stage from 6 patients displaying mean and 1st and 3rd quartile.
Mean values with standard deviations: 0.083±0.009, 0.648±0.145, 0.268±0.192.

from autologous bone marrow transplantation. This type of transplantation
is more likely to reproduce developmental ontogeny, especially if there is no
prior or coadjuvant anti-B-cell therapy [159]. In this case B-cell progenitors
can be detected in bone marrow as early as 1 month after transplantation
[160, 161], and in blood after some delay [162]. In-vitro studies with mice
show that proliferation rates are of the order of magnitude of days [149, 163,
164]. Human lymphoid cultures suggest doubling times of 1 day [165]. With
respect to the relative values, current schemes for B-cell maturation indicate
that upon CD19 acquisition there is sustained proliferation that decreases as
the cell matures [149, 166, 167]. Late B cells already express B-cell receptor
and a negative selection process occurs prior to this [137, 168]. Based on this
we can consider that the net production rate of intermediate cells is lower than
early cells (ρ1 > ρ2).

In order to obtain values for transition rates we make use of steady state
expressions given by (3.22c) or (3.29c). These values can be compared to the
flow cytometry data of normal bone marrow (see Section 3.3). However, in our
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simulations we are measuring absolute cell counts while flow cytometry is only
able to measure relative cell proportions. The positive non-trivial equilibrium
(C∗1 , C∗2 , C∗3 ) given by (3.22c) or (3.29c) satisfies the relationships

C∗2
C∗3

= α3

α2
, (3.38a)

C∗1
C∗2

= α2ρ1 − α1ρ2

α1ρ1
. (3.38b)

These quantities can be obtained from the analysis of the relative abundance
of the three different populations. Thus, for each blood transition rate α3 we
can obtain values of α1, α2 that agree with steady-state data and at the same
time belong in the positive stability region of parameter space. An example of
the correlation found between transition rates is shown in Figure 3.4. The order
of magnitude of α3 can be estimated as follows. The term α3C

∗
3 gives the total

number of B cells per hour sent to blood by the bone marrow in homeostatic
circumstances. In mice, bone marrow produces around 0.1% of the steady state
population per hour [169]. In humans, the total steady-state B-lymphocyte
population can be obtained from lymphocyte proportions and bone-marrow
volumes from the literature and we estimate it to be 1010 cells [170, 171, 172,
173, 174]. This yields a B-cell production of 107 cells per hour, and given that
C∗3 ∼ 109 we estimate α3 to be of the order of magnitude of 10−2 h−1.

The last parameter to be determined is the inhibition constant k. Inspection
of steady states shows that, given transition and proliferation rates of the order
of magnitude of days, k is of the order of magnitude of the inverse of the total
steady-state population k ∝ (C∗1 + C∗2 + C∗3 )−1. The precise values for k and
α3 are selected so that we recover steady-state values and reconstitution times
compatible with the literature cited above. Ranges of parameters in agreement
with positivity, stability and steady-state conditions are shown in Table 3.2.

With respect to the initial state, the absolute number of mononucleated
transplanted cells (MNC) is in the range of 109 cells [162]. From these cells, only
a 1% are B early cells (107 cells) [148, 175]. These cells travel through blood
into the bone marrow but only 10% of cells eventually reach the bone marrow
[176]. Therefore, we will consider for the numerical simulations of autologous
transplantation an initial absolute number of cells of C1(0) = 106, C2(0) = 0,
C3(0) = 0. The influence of this initial value on the dynamics of the system is
described in Sec. 3.4.3.
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Figure 3.4: Dependence of the transition rates over the range of
stability. Lines represent α1 (light purple solid line), α2 (purple dashed line),
α3 (dark purple dotted line). Across this range αj satisfies the relationship
α3 > α1 > α2. Values computed from Eq. (3.38) with ρ1 = 0.0289 h−1,
ρ2 = 0.0193 h−1 and steady-state cell proportions C∗1/C∗2 = 0.0986 and
C∗2/C

∗
3 = 3.227.

3.4.2 Global feedback signalling results in a smoother transition
to steady states

Typical results of simulations of models A1 and A2 (Eq. (3.7)) are shown in
Figure 3.5. Recall that in model A1 (Figure 3.5(A)) the signal depends only
on cells in the final compartment while in model A2 (Figure 3.5(B)) all cells
are involved. Both models exhibit qualitatively similar behaviour. Early cells
appear first, reaching a peak in population numbers slightly before day 30.
Intermediate cells follow, reaching the respective peak with days of delay and
with larger cell numbers. Late cells appear last and stabilise in between. The
system settles into the steady state from day 80 onwards. This behaviour agrees
with the conditions expressed above for the parameter values. In particular,
the proportion of population from each stage is coherent with clinical data (see
Section 3.3) and experimental data [148]. For both models we have 8.99% early
cells, 70.21% intermediate cells and 20.80% late cells.
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Param. Meaning Value Units
ρ1 Early B proliferation rate ln(2)/24 hours-1
ρ2 Intermediate B proliferation rate ln(2)/36 hours-1
α1 Transition rate: early to intermediate (0.004, 0.025) hours-1
α2 Transition rate: intermediate to late (0.003, 0.02) hours-1
α3 Transition rate: late to blood (0.01, 0.065) hours-1
k Inhibition constant (10−11, 10−10) cells-1

Table 3.2: Parameter values for Eqs. (3.7).

There are two main differences between the two models. The first relates to
the magnitude of the steady state, which is larger when only late cells participate
in signalling (model A1, Figure 3.5(A)) for the same parameter values. This
can be observed in Figure 3.6(A), where total cell numbers for both models are
shown. Note that peak lymphocyte count, i.e. the largest cell number, occurs
at day 30, when intermediate cells are maximal. The second difference relates
to the early behaviour of the reconstitution. In global signalling simulation
(model A2, Figure 3.5(B)) there is a much less pronounced peak than when
only late cells perform the signalling, presenting a smoother transition to the
equilibrium state.

Figures 3.5(C) and (D) show the evolution of the percentage of each
maturation stage. It is interesting to relate this to absolute counts since,
as explained in Sec. 3.4.1, flow cytometry data only captures relative cell
proportions. We observe very close behaviour between the models. The
percentage of early cells quickly decreases as more mature stages appear and
steady-state proportions are reached from day 80 onwards. Note that even
though intermediate and mature cells have a peak in absolute cell count, this
peak is not represented in terms of percentage. Also, this figure shows that a
decrease in cell percentage does not necessarily means a decrease in absolute
cell count, something to take into account when interpreting longitudinal flow
cytometry data.

3.4.3 Time to peak decreases exponentially with initial value

In Sec. 3.4.1 we described the rationale for the choice of the initial value of
early cells. Despite this, we sought to determine how the scale of this data
impacted reconstitution times. In Figure 3.6(B) we show the time to peak cell
count for a range of initial values for early cells. There exists a decreasing
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Figure 3.5: Comparison of numerical solutions and relative propor-
tions of models A1 and A2 from Eqs. (3.7). Comparison of numerical
solutions of models A1 (A) and A2 (B) (Eq. (3.7)) and relative proportions
(C) and (D), respectively, during the first 100 days. Curves represent early
cells C1 (dark blue solid line), intermediate cells C2 (blue dashed-dotted line)
and late cells C3 (light blue dashed line). Both simulations have initial data
C1(0) = 106, C2(0) = 0, C3(0) = 0 cells and parameter values ρ1 = 0.0289 h−1,
ρ2 = 0.0193 h−1, α1 = 0.008 h−1, α2 = 0.006 h−1, α3 = 0.02 h−1 and
k = 10−10.
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Figure 3.6: Comparison of numerical simulations of model A1 (orange
solid line) and A2 (red dashed line) from Eqs. (3.7) for: (A) total
number of cells C1 +C2 +C3, with initial cell numbers C1(0) = 106, C2(0) = 0,
C3(0) = 0; (B) time to peak lymphocyte count as a function of initial early
B cell number. Both simulations have parameter values ρ1 = 0.0289 h−1,
ρ2 = 0.0193 h−1, α1 = 0.008 h−1, α2 = 0.006 h−1, α3 = 0.02 h−1 and
k = 10−10.

exponential relationship between the two magnitudes, although the delay is
not significant when considering that the literature on reconstitution after
autologous transplantation describes reconstitution times in the range of 1-2
months [160]. Multiplying initial cell numbers by 10 results in a displacement
in time of 5 days.

3.4.4 Blood transition rate influences time to bone marrow
reconstitution

Clinical data suggests that homeostatic bone marrow displays relatively constant
subset proportions (see Section 3.3). This, together with the analysis of the
expressions of the steady states allowed us to derive a connection between the
three transition rates in the model (Eq. 3.38). For the ranges of parameters
considered, we observed that α3 > α1 > α2 (see Figure 3.4), which suggests
that the second compartment being more numerous could be due not to a higher
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proliferation rate but rather to a slower maturation time. This calls for the
analysis of the influence of transition rates on the dynamics of the system.

In order to do this we focused on variations of α3, the rate at which late
cells exit bone marrow and enter the blood flow. We select a range of variation
that lies in the positive stability region and observe the qualitative differences
in the immune reconstitution. Results are shown in Figure 3.7(A).

Figure 3.7: Numerical simulations for variable blood transition rate.
(A) Total cell number C1 +C2 +C3 for t ∈ [0, 100] days. Blood transition rate
values: α3 = 0.03 h−1 (solid line), α3 = 0.04 h−1 (dashed line), α3 = 0.05 h−1

(dashed-dotted line), α3 = 0.06 h−1 (dotted line). Line colour goes from dark
red to pink as blood transition rate increases. (B) Peak to steady state value
ratio for the same range of blood transition rates. Both simulations belong
to model A2 (Eq. (3.7)) with initial state C1(0) = 106, C2(0) = 0, C3(0) = 0
cells and parameter values ρ1 = 0.0289 h−1, ρ2 = 0.0193 h−1 and k = 10−10.
Parameters α2 and α1 vary with α3 according to Eq. (3.38).

We observe that an increasing blood transition rate means that the system
reaches a lower number of total cells. Indeed, Eq. (3.22) shows that population
levels depend on transition rates. Note that the peak during reconstitution
also decreases. In order to quantify this reduction, we show, in Figure 3.7(B),
the proportion of the height of the peak with respect to the final steady state,
for the same range of values for α3. For lower values of blood transition rate,
the transitory population of lymphocytes can be 1.3 times the population in
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homeostatic conditions. This proportion decreases if cells increase the rate at
which they join blood flow. Another consequence coming from these numerical
simulations is that the lower the transition rates, the longer it takes for the
system to stabilise.

3.4.5 Inhibition constant has no qualitative impact on the
dynamical process

Eq. (3.22) shows that steady state values depend on transition rates (see also
Figure 3.7) but also on the inhibition constant k. To quantify the impact of the
parameter k on the dynamics of the system, we computed the total steady-state
cell number as well as the proportion of peak height to steady state in a range of
α3 (and thus α1 and α2) and k values. The results are shown in Figure 3.8 for
model A2. With respect to the absolute final cell count, only low levels of both
k and α3 result in a much higher number of cells. We highlighted an area for
which the total cell amount CT is in the range (1010, 1011), as estimated in Sec.
3.4.1 from reference values. For the proportion of peak height to steady state,
there is little variation in the direction of k, so signalling intensity has little
influence on the dynamics. As shown in Figure 3.7, high peak values belong in
the low blood transition rate area. We conclude that transition rates primarily
cause the overshoot during reconstitution, while k is mainly responsible for the
existence of stability regimes and the size of the final states.

3.5 Discussion and conclusions

Haematopoiesis is one of the most widely studied biological developmental
processes [120]. Interesting questions arise related to the processes of cell
lineage specification [7, 177], the role of stem cells [6, 178] and the way cells
communicate to regulate and ensure steady production [179, 180]. This is
also true for B lymphopoiesis, the branch of haematopoiesis pertaining to
B-cell formation. Specific unknowns in B-cell biology are the origins of some
developmental stages, the role of senescence or the array of cytokines that
regulates this process [181]. Studies of human B lymphopoiesis are encouraged,
given that most of our knowledge about this line comes from mouse models [122].
Answering these questions and obtaining a precise description of the dynamics
of B-cell maturation are fundamental for research avenues. Some examples are
the characterisation of haematological malignancies, the reconstitution after
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Figure 3.8: Influence of inhibition constant k and blood transition
rate α3 parameters in model A2 (Eq. (3.7) with all cell signalling) for
(A) total steady state cell number, (B) peak vs steady states ratio. The
dashed highlighted area represents the range in which total cell number
CT ∈ (1010, 1011). Each coordinate is the result of a numerical simulation
of model A2 with initial state cell numbers C1(0) = 106, C2(0) = 0, C3(0) = 0
and parameter values ρ1 = 0.0289 h−1 and ρ2 = 0.0193 h−1. Parameters α1
and α2 vary with α3 ∈ (0.01 h−1, 0.03 h−1) as explained in Eq. (3.38).

bone marrow transplant or chemotherapy or the generation of new lymphocytes
from human embryonic stem cells [181].

Mathematical models have the potential to integrate biological hypotheses
and clinical data in order to provide an abstract representation of biological
processes [126]. This representation can be useful not only for understanding the
dynamical properties of the system, but also for testing and elucidating more
inaccessible phenomena. Our goal in this Chapter was to establish a biologically
sensible mathematical characterization of the B lymphopoiesis. Spurred by
previous models of haematopoietic processes [32, 129], we designed four models
each with three differentiation stages. We added an implicit and systemic
consideration of cell feedback signalling resulting in four nonlinear models.
We first analysed these models from a theoretical perspective, addressing
existence, positivity, boundedness and local stability. We collected data from
the literature and clinical data from haematological patients and then used
numerical simulations in order to understand the role and influence of each
parameter.
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We learn from theoretical analysis that a stable, homeostatic situation cannot
arise solely by regulating the transition rate, i.e. the process of differentiation or
maturation to the next compartment. We have focused from there onward on
feedback regulation of cell proliferation. Inspection of the steady states allowed
us to use flow cytometry data to establish a relationship between the three
transition rates, analysing their influence by manipulating them one by one.
The relationship suggests that, for the specific cell proportions in the B line,
cells transition faster from early to intermediate than from intermediate to late.
Intermediate cells could then be more numerous not because they proliferate
more, but because of their slower transition rates downstream towards more
mature cell types. Also, numerical simulations show that cell proportion is
independent of which cells perform the signalling.

In this sense, we observed that signalling coming from all stages results
in a smoother reconstitution of the B cell line. Indeed, when all populations
participate in signalling, their influence occurs earlier and proliferation decreases
faster with time than when only late cells do. In this case we observed a peak
that we understood as a consequence of the delay in the reaction of the system
to overpopulation. The amplitude of this peak is also correlated with lower
transition rates, which implies lower steady states values. This is biologically
understandable: the late compartment saturates due to excessive input from
previous compartments, delaying access to stability and thus maintaining cell
production in upstream compartments. It is important to remark here that
subset percentage, a common metric in follow-up samples in a clinical context,
can be misleading when dynamics of expansion are at play. For example,
the overshoot during early reconstitution is not observed in terms of relative
proportions. Finally, we noted that the strength of the signalling has no impact
on the dynamics. The feedback loop could then be understood as a mechanism
for the existence of stable output, while dynamical characteristics (time to
reconstitution or early peak) are more dependent on intrinsic cellular processes.

The idea of this study was to determine which conditions are sufficient, from
a mathematical perspective, to represent the kind of biological data that is
currently available for B-line development. While we obtain a behaviour that
fits with the time scales of the in-vivo process [148, 159, 160, 161, 162, 165],
our study has a series of limitations. Firstly, the choice of three compartments
could be refined or expanded following a more detailed characterisation of
the cells. Multidimensional flow cytometry data shows that surface markers,
those that specify to which stage a given cell belongs, vary continuously. A
mathematical model where these markers vary continuously might be able
to capture this variation. Secondly, we described signalling as a systemic
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phenomenon. While this was enough to recapitulate known B-cell behaviour, a
more detailed description including two or more types of signalling is desirable.
Lastly, the model would benefit from longitudinal data coming from immune
reconstitution of the B-cell line. In this regard, flow cytometry analyses of
both peripheral blood and bone marrow in routine follow-up would allow for a
more precise parametrisation and enable the hypotheses presented above to be
contrasted.

To conclude, we have constructed and studied several non-linear compart-
mental models describing B cell lymphocyte reconstitution. These simple models
describe the process of B-cell generation as portrayed by bone marrow data, and
we consider it a first step in a deeper exploration of the phenomena associated
with B-cell development. We verified mathematical and biological consistence,
opening the door to interesting mathematical research like the existence of bi-
furcations or the conditions for global stability, something that finds immediate
application in cases of immune reconstitution. Studies of this kind can function
as a source of hypothesis generation in biomedical research, for example when
contrasting mouse versus human dynamics. Ultimately, we aim to extend the
methodology to situations of stability disruption and abnormal growth like
B-cell disorders and other haematological diseases.

The methods, results and conclusions related to this Chapter can be found
in Ref. [182].
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Analyses of acute lymphoblastic
leukaemia high-dimensional data





CHAPTER 4

Discriminant analysis of relapse
biomarkers

Acute Lymphoblastic Leukaemia (ALL) is the most common childhood cancer,
accounting for 40% of all paediatric neoplasias [183]. This disease is characterised
by the abnormal growth of immature lympchocytes in the bone marrow (BM).
ALLs are classified as B- or T-ALL depending on the lineage of the cells of
origin of the malignancy [184]. The former comprises the majority of cases in
children and has better prognosis than the later. The clinical manifestations of
B-ALL are the result of the invasion of the bone marrow, having more than
25% of blasts or immature lymphocytes, which leads to a shortage of healthy
haematological cells. Progresses in diagnosis, risk assessment and therapeutics
have increased survival rates to around 80% [185]. The prognosis of relapsing
patients is substantially worse. The early identification of relapsing patients
is of high clinical interest since it could allow to use immunotherapy or bone
marrow transplant where appropriate, as a first line treatment [186].

Flow cytometry is widely used in the diagnosis and follow up of B-ALL
[187]. This technique allows the measurement of the surface expression levels
of selected proteins for individual cells. Since each cell development state is
characterised by a set of these markers, flow cytometry allows to classify the
different cell populations within the BM in comparison with the normal BM
and assist with the disease diagnosis [19]. Typical diagnostic flow cytometry
studies interrogate between 105 and 106 cells. The outcome of the analysis is a
dataset with surface protein expressions, complexity and size at the single-cell
level. Flow cytometers used in clinical contexts can detect between 4 and 18
markers [188]. The size of the flow-cytometry datasets is increasing as technology
progresses, and at some point the manual analysis carried out nowadays by
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cytometrists will no longer be feasible [189].
Combinations of single cell cytometric data and bioinformatics pipelines

have been recently used for biomarker discovery in lymphoma [190], renal cell
carcinoma [191], melanoma [192] or lung adenocarcinoma [193]. In childhood B-
cell ALL, there are studies on automated follow up [194] and relapse prediction,
using either clinical characteristics [195] or mass cytometry data [196]. Having
biomarkers of response to current chemotherapeutical protocols on diagnosis
is of high interest in order to consider alternative therapeutic options, such as
bone marrow transplants or CAR-T cells.

The aim of this study was to find a collection of surface proteins showing
significant differences in expression levels between relapsed and non-relapsed
patients on diagnosis. To do we took advantage of the high-dimensionality
of flow cytometry data and a multicentre database of patients. To do so we
performed several tasks. First, data had to be preprocessed to solve problems
like missing data values or data imbalance. Next, we had to find a subset of
relevant features to be used for classification, what we addressed using Fisher’s
linear discriminant analysis. Finally, a mathematical model using those features
classifying patients on diagnosis was developed and validated.

4.1 Materials and Methods

4.1.1 Patients

A retrospective study was designed in accordance with the Declaration of
Helsinki, and the protocol was approved by the institutional review board (IRB)
of the two participating local institutions (LLAMAT Project, 2018).

Inclusion criteria for the study were ALL diagnosis between February 2009
and October 2017, age over 1 year and less than 19 years, and availability of
bone marrow flow cytometry data. A total of 105 patients satisfied the inclusion
criteria. Exclusion criteria were availability of Flow Cytometry files FCS below
3.0, patients without a minimum of 15 immunophenotypic (IPT) markers in
common with others in the dataset, and insufficient follow-up for non-relapsing
patients, i.e. patients without relapse but with less than three years after no
refractory values for minimal residual disease were found. Finally, 54 patients
diagnosed in two of the local institutions were retained for further analysis.
Dataset 1 included 28 non-relapsed and 8 relapsed patients, while dataset 2
included 13 non-relapsed and 5 relapsed patients.
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4.1.2 Flow cytometer machines and antibodies

Marker expression was obtained on FACSCanto II flow cytometers, in
accordance with the manufacturer’s specifications for sample preparation. Final
samples were stained using an 8-colour panel with six fluorochrome-conjugated
antibodies.

FCS 3.0 files contained information on forward scatter (FSC) (interpreted
as size), side scatter (SSC) light (interpreted as complexity) and monoclonal
antibodies used routinely in diagnosis. The markers used included B-cell (CD19,
CD10, CD20, CD22, CD24, IgM, CD66c, CD79a, kappa, lambda, etc.) and
T-cell-related (CD7, cyCD3) IPT markers, markers related to the myeloid
lineage (CD9, CD13, CD33, CD123), and some general ones (CD15, CD34,
CD38, CD45, CD58, CD71, HLA-DR).

4.1.3 Preprocessing

Files were first imported into FlowJo (Becton Dickinson, 10.6.1) and FACSDiva
(Becton Dickinson, 8.0.1) and inspected manually. Quality control was
performed and margin events, debris, dead cells and doublets were removed, as
shown in Figure 4.1 steps 1-4. Files were then further processed in R (3.6.0)
and RStudio (1.2.1335). This software, in conjunction with Bioconductor (3.11)
provides packages and methods for analysis of flow cytometry data. Tubes were
compensated by means of the spillover matrix included in each file and then
transformed with the Logicle transformation [197] included in the flowCore
package (2.0.1) [157] with parameters w = 0.75, t = 262144, m = 4.5 and a = 0.
Our next step was to bring into a single file the information contained in each
of the patient’s tubes. Since each tube contains marker intensity for different
markers and cells, the full set of 20 markers was not available for any of the
cells, as shown in Figure 4.1 step 5. This posed a problem of missing data
imputation, that is addressed in different ways in the context of flow cytometry
[198, 199, 200, 201]. We followed the methodology described in [198], which
consist of nearest-neighbour imputation using the common or backbone markers
in all aliquots. The result of this process was a set of 38 files, one per patient,
containing complete information of the 20 IPT markers selected for the analysis.
After this step, 105 events were randomly sampled from each file in order to
have the same number of cells for each patient.

Since data of multicenter retrospective studies can be affected by batch effects
and technical variations across time and centre, we performed a normalisation
based on a modified min-max transformation. This transformation brings all
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Figure 4.1: Preprocessing pipeline. Preprocessing was carried out in six
steps. The first four were performed in FlowJo and consisted in the removal
of abnormal acquisitions (quality control), margin events, doublets and debris.
Files were then imported into R in step 5, and for each patient all tubes or
aliquots were merged into a single file by means of nearest-neighbour imputation.
Finally, in step 6, the CD19+ population (B cells) was selected for further
analysis.

data points to the range [0, 1] but it is sensitive to outliers. Instead of selecting
the maximum and minimum values, we chose quantiles 0.05 and 0.95 and
applied the transformation:

x′ = x− xq0.05

xq0.95 − xq0.05
, (4.1)

where xq0.05 is the 5th percentile and xq0.95 is the 95th percentile. Finally, we
used the common B-cell antigen CD19 to select the B-cell subpopulation, as
shown in Figure 4.1 step 6. Files were imported in MATLAB (Mathworks,
R_2020a) via the fca_readfcs function [202].
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4.1.4 Fisher’s linear discriminant for relapse prediction

(A) (B.2)

(C.1)

(C.2)

(D)(B.1)

Figure 4.2: Percentile vector construction. (A) Scatter plot of a patient
i for two normalised parameters, k1=CD10 and k2=CD20. (B.1) and (B.2):
Histograms cell count of, respectively, k1=CD10 and k2=CD20. (C.1) and
(C.2): Cumulative distribution of markers k1=CD10 and k2=CD20, respectively.
In red, percentiles curve from 5th to 95th percentile. (D) Each percentile curve
for each patient i and marker k results in a vector Pij , where j represents each
percentile chosen.

Let us consider then Pij ∈ Rp as vectors obtained for each patient i and
each common feature j, for i = 1, ..., n patients and j = 1, ...,m IPT markers.
Thus, for each patient i, this results in a matrix M ∈ Rm×p of the p percentiles
from all IPT markers m, as shown in Figure 4.2. Let us define the general
Fisher’s Ratio (FR) Matrix FR ∈ Rm×p [203], where

FRjk =
(µRjk − µNjk)2

σ2
Rjk

+ σ2
Njk

, (4.2)

for each IPT marker j in each percentile k, for j = 1, ..,m and k = 1, ..., p. In

85



4. Discriminant analysis of relapse biomarkers

(A)

(B)

(C)

(D)

(E)

v̄1

v̄2
R̄ N̄

d1
N

d2
R

d1
R

d2
N

Marker intensity

Marker intensityMarker intensity

Marker intensity

Marker intensity

M
ed

ia
n 

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n

M
ed

ia
n 

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n

M
ed

ia
n 

di
st

rib
ut

io
n

M
ed

ia
n 

di
st

rib
ut

io
n

M
ed

ia
n 

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n

Non-Relapse
Relapse

Non-Relapse

Relapse
Non-Relapse

Relapse
Non-Relapse

Relapse
Non-Relapse

Relapse
Non-Relapse

Virtual Patient 1
Virtual Patient 2

Figure 4.3: Example of synthetic IPT markers distributions. Mean
distribution of a marker with respectively (A) high and (B) low Fisher’s Ratio,
with (C) and (D) their respective cumulative distribution of the median±the
standard deviation values. (E) Median cumulative distribution of the two sets
of patients for a marker with high Fisher’s Ratio. In solid red line, median
cumulative distribution of relapsed patients R̄ and in blue dotted line for the
non-relapse ones. In yellow dashed line and green dashed dotted line the median
cumulative distribution for the marker v̄i was represented for two different
virtual patients i. The distances to each set median, diR and diN , are represented
with black headed arrows, with dashed lines for Patient 1 and dashed dotted
lines for Patient 2. In this example, Patient 1 would be considered as a relapsed
patient, while Patient 2 would belong in the non-relapsed set.

this case, µRjk and µNjk are the median percentiles k for the IPT marker’s
distribution j in each class of patients. R stands for relapsing patients, while
N refers to non-relapsing ones. Parameters σRjk and σNjk are the standard
deviation measures within the classes.

To construct a classifier, we can select the highest FRjk for j = 1, ...,m and
k = 1, ..., p, thus obtaining percentiles from several IPT markers with lowest
deviation and highest difference in median between each subset. Thus we would
obtain a general discriminant classifier of a maximum of m∗ ≤ m markers and
a maximum associated discriminant percentiles p∗ ≤ p.

In order to classify the patients, let us consider a certain IPT marker j and
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percentiles k for each class of patients. We can associate it then to an specific
central measure µRjk or µNjk and dispersion measure σRjk or σNjk . Thus we
set two control points

R̄jk =
µRjk
σRjk

,

N̄jk =
µNjk
σNjk

,
(4.3)

of the central measure of the IPT marker for each class of patients, normalised
by the dispersion measure. If we consider now a patient not assigned to any set
and v̄jk as the vector containing the percentiles k of a IPT marker j, we can
compute a control point

P̄jk = v̄jk(
σRjk+σNjk

2

) . (4.4)

This point is normalised by the mean of both dispersion measures, as we consider
P̄ as a non-assigned patient control point. Now, we can use a distance function
d : Rk × Rk → [0,∞) to measure the separation between the new patient P̄jk
and the control points R̄jk and R̄jk (Figure 4.3).

For each IPT marker, we construct a probability measure for each IPT
marker and percentile P ias

P
(
P̄jk ∈ R

)
= d(P̄jk, R̄jk)
d(P̄jk, R̄jk) + d(P̄jk, N̄jk)

,

P
(
P̄jk ∈ N

)
= d(P̄jk, N̄jk)
d(P̄jk, R̄jk) + d(P̄jk, N̄jk)

.

(4.5)

The mean of the probability measures for all the IPT markers selected for each
patient may allow us to classify the patient in the relapsing or non-relapsing
classes.

4.1.5 Validation and feature relevance

To validate the classification algorithm, both K-fold, and leave-one-out cross-
validation techniques were applied. The resulting performance of each model was
obtained by averaging over 20 evaluations each K-Fold, and 20 for Leave-One-
Out cross-validation (LOOCV). Each technique was repeated in each evaluation
to fully cover each data set. For both cases, a minimum of one patient of each
set was always in the training set.

For each validation technique, we constructed a classifier with the most
significant IPT markers j according to the Fisher Ratio (FRjk > 0.5). We
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computed in each simulation a receiver operating characteristic (ROC) curve and
its associated Area Under Curve (AUC). Accuracy was obtained as the number
of correctly classified samples divided by the total number of classified samples.
Along with these magnitudes we computed from each confusion matrices the
sensitivity, specificity, positive predictive value (PPV) and negative predictive
value (NPV).

To choose the IPT markers with better prognostic value, we performed a
Monte-Carlo based train-test split of the whole set of patients. We ran 100
simulations where each class of patients was divided into a 75% training and
25% test sets. We constructed a classifier for each splitting as described and
then evaluated its accuracy. Once an accuracy threshold was fixed, we computed
the frequency of every marker for the set of classifiers that were above that
threshold. This calculation was performed for different values of the accuracy
threshold.

Finally, we resorted to another method in order to compare the results. We
performed 100 Random Forest classifications with 50 trees each and a 75-25
split of patients and then recorded the out-of-bag error and the permutation
feature relevance.

4.2 Results

4.2.1 CD38 distribution differed significantly between relapsing
and non-relapsing patients

We examined for Datasets 1 and 2 and for both of them combined those IPT
markers with higher FR. Results are shown in Figure 4.4 and 4.5, as well as
the median cumulative distribution of the arising markers.

For Dataset 1, CD38 FR was high in almost all percentiles, with FRjk > 0.3,
as seen in Figure 4.4 (A.1). IPT marker CD123 had high FR for the highest
percentiles, with FRjk > 0.3 for k ∈ (50, 95). For Dataset 2, the differences
between FR were significantly higher, with FRjk > 3.5 in percentiles j ∈ (20, 95)
for IPT marker CD38, and mean FRjk > 2.5 for IPT marker CD66c, as shown
in Figure 4.4 (B.1.). For the combination of both datasets, only CD38 achieved
a high FR with mean FRjk > 0.9 in all percentiles, as shown in Figure 4.5
(C.1.).

Immunophenotypical markers CD38 and CD123, for dataset 1,
and markers CD38 and CD66c, for dataset 2, predicted relapse after
cross-validation. K-fold and Leave-One-Out cross-validations were run in

88



4.2. Results

F

Pe
rc
en

til
es

(A.1)

(A.2) (A.3)

(B.1)

(B.2) (B.3)

Pe
rc
en

til
es

FRFR
Dataset 1 Dataset 2

Non-Relapse
Relapse

Non-Relapse
Relapse

Non-Relapse
Relapse

Non-Relapse
Relapse

Figure 4.4: Fisher’s Ratio Matrices for Dataset 1 and 2 separatedly
and median cumulative distributions of IPT markers with highest
ratio. Fisher’s Ratio Matrices for Dataset 1 (A.1), and 2 (B.1). The common
parameters within each dataset are represented in the x-axis, while in the
y-axis we represent the percentiles of the median cumulative distribution. The
intensity of the Fisher’s Ratio for each percentile and markers are represented
for each dataset in a colorbar for each chart. Median cumulative distributions
and standard deviation bands of the IPT markers with higher FR, for relapsed
(red, dotted lines) and non-relapsed (blue, solid lines) patients are represented in
the following charts: for Dataset 1, CD38 (A.2) and CD123 (A.3); for Dataset
2, CD38 (B.2) and CD66c (B.3).

both directions: first, to know the most common IPT markers used in the
training set for each simulation. This resulted in differences between median
distribution differences of relapsed and non-relapsed patients again for the
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Figure 4.5: Fisher’s Ratio Matrices for Dataset 1 and 2 combined and
median cumulative distributions of IPT marker with highest ratio.
(A.1) Fisher’s Ratio Matrices Datasets 1 and 2 combined. The common
parameters within each dataset are represented in the x-axis, while in the y-axis
we represent the percentiles of the median cumulative distribution. The intensity
of the Fisher’s Ratio for each percentile and markers are represented for each
dataset in a colorbar for each chart. (A.2) Median cumulative distributions and
standard deviation bands of the IPT markers with higher FR, in this case CD38
for relapsed (red, dotted lines) and non-relapsed (blue, solid lines) patients are
represented for datasets combined, CD38.

same sets of markers: CD38 and CD123 for Dataset 1 (Figures 4.4 (A.2.) and
(A.3.)), CD38 and CD66c for Dataset 2 (Figures 4.4 (B.2.) and (B.3.)), and
finally, only CD38 for the combination of both datasets (Figure 4.5 (C.2.)).
Secondly, cross-validation techniques were repeated considering only common
IPT markers. The results are shown in Table 4.1. The maximal number of folds
was determined by the number of relapsing patients (8 for Dataset 1, and 5 for
Dataset 2).
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Method Accuracy Sensitivity Specificity PPV NPV AUC

Se
t

1

LOOCV 0.75±0.04 0.74±0.05 0.76±0.05 0.76±0.04 0.75±0.04 0.76±0.02
2-Fold 0.59±0.1 0.63±0.14 0.43±0.2 0.81±0.04 0.24±0.12 0.56±0.1
4-Fold 0.62±0.07 0.63±0.1 0.58±0.12 0.85±0.03 0.3±0.06 0.65±0.06
6-Fold 0.64±0.05 0.66±0.05 0.58±0.13 0.85±0.04 0.31±0.06 0.67±0.06
8-Fold 0.7±0.04 0.7±0.04 0.71±0.06 0.9±0.02 0.39±0.04 0.72±0.03

Se
t

2 LOOCV 0.66±0.06 0.95±0.05 0.37±0.1 0.6±0.04 0.88±0.1 0.89±0.05
2-Fold 0.72±0.07 0.95±0.06 0.13±0.22 0.74±0.05 0.42±0.41 0.68±0.16
4-Fold. 0.78±0.04 0.95±0.05 0.34±0.15 0.79±0.03 0.81±0.2 0.86±0.06

Se
ts

1&
2

LOOCV 0.69±0.05 0.62±0.09 0.75±0.09 0.72±0.07 0.67±0.05 0.78±0.04
2-Fold 0.64±0.13 0.6±0.17 0.75±0.12 0.87±0.09 0.38±0.08 0.73±0.11
4-Fold 0.69±0.01 0.67±0.02 0.77±0.01 0.91±0.01 0.41±0.01 0.77±0.04
6-Fold 0.7±0.02 0.68±0.02 0.77±0.01 0.91±0.01 0.42±0.02 0.79±0.02
8-Fold 0.7±0.01 0.68±0.02 0.77±0.01 0.91±0.01 0.42±0.02 0.79±0.02
10-Fold 0.7±0.01 0.68±0.02 0.77±0.01 0.91±0.01 0.42±0.01 0.8±0.02
12-Fold 0.69±0.01 0.67±0.02 0.77±0.01 0.91±0 .01 0.41±0.01 0.79±0.01

Table 4.1: Validated predictive performance of best classifiers CD38 and CD123
(Dataset 1), CD38 and CD66c (Dataset 2) and CD38 (Datasets 1& 2). PPV:
Positive Predictive Value. NPV: Negative Predictive value. AUC: Area under
curve.

4.2.2 Train-test splitting revealed other markers with potential
predictive value

We tested the accuracy of the variables by splitting Dataset 1 and 2 combined
into a training and test set with ratio 75:25. After 100 simulations, the frequency
of the IPT markers used in the classifiers is shown in Figure 4.6(A). IPT marker
CD38 arose again as the marker used in all classifiers, while CD33 was used on
almost 70% of them. Having obtained the accuracy for the 100 classifiers, we
count the number of IPT markers whose prediction accuracy is above a certain
threshold, as shown in Figure 4.6(B). IPT markers CD13, CD24, CD33, CD38,
CD45 and CD66c are those with an accuracy higher than 0.5%.

4.2.3 Random-Forest analysis matched the results from the
constructed classifiers

Random Forest analysis after 100 simulations was considered, resulting in
IPT markers CD33, CD38 and CD66c as those only with positive Out-of-bag
Feature importance. However, after repeating the simulations only considering
these markers, Out-Of Bag Classification Error was not significantly lower
in comparison to the analysis with the whole set of IPT markers (mean
out-of-bag error of 0.28 versus 0.31, respectively). Nevertheless, feature
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Figure 4.6: Results for both datasets combined from train-test split
and Random Forest analysis. (A) Frequency of the markers in all classifiers
after 100 simulations of train-test splitting. (B) Histograms of the number of
markers after establishing a threshold for the accuracy. (C) Out-of-bag feature
importance of the markers after 100 simulations of Random Forest. (D) Mean
and standard deviation bands of the Out-of-bag Classification Error in Random
Forest analysis for the whole set of markers (blue, solid line) and for the set of
markers with positive feature importance CD33, CD38 and CD66c (red, dotted
line).

importance coincided with those markers with highest frequency in our previous
classification.

4.3 Discussion and conclusions

The unprecedented amount and complexity of clinical data that is available
nowadays has resulted in the proliferation of bioinformatics pipelines and
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artificial intelligence algorithms to extract information from data. In flow
cytometry, the routine analysis that is carried out by visualizing histograms and
bidimensional plots is falling behind technical progress in the field [24]. Machine
learning algorithms have the potential to speed up, automatise and reduce bias
in conventional analyses, but also to complement the work done by the human
operator [23]. Recent examples in haematology include leukocyte recognition,
prediction of refractory Hodgkin lymphoma, minimal residual disease detection
in acute myeloid leukaemia, risk stratification in multiple myeloma or predicting
resistance in myelodisplastic syndrome [204]. In childhood B-cell ALL, machine
learning has taken advantage of clinical data in order to predict either diagnosis
[205] or relapse [195], with the work of Good et al including proteomics data
for the latter purpose [196]. Reiter et al proposed a way to automatise Minimal
residual disease follow-up [194].

Leaving aside accuracy and prediction reliability concerns, which we can
expect to be solved or dampened as the scientific production continues, there
are a number of issues that still hamper the integration of AI and the
respective clinical context. As happens in general with the relationship between
mathematics and medicine, researchers in both ends often speak a different
language [20]. Many AI algorithms behave as a “black boxes", providing an
outcome directly from raw data and hindering a mechanistic interpretation of
the underlying phenomena. For clinical use, it is highly desiderable that the
features uncovered by these algorithms canbe interpretable and actionable. As
Radakovich et. al. puts it, “Algorithms can only be as clinically meaningful as
the outcomes that they are designed to predict” [206].

In this Chapter, we designed an intuitive algorithm allowing to identify on
diagnosis patients with potential of relapse versus those with no risk of relapse
in B-cell childhood ALL. We used flow cytometry data obtained at diagnosis
from two local institutions and based the analysis on two concepts that are
already employed in this context; the intensity and range of surface markers
expression and the frequency of cells within that range. We took those two
factors into account by assigning each patient and marker its percentile curve
and then used the Fisher’s ratio to look for meaningful differences between both
groups of patients. That approach allowed us to construct a classifier based
on this measure in order to assess the significance of the previously obtained
differences. Given the small sample size, we used cross-validation routines to
assess the validity of the Fisher’s ratio-based measure. Despite the exploratory
nature of the study, we were able to find some common trends in the data.

Firstly, we observed that Fisher’s ratio displays differences in expression
levels between relapsing and non relapsing patients. This was specially significant
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for the second dataset. Given that both datasets were pre-processed identically,
the difference in the significance of the measure could be due to either sample
size or different acquisition routines in either hospital. We expect to have a
clearer understanding of this after increasing the number of patients in each
dataset or the number of datasets as a whole. K-fold cross validation showed
that, when restricting the analysis to the most important features according
to the previously calculated Fisher’s ratio, the algorithm was able to separate
better between relapsing and non relapsing patients, always using only data
available on diagnosis.

Measurements of performance yielded good values for this biomarker as
measured by Accuracy and AUC. However, although specificity was high, we
obtained a low negative predictive value, i.e. the algorithm underperformed
when detecting relapses. This could be due to the intrinsic unbalance in
the datasets, with only 25% of relapsed patients. The relevant information,
nonetheless, was the agreement in the extraction of the most important features.
This was later confirmed by the Monte-Carlo based and Random Forest feature
importance computation. Both approaches agreed in this selection, specially
when being more restrictive with the classification accuracy in the first one.

The most consistent result, in the different analyses and for both local
institutions, was the association between a lower expression of CD38 marker
and relapse. CD38 is a surface receptor present in a broad variety of immune
cells. It is considered to be a cell activation marker and operates both as
a receptor and an enzyme [207]. In the B cell compartment, both bone
marrow precursors and terminally differentiated cells express CD38 [208]. In
the context of haematological disease, high CD38 levels have been associated
with worse prognosis in chronic lymphocytic leukaemia [209]. Previous studies
have suggested that CD38 is a suitable therapeutic target in both AML and
ALL [210, 211]. There has been some controversy concerning the existence of
a CD34+/CD38- population of leukaemia initiating stem cells [212, 213, 214,
215]. In B-ALL, the accumulated evidence indicates that lower levels of CD38
could be associated with worse outcome in terms of survival [216, 217, 218, 219].
Our results aligned with this evidence, suggesting that a higher frequency of
low CD38 expressing B cells could be an early indicator of relapse risk.

Other markers that were found to be relevant in this study were CD33 and
CD66c. These two markers are normally expressed in cells of the myeloid lineage,
and they have been linked to paediatric B-ALL in the context of myeloid antigen
expressing B-cell malignancies. This refers to the fact that some malignant B
cells can express markers from the myeloid line. CD66c is the most frequently
observed aberrant myeloid antigen in B-cell ALL. Upon studying the correlation
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of the expression of this antigen with known prognostic factors, previous studies
have found that CD66c is associated with BCR/ABL translocation, which has
been shown to confer the worst prognosis [220, 221, 222]. Here, we found that
patients relapsing were more prone to overexpression of this marker on diagnosis.
With respect to CD33, there has been some controversy with respect to its
prognostic value, but evidence suggests that the presence of high expressing
CD33+ cells identifies patients with worse prognosis [223], contrary to the
differences exhibited by percentile curves here.

Finally, the immunophenotypical marker CD123 was also highlighted by
Fisher’s ratio but only in dataset 1. Its importance could not be further
assessed since it was not available in dataset 2. This marker was first described
as a marker of acute myeloid leukaemia stem cells. It was later shown to
be uniformly expressed in B-ALL blasts, being proposed for the detection
of minimal residual disease [224, 225] and identified recently as a potential
target for immunotherapies [226, 227]. Interestingly, high expression of CD123
correlated with hyperdiploid karyotype, an indicator of favourable prognosis
in childhood B-cell ALL [228]. In our cohort we found a high proportion of
CD123 expressing cells in relapsing patients.

While CD38 differences were present through the whole range of expression
of the marker, that was not the case for CD33 and CD123. For those markers
differences were observed only in the low expression region for the former and
in the high expression region for the latter. The fact that there is less evidence
for their prognostic value suggests that the method presented here leads to
significant results if there is a constant difference in expression levels between
both sets of patients. This is indeed a limitation of the study; by representing
the expression as a percentile curve, we may miss information that can be
clinically relevant and that refers not to the frequency of cells or intensity of
expression, but to the presence or absence of a given subpopulation. In this
regard, we already mentioned that a subpopulation of CD34+/CD38- cells
could be associated with leukaemia initiating cells, and the same could happen
for a restricted subpopulation of CD34+/CD38-/CD123+, this one agreeing
with the results presented.

Another limitation of our analysis is the nature of the data, a recurrent
concern in artificial intelligence in haematology [206]. Apart from having only
54 patients, the set of relapsing patients represented only 25% of the whole
dataset and that unbalance could introduce biases in the analysis. In the
future, as we increase the size of our dataset, it would be better to increase
the number of patients to carry out a 50/50 analysis. Further, there is the
issue of data variability, given that it was collected retrospectively, belonging to

95



4. Discriminant analysis of relapse biomarkers

patients from different years and hospitals. This highlights the importance of the
preprocessing routine, which is also amenable to improvements in order to ensure
the comparability of the samples. These weaknesses provide future lines of work.
While in the process of recruiting more patients and hospitals, efforts will we
directed towards the automation of the preprocessing workflow and towards
the combination with more complex analysis like dimensionality reduction,
network analysis and clustering. Finally, this work could be complemented with
the inclusion of other clinical data like cytogenetics and molecular biology
information, also relevant in the prognostic assessment of haematological
diseases.

Notwithstanding these limitations, this works adds to the growing field
of artificial intelligence in haematology and specifically in B-cell childhood
acute lymphoblastic leukaemia. We attempted to delineate differences in
marker expression between patients who relapse from the disease and those that
respond to treatment, obtaining results that are directly interpretable from the
clinical point of view. The main result would be the underexpression of surface
marker CD38 in patients experiencing relapse after the first-line chemotherapy
treatment. This is very important knowledge since it could aid in therapy
personalisation by considering alternative therapies as upfront therapies for
patients with high risk of relapse.

The methods, results and conclusions related to this Chapter can be found
in Ref. [229].
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CHAPTER 5

Topological data analysis and
relapse prediction of flow

cytometry data

Cancer is a heterogeneous disease at the genetic and phenotypic levels. Genetic
heterogeneity depends on the diversity of genetic alterations in tumour cells,
while phenotypic heterogeneity refers to the ways in which cells with a
similar genetic background can exhibit differences in, for example, morphology,
differentiation status, biomarker expression, or likelihood of therapeutic response.
At the clinical level, heterogeneity manifests in differences in treatment responses,
the emergence of resistance and the likelihood of relapse of histologically similar
tumours [230].

The availability of quantitative data from multiple sources, including multi-
omics, high resolution images and flow cytometry may enable this complexity to
be understood. Major challenges of personalised medicine in oncology that can
be assisted by data analysis include patient phenotyping, biomarker discovery
and prediction of response and relapse [231, 232].

Topological data analysis (TDA) approaches the analysis of datasets using
methods from topology. The datasets available in oncology are usually high-
dimensional, noisy and incomplete, which represents a significant challenge for
conventional data-analysis methods. Advantages of TDA are that it is not
sensitive to the metrics chosen and that it provides dimensionality reduction
and robustness to noise [233]. Persistence homology (PH) is a powerful tool
from TDA [234] allowing the construction of topological invariants, which can
be interpreted as characteristics of shapes, in high-dimensional data. The
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data space is simplified by using structures, the so-called simplicial complexes.
The features analysed include connected components in dimension 0, loops in
dimension 1 and holes in higher dimensions. Topological features in a nested
sequence of simplicial complexes, the so-called filtrations are represented by
intervals in a barcode. These diagrams allow to understand the lifetime, or
persistence, of a topological feature. This enables PH to describe large noisy
datasets. PH has a myriad of emerging applications (see e.g.[235, 236, 237, 238,
239, 240, 241] and references therein). While there have been fewer applications
in cancer, it has been used to construct new biomarkers [242, 243, 244] and to
classify tumours according to histological architecture [245] or genetic alterations
[246].

In this Chapter we combine methods from TDA and machine learning
(ML) to predict relapse in cancer. As a specific example we focus on Acute
Lymphoblastic Leukaemia (ALL), which is the most frequent type of paediatric
cancer [247]. Leukaemias are cancers in which lymphocytes grow abnormally
in the bone marrow, blood or lymphatic system. B-lymphocyte ALL is the
most common subtype in paediatric patients [248] and is characterised by
rapid growth of early lymphocytes in the bone marrow. Although current
chemotherapy regimes have improved survival rates, still more than 20% of
patients relapse. It is important, on diagnosis, to identify patients with at high
risk of relapse so that instead of first-line chemotherapy regimes, they receive
alternative treatments such as CAR-T cells, more intensive chemotherapeutic
regimes, or undergo bone-marrow transplants. Beyond this example, estimating
the likelihood of relapse before first-line treatments is of the utmost importance
in Oncology.

Currently, initial risk assessments are based on a combination of biomolecular,
cell morphology and genetic analyses [249]. A quantitative method used
routinely for diagnosis in haematological malignancies is flow cytometry [250].
It provides large amounts of high-dimensional data, which is currently used in a
limited way, as routine analysis are performed mostly manually and analysing
visually 2-dimensional projections of the data [23].

The focus here is on anticipating the risk of relapse in paediatric ALL patients,
but the methodology we developed in this Chapter could be readily extended to
other haematological malignancies, including leukaemias or lymphomas where
similar diagnostic and therapeutic options are available [250].
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5.1 Materials and Methods

5.1.1 Patients

A retrospective study was designed and approved by the institutional review
board (IRB) of the four participating local institutions. Inclusion criteria for the
study were ALL diagnosis between February 2009 and October 2017, age over 1
year and less than 19 years, and availability of bone marrow flow cytometry
data. A total of 105 patients satisfied the inclusion criteria. Exclusion criteria
for these patients were availability of Flow Cytometry files FCS below 3.0,
patients without a minimum of 15 IPT markers in common with others in
the dataset, and insufficient follow-up for non-relapsing patients, i.e. patients
without relapse but with less than three years after no refractory values for
minimal residual disease were found. Finally, 54 patients diagnosed in two of
the local institutions were retained for further analysis. Dataset 1 included 28
non-relapsed patients and 8 relapsed, while dataset 2 included 13 non-relapsed
patients and 5 relapsed.

5.1.2 Flow cytometers and antibodies

Marker expression was obtained on FACSCanto II flow cytometers, in
accordance with the manufacturer’s specifications for sample preparation. Final
samples were stained using an 8-colour panel with six fluorochrome-conjugated
antibodies.

5.1.3 Flow cytometry markers and data preprocessing

FCS 3.0 files contained the following information: forward scatter (FSC)
(interpreted as size), and side scatter (SSC) light (interpreted as complexity),
as well as several fluorochromed antibodies acting against cell proteins, as
immunohistochemical markers. The diagnosis included several B-cell-related
(CD19, CD10, CD20, CD22, CD24, IgM, CD66c, CD79a, kappa, lambda, etc.)
and T-cell-related IPT markers (CD7, cyCD3), as well as more general ones
(CD15, CD34, CD38, CD45, CD58, CD71, HLA-DR), and IPT markers related
to the myeloid lineage (CD9, CD13, CD33, CD123).

The flow cytometry files were preprocessed prior to analysis. Certain events
were removed, such as events at the margins (measurements that match the
maximum or minimum values for any parameter), doublets (cells that are
accidentally analysed together as a single event), or debris and dead cells [23],
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as shown in Figure 5.1(A). Since gating was performed manually, geometric
markers were ommited from the persistence analysis, to prevent unconscious
bias. Next, we randomly selected 105 points from the whole data cloud, to
establish a common minimum number of points, and thus have the same
number of events for all patients. Tubes were compensated by means of the
spillover matrix included in each file, and then transformed with the Logicle
transformation [197]. Nearest-neighbour imputation, as in [198], was used
to merge all tubes or aliquots into a single file for each patient. We chose
the 0.05 and 0.95 quantiles for each marker x and used the transformation
x′ = (x − xq0.05)/(xq0.95 − xq0.05) to avoid outliers, where xq0.05 is the 5th
percentile and xq0.95 is the 95th percentile. We identified the B-lymphocyte
cloud, by selecting CD19+ cells, as this is the IPT marker associated with
early B cells (Figure 5.1(B)). Finally, 104 landmarks were selected from the
lymphocyte cloud by applying the maxmin algorithm [251] to each group of
markers considered (see Figure 5.1(C)).

Persistence analysis on pairwise combinations of all IPT markers, was
performed in dimensions 0 and 1. Because of computational constraints, the
number of landmarks was reduced to 103 for studies performed in dimension 2.

5.1.4 TDA and Persistence Images

Given M points xi ∈ Rn as in Figure 5.2(A), and a distance function d, we
can place a ball of radius r at the centre of each point. For a given point xi,
we identify all points closer than r by br(xi) = {y ∈ Rn : d(xi, y) ≤ r} (see
e.g. Figure 5.2(B)). The set of points contained in the union of all these balls
∪Mi=1br(xi) depends on the radius r. This parameter allows the construction of
simplicial complexes along a nested sequence of them, the so-called filtration.
A simplicial complex is a set of structures able to capture the number of “holes”
in a certain dimension. A homology group over this filtration can provide us
information about how close or connected points are for dimension 0, and how
loops are created in higher dimensions. These are the so-called Betti numbers βi
for each dimension i. Topological features, in this case, one “hole” of dimension
i, that appear at a filtration “time” rbirth and disappear at a time rdeath can
be considered to have a “lifetime” ρr = rdeath − rbirth, the so-called persistence.
Persistence can be represented by barcodes, where intervals for each filtration
time are represented, as observed in Figure 5.2(C) and (D) for dimension 0 and
dimension 1, respectively.

In our study, we focused on persistence images, which rely on persistence
barcodes. These images can be considered as real-valued matrices that can be
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Figure 5.1: Pipeline of the flow cytometry data preprocessing. (A)
Manual gating process for the selection of B lymphocytes. First, doublets, i.e.,
two or more cells considered as single events, are removed from the panels
FSC-A and FSC-H, below the white dashed line. Secondly, debris is removed
from the panel FSC-A and SSC-A, omitting highly complex cells over the white
dashed line. In both panels, events at the margins (located at the extreme of
the axes) are removed. Next, single files are compensated and transformed, and
finally merged into one file per patient. A number of 105 cells is taken randomly
and scaled to avoid outliers. (B) B lymphocytes are selected as CD19+ cells.
(C) The maxmin algorithm is applied to obtain the shape structure of the
B lymphocyte point cloud. Using 104 selected landmarks gives a plausible
representation of the whole B lymphocyte dataset.
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Figure 5.2: Persistence topological analysis of flow-cytometry data.
(A) Example data illustrating the basis of persistence analysis. (B) When
increasing the radius r of the grey balls centred at data points, topological
features arise. For r = r1, a one-dimensional loop appears, and a second one
for r = r2. For r = r3, all points are in the same connected component. (C)
Persistence barcode for dimension 0 of data in (A). The top bar is the only one
for r > r3 and persists towards infinity. (D) Persistence barcode for dimension
1 of data in (A). Persistence barcodes represent one-dimensional loops, where
the longest are “born” at a filtration step r = r1 and r = r2.

used as an input into a variety of machine-learning approaches. Another common
representation of these data is through the use of persistence diagrams, usually
in coordinates (rbirth, rdeath), as shown in Figure 5.3(A). In these diagrams,
points close to the diagonal represent short-persistent features. To create the
persistence images, using coordinates (rbirth, ρr) from persistence barcodes (as
in Figure 5.3(B)), 2D Gaussian distributions (in this study, with variances 0.01
and 0.05) were generated at each point, resulting in a surface (see e.g. Figure
5.3(C)). Its internal volume can be summed and displayed as a uniformly-spaced
grid resulting in persistence images, which are stable under small perturbations
to the inputs [252]. To check for differences, in our study we used grids of
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resolution 50×50 and 100×100. An example of a persistence image is shown in
Figure 5.3(D). Further details of TDA persistence homology group methodology
can be found in [234, 252].

Figure 5.3: Pipeline for the obtention of persistence images. (A) From
the persistence barcodes, e.g. those in Figure 5.2(C-D), persistence diagrams are
constructed. The dashed, diagonal line represents short-persistence barcodes,
while the dashed, horizontal line represents infinity. Dimension 0 (red points),
and 1 (green points) are computed. (B) To obtain a persistence image, the next
step is to consider the persistence diagram in coordinates (birth, lifetime). The
dashed, horizontal line represents infinity, while the dashed, solid line represents
short-persistence barcodes. (C) 2D Gaussian distributions can be generated
at each point, in this case, for dimension 1 of the persistence diagram (B),
thus obtaining a surface. (D) A persistence image resulting from summing the
volume within the surface (C).
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5.1.5 Machine learning methods

For classification and prediction purposes, we used Random Forest techniques,
a popular and efficient algorithm based on model aggregation ideas [253].
Support Vector Machines (SVM) [254] were also used for classification by
assigning relapsing and non-relapsing labels to the data matrices obtained from
persistence images. Two parameters associated to the SVM classification kernel
were considered: γ as the curvature of the decision boundary, and c as the
trade-off between correct classification and the distance between the decision
boundary and support vectors. They were selected by randomly splitting
the training set and performing internal cross-validations for a logarithmic
range of the parameters c ∈ [10−2, 1013] and γ ∈ [10−9, 103]. We also used
Logistic Regression to construct binary regressions. The models were scored
by computing the mean score of fitting the model after 5-fold cross-validation
and the coefficient of determination R2, interpreted as the accuracy of the
prediction.

5.1.6 Computing machines

MaxMin algorithm and Persistence Analysis were run on six machines from
the Oxford Mathematical Institute, each with 36 cores, with up to 3.9 Ghz
speed, and 768 GB of RAM. Figures and other calculations were run on an
iMac, running under Mac OS 10.15, with four i5 cores, 3.4 Ghz speed and 32
GB RAM.

5.1.7 Software

Python (3.1) was used for the computations. R (3.6.0) and RStudio (1.2.1335)
were used for data curation. Persistence barcodes and images were constructed
using Ripser (0.3.2) [255] and Persim packages (0.1.3) in the Python Scikit-TDA
toolbox. FCS files were read using the Python CytoFlow library (1.0) and Flow
Cytometry libraries from Bioconductor (3.11) in RStudio. FlowJo (Becton
Dickinson, 10.6.1) and FACSDiva (Becton Dickinson, 8.0.1) software packages
were used for manual gating of FCS data.
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5.2 Results

5.2.1 TDA identifies parameters with low information content

We selected immunophenotypic (IPT) parameters that were common between
our two patient datasets (dataset 1 and 2), as described in ‘Methods’ [256] (see
Table B.1).

Our first analysis was intended to discard IPT parameters with no essential
information on relapse. For dataset 1, we found 15 common IPT characteristics
between all patients, while in dataset 2, 18 common IPT markers arose, mostly
different to those in dataset 1. All pairwise combinations of these parameters
were constructed for each dataset, obtaining 2D projections of the IPT markers.
These were analysed via persistence homology in dimensions 0 and 1. This
resulted in 105 and 153 persistence barcodes, respectively, for dataset 1 an
dataset 2. As shown in Figure 5.2(A)-(B), the radius of any ball centred at
each point of any dataset can be increased, and so the lifetime, or persistence,
of topological features can be studied. This results in the persistence barcodes
shown in Figure 5.2(C)-(D), where intervals are represented with bars denoting
the lifetimes of cycles in each dimension.

For each patient in each dataset, we computed the maximum, minimum,
standard deviation, mean and median persistence in dimensions 0 and 1. We
then performed a Random Forest analysis with cross-validation on each dataset
and patient subgroup (i.e. relapsing and non-relapsing), assigning 60% of
the patients to a training group, and 40% to the validation group. Receiver
operating characteristic (ROC) curves were obtained for the classification of
relapsing and non-relapsing patients. We identified IPT pairs with one area
under the ROC curve of less than 50% as having very low information and
excluded them from the subsequent analysis. The individual IPT markers
appearing most frequently in the remaining pairs were CD10, CD123, CD20,
CD34, CD38, CD45, CD66c, CD9 and kappa for dataset 1, and CD13, CD15,
CD33, CD34, CD45, CD58, CD66c, CD7, CD71, IgM and cyCD3 for dataset
2 (see Tables B.2-B.4 and B.5 -B.6, respectively). The average of the mean
areas under the ROC curves for the remaining parameter combinations was
58% in dataset 1, and 57% in dataset 2, thus having low discriminatory power.
To increase it, we now consider the analysis of both datasets combined, thus
enlarging the number of patients in one combined dataset.
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5.2.2 Random Forest analysis of merged datasets provided
biologically grounded biomarkers

To enlarge the number of patients included in each analysis, we studied the 11
IPT markers present in both datasets. Their pairwise combinations resulted in
55 persistence barcodes that were analysed via a Random Forest method with
cross-validation. The biomarkers with AUC>50% were CD10, CD20, CD38,
CD45 and CD7. Only combinations including CD38 or CD20 had a mean
AUC>60%.

Since these AUC numbers are low, we would not consider the markers to
have strong classification power. However, it is noteworthy that the identified
markers are considered to be biologically relevant, as they are usually used on
diagnosis together with others such as CD22, CD24, CD34, CD79a, IgM, or TdT.
CD10, CD20 and CD45 characterise the shape of the CD19+ B lymphocyte
cloud [18]; CD38 is a marker of B-lymphoblast aberrance [219, 257]; while CD7
has been shown to be aberrant in lineage-switching leukaemias [258]. Thus, the
five biomarkers were retained for subsequent analyses.

5.2.3 Relapsing patients had more connected components but
fewer one-dimensional loops

Persistence analysis was performed for CD10, CD20, CD38 and CD45 in
dimensions 0 and 1 (Appendix B shows also results including CD7 in Figures
B.1 and B.2).

Statistical analysis of the persistence features for relapsed and non-relapsed
patients was performed and the results are summarised in Figure 5.4 (A). The
p-values obtained when comparing both groups were larger than 0.05. Thus, in
general, these features did not discriminate between the two groups.

Next, we obtained the number of topological features in dimension 0 and 1,
the so-called Betti numbers β0 and β1, and averaged them for each cohort of
patients. We did so by computing, in the persistence barcodes, the mean number
of persistence bar values longer than a certain filtration step threshold. This
led us to the results shown in Figure 5.4(B). Figure 5.4(C) shows that relapsed
patients had a high number of connected components in the range j ∈ [0.3, 1.2],
thus larger β0 (t-test p < 0.0003), and a lower number of one-dimensional loops
(β1), (t-test p < 0.04) in the range j ∈ [0.11, 0.35].
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Figure 5.4: Statistical analysis of persistence topology in flow-
cytometry data. (A) Boxplots of maximal, minimal, mean, and standard
deviation persistence of non-relapsed (blue) and relapsed patient data (or-
ange). (F) Difference in mean Betti numbers for relapsed (orange lines) and
non-relapsed patients (blue lines) for certain filtration step ranges. (B) Inter-
pretation of Betti numbers. Relapsed patients (orange) would have a higher
number of connected components (dotted lines), while non-relapsed (blue) would
have a higher number of one-dimensional loops (dashed lines). The grey areas
represent balls of a certain radius r centred at each point.
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5.2.4 Persistence images differ in shape between cohorts

Persistence images were obtained by transforming the persistence barcodes into
a grid of n×n pixels, and then placing a 2D Gaussian distribution at each point
of the persistence diagrams, as shown in Figure 5.3(A)-(D). These images show
information about topological features, are stable under noise and maintain an
interpretable connection to the persistence diagrams that they were obtained
from. Results are shown for the grid of 100×100 and deviation of 0.05 of the
generating 2D Gaussian Distribution (results for 50×50 and a spread of 0.01
are provided in Appendix B). Mean persistence images shown in Figure 5.5(A)
are centred around (0,0). The spread influences the width of the regions of high
intensity levels. For dimension 0, non-relapsed patients had broader intensity
profiles, and relapsed patients less so. For dimension 1, relapsed patients had
more spread profiles.

5.2.5 Persistence images allow perfect identification of
relapsing patients

Finally, we considered the images as data matrices and used the raw data to
perform Logistic Regression (LR) and Support Vector Machine (SVM) analyses.
Studies were carried out dependent on three variables: datasets included (1, 2
or both), dimensions of the topological features analysed (0, 1 or 2) and markers
included (CD10, CD20, CD38, CD45 with or without CD7).

Dim. 0 Dim. 1 Dim. 2
Dataset Method Score Acc. Score Acc. Score Acc.

Dataset 1 LR 1 1 0.78 -0.29 0.78 -0.29
SVM 1 1 1 1 0.78 -0.29

Dataset 2 LR 1 1 0.93 0.72 0.72 -0.38
SVM 1 1 0.93 0.72 0.83 0.17

Both LR 1 1 0.98 0.9 0.7 -0.32
SVM 1 1 1 1 0.98 0.9

Table 5.1: Comparison of classification scores for Logistic Regression (LR)
and Support Vector Machine (SVM) between datasets and dimensions using
biomarkers CD10, CD20, CD38, and CD45.

A summary of the classification results is presented in Table 5.1 (see
Appendix B Tables B.8-B.9 and Figures B.3-B.4 for detailed results, including
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Figure 5.5: Persistence images for relapsed and non-relapsed patients.
(A) Mean persistence images for each patient set, depending on dimension
analysed, with a spread of 0.05 in the 2D Gaussian distribution on a 100× 100
grid. (B) Weights assigned to the pixels of persistence images after SVM
classifications. Dimension 0 focuses on the band around the centre, while
dimension 1 does it on the centre itself, both dimensions being consistent in
the representative areas shown. For dimension 2, other areas are highlighted,
and are interpreted as noise, given the classification results shown in Table 5.1.
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those with biomarker CD7 and Leave-One-Out cross-validations). We state
the mean fitting score of the model after 5-fold cross-validation (Score) and
the accuracy of the prediction via the coefficient of determination R2 (Acc.).
Cross-validation was performed within the training sets to obtain representative
SVM parameters as described in ‘Methods’. Results for the most representative
and discriminatory areas are shown in Figure 5.5(B). Perfect classification
scores and 100% accuracy were obtained for both datasets and set of biomarkers.
Classification results were better for dimensions 0 and 1.

5.3 Discussion and conclusions

Relapse after treatment is a common problem in cancer. Its early detection is
one of the main goals of follow-up procedures used in clinics. This is a general
problem, but of specific interest in tumour types for which effective second-
or third-line treatments are available. In paediatric ALLs, current first-line
chemotherapy regimes allow for cure of about 80% of affected children. It is
not necessary to proceed to further treatments for patients with no risk of
relapse. However, a substantial fraction of them, larger than 20%, ultimately
relapse. Early identification of these patients is of great importance, in order to
consider other therapeutic options, such as bone marrow transplants or CAR-T
cells. However, for those with a high risk of relapse it may be crucial to initiate
further treatments sequentially before resistant clones take over and regrow [259,
260]. Also, using more aggressive therapies as a first line treatment could be an
option for such patients. Other alternatives could include CAR-T therapies,
with the drawback of costing up to 475000 $ per dose [261].

Given the depth of biological data provided by flow cytometry techniques,
the use of mathematical analysis to extract relevant information may provide
additional insight into the processes governing tumour growth. Our goal was
to quantify the differences between relapsed and non-relapsed ALL patients
on the basis of data available at diagnosis. We combined topological methods,
specifically persistent homology and machine-learning techniques, to distinguish
relapsing from non-relapsing patients with complete certainty.

The analysis based on CD10, CD20, CD38 and CD45 expression allowed
for a perfect classification of patients according to their relapse status. It is
relevant that these markers are available during routine diagnosis. CD10, CD20
and CD45 are used to gate early B cell subpopulations, and CD7 and CD38
are known to have prognostic value.

Connected components and one-dimensional loops distinguished via persist-
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ence homology between relapsed and non-relapsed patients, as shown in Figure
5.4(C-D). We raised the possibility for relapsed patients to have a larger number
of connected components, implying that isolated leukaemic point clouds could
be a leading cause for relapse. Conversely, the number of one-dimensional loops
was higher in non-relapsing patients, suggesting an anomalous development in
the relapsing ones, with denser and more compact point clouds.

Persistence images allowed us to classify patients using SVMs and LRs. The
centre of the distribution at (0,0), as well as the spread of the distribution, for
dimensions 0 and 1, were held to be the most differentiating areas between
both cohorts (see Figure 5.5(B)). Other zones were highlighted in dimension
2, which had a negative influence on the classification and were interpreted as
being noise.

Dataset 1 was on average better classified in comparison to dataset 2. This
may be because 50% fewer patients were inclueded in dataset 2 than in dataset
1. However, when the datasets were combined, the classification was excellent
in both cases and for every dimension. Additionally, classification scores were
in average higher for dimension 0 in comparison to dimension 1, and still lower
for dimension 2. We note that, due to the high computational costs of PH
in dimension 2, its analysis used 103 points, rather than the 104 points used
in dimensions 0 and 1. Regardless of the method, dimension 0 attained a
100% classification score. Similarly, for dimension 1, the results showed a high
score for almost every analysis. The study of two-dimensional loops resulted
in a worse classification, with low and even negative determination coefficients.
However, SVM analysis for both datasets achieved a 98% classification score as
well as a 90% accuracy when considering only CD10, CD20, CD38 and CD45.

This study has several limitations. The limited amount of data could make
the results sensitive to overfitting. Despite the robustness to noise of topological
methods, it would be necessary to validate the results on different datasets. Also,
a more general study could be performed by using bone marrow samples with
larger numbers of common IPT markers. In that sense, and even if we obtained
the samples and followed the same common hospital protocols to preprocess
the data, the use of a single flow cytometer could benefit the accuracy of the
study, as these machines differ on data scales and compensation techniques.

This work can be extended in many directions. Firstly, the shape of data
after chemotherapy, transplant or CAR-T cell infusion could reveal significant
information about the development of resistances to those therapies. Secondly,
the flow-cytometry methods can provide additional information on the bone
marrow cells and not only on the B-lymphocytes. The topological study
could be applied to other haematological conditions, such as lymphomas, T-
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cell leukaemias, myeloblastic disorders, etc. Finally, by combining valuable
information from the diagnosis, not only IPT cells markers, but also biomolecular
or morphology features, as in [262, 263], could improve patient prognosis and
relapse prediction, and could be used for therapy personalisation.

We expect the topological point of view to reveal new disease processes hidden
in the multiple, rich biomedical data available with current diagnostic methods.
Our work can stimulate further studies on the potential of mathematical
methodologies to unravel the unknowns of cancer relapse.

The methods, results and conclusions related to this Chapter can be found
in Ref. [264].
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PART III

Other mathematical works in
tumour modelling





CHAPTER 6

Lie Symmetries and mathematical
models of tumour development

A huge variety of phenomena are governed by ordinary differential equations
(ODEs) and partial differential equations (PDEs). However, there is no general
method to solve them. Obtaining solutions for differential equations is one of the
greatest problem for both applied mathematics and physics. Several integration
methods have been developed to the day to solve special classes of differential
equations, specially those focused on physical or biological phenomena.

In this Chapter, we present three applications of the Lie method to obtain
solutions of differential equations relevant in terms of its applicability in cell
dynamics and tumour invasion.

6.1 The Fisher equation: some studied problems

Reaction-diffusion equations are a fundamental part in modelling the spread
of biological populations. Originally introduced in seminal papers by Fisher
[265] and Kolmogorov et al. [266], the mathematical framework based on
reaction-diffusion equations has proven to be extremely useful for studies on
population dynamics [267, 268], as well as mathematical biology in general [267,
269, 270, 271, 272]. The Fisher equation and its extensions are a family of
reaction-diffusion models arising prominently also in cancer modelling [273, 274],
applications to brain tumour dynamics [275], in the description of propagating
crystallisation/polymerisation fronts [276], chemical kinetics [277], geochemistry
[278] and many others fields. These equations have already been deeply analysed
in the literature [267, 279, 280], in relation to their solutions and travelling
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6. Lie Symmetries and mathematical models of tumour development

waves for the case of the Fisher equation:

ut = Duxx + ρu(1− u). (6.1)

This equation describes the change of the amount of cells u = u(x, t) in time t
and space x, for a diffusion term D and a reproduction rate ρ.

The study of this kind of equations is interesting in terms of finding exact
solutions. In [281], for example, a numerical analysis was performed. To do
so, the Lie classical method is useful to obtain reductions to ODEs and if
it is possible, families of exact solutions [282]. One of the most famous and
established procedures for obtaining exact solutions of differential equations is
the classical symmetries method, also called group analysis. The investigation
of symmetries has manifested as one of the most significant and fundamental
methods in almost every branch of science, including mathematics and physics.
Among the many papers using this method are [283, 284, 285, 286, 287].

In this study, by using equivalence transformations and Lie symmetry groups,
we find analytical solutions for several models with biological interpretations.
Lie symmetries of the density dependent reaction-diffusion equation

ut = f(u) +
(
g(u)ux

)
x

(6.2)

were calculated in [288], as well as the optimal system of one-dimensional
subalgebras of the invariant equation. Several reductions and exacts solutions
were also obtained. In [289], some non-trivial conservation laws were constructed
for the generalised Fisher Eq. (6.2) associated with symmetries of the differential
equations. A non-linear multidimensional reaction-diffusion system with
variables diffusivities was also considered in [290]. In this paper, the classical
Lie symmetry of this system is calculated. In fact, this equation is not only
interesting for cancer models and mutating cells, but also in biochemical reaction
kinetics such as the effect of haemoglobin and myoglobin in blood [267].

Over the last decades a lot of attention has been paid on using Lie point
symmetry methods to exploit the invariance of the generalised equation

ut = (A(u)ux)x +B(u)ux + C(u). (6.3)

In the case A = 1, B = C = 0, the classical heat equation was firstly studied
by S. Lie in [291] in terms of maximal invariance algebra. A complete Lie
symmetry classification for the non-linear heat equation (6.3) with B = C = 0
was described in [292]. Moreover, for the case B = 0 in Eq. (6.3) the Lie
symmetry was completely described in [293]. Later, the Lie symmetries of Eq.
(6.3) were fully described in [294].
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Generalisations of the Fisher equation are necessary to accurately model
diffusion and reaction effects. Moreover, there are very few studies that search
for exact solutions in cancer models. In [295], an analytical explicit solution was
presented for a general two-type birth-death branching process with one-way
mutation. In [296], some exact solutions were derived for a model of growth
and movement of certain cell cultures as well as solid tumours in response to an
arbitrary distribution of nutrients. Therefore, we consider several generalisations
of the Fisher Eq. (6.1) and study them to obtain solutions related to tumour
dynamics. Thus, we analyse the following cases:

• A generalised Fisher equation with density-space-dependent diffusion in
the present manuscript as

ut =
(
g(u)c(x)ux

)
x

+ f(u) (6.4)

which arises in a broad range of biological processes [280] and specifically
in cancer modelling problems [281]. To illustrate the latter, a particular
case of this mathematical model (6.4) was introduced by [273] to study
the complex geometry of the brain and to allow diffusion (or cell motility).
Furthermore, Eq. (6.4) has also been studied in [275] for a space-dependent
diffusion term, in order to describe malignancy of gliomas as an invasion
of grey matter.

• One biological hypothesis claimed is that new mutations may arise as the
tumour grows, which is considered as a proliferative advantage [297]. This
phenomenon can be introduced into the Fisher’s Eq. (6.1) considering
the following equation

ut = 4u+
(

1 + δ

∫
Rn
u dx

)
u (1− u), n = 1, 2, 3, (6.5)

where 4u is a Laplacian term, and the proliferation rate is more
generalised, as it considers a new term describing the total mass of
the tumour. We aim to expose new solutions of (6.5) with plausible and
biological interpretation. By considering the integral in Eq. (6.5) only to
be dependant on t, as we are integrating on x, we write (6.5) as

ut = uxx + F (t)u (1− u), (6.6)

where F = F (t) is the function describing the impact of the whole mass
of the tumour, which is actually influencing on its proliferation.
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• A generalisation which reads as

ut = 1
c(x)

(
c(x) · g(u)ux

)
x

+ f(u). (6.7)

where g(u) is the diffusion coefficient dependent on the variable u, with x
and t as independent variables, f(u) as an arbitrary function, and c(x)
an arbitrary function that depends on the space variable x to account
for spatial heterogeneity of the medium. The function u(x, t) denotes
the density of the biological population. For particular cases of f(u),
g(u) and c(x), this model has recently attracted considerable interest in
studies of tumour growth and their applications [269, 273, 274, 275, 281].
This Equation has also been intensively studied: in [298] some non-trivial
conservation laws associated to the symmetries were obtained for g = k ·fu
and f, c arbitrary functions; in [299] the classical Lie method was applied
to derive some non-trivial conservation laws for this equation. Symmetry
reductions and exact solutions for Eq. (6.7) were obtained using classical
and potential symmetries in [300].
Many mathematical models do not take into account the spatial
heterogeneity of the medium. For example, grey and white matter
of brain tissue was taken into account in [301], where grey matter is
composed of neuronal and glial cell bodies that control brain activity,
while the cortex is a coat of grey matter that covers the brain [267] and it is
connected to other grey matter regions by white matter fibre bundles. The
importance of considering spatial heterogeneity in ecological dispersal has
been emphasised in studies where the pattern and scale of movement have
been characterised, such as the dispersal of forest beetles [302]. Interface
problems arise in the setting of various physical and engineering problems
[303, 304] and references therein. In recent years many mathematicians
and researchers have been working on developing numerical methods
to find numerical solutions for non-linear partial differential equations
(PDEs), including those representing interface problems [305, 306, 307,
308]. Analytical solutions are rare and difficult to obtain, hence, the search
for exact solutions to non-linear PDEs plays a fundamental role in the
analysis of nonlinear physical phenomena. However, exact solutions can
be found in several papers [283, 309, 310] in which the authors determine
a number of exact solutions for particular cases of Eq. (6.7) using classical
Lie point techniques.

The applicability of mathematical models has risen exponentially in recent
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years. Biosciences have taken an interest in many realistic mathematical
models, as they are useful to explain several natural phenomena, such as cell
invasion, climate change, or even tumour development. As the complexity
increases within the development of mathematical models, which may take into
account an overwhelming number of biological factors, computer sciences and
mathematical methods may shed some light on their proper descriptions. The
rise of computer simulations can therefore be supremely useful in biological field
experiments, as they become a highly efficient tool to facilitate and expedite
research.

Thus, the structure of this Chapter goes as follows: firstly, the Lie classical
method is reviewed generally in Section 6.2 in order to obtain solutions for
differential equations. We apply this method in order to obtain a group
classification for Equations (6.4), (6.6) and (6.7). Then, respectively in Sections
6.3, 6.4 and6.5, we focus on cases with a special biological meaning, and then
obtained some exact solutions.

6.2 Lie symmetries and reductions

Lie classical method is based on the determination of the point symmetry group
of a differential equation, i.e., the largest group of transformations acting on
dependent and independent variables of the equation so that it maps solutions
of the equation into other solutions.
An infinitesimal point symmetry of Eqs. (6.4), (6.6) or (6.7) will be given by a
generator of the form

X = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u. (6.8)

Each equation would admit a Lie point symmetry provided that

pr(X)(∆) = 0 when ∆ = 0, (6.9)

where ∆ = ∆1,∆2 or ∆3 can be each of the Eqs. (6.4), (6.6) or (6.7), where

∆1 = ut −
(
g(u)c(x)ux

)
x
− f(u),

∆2 = ut − uxx − F (t)u (1− u),
∆3 = ut − 1

c(x)
(
c(x) · g(u)ux

)
x
− f(u),

(6.10)

respectively. The term pr(X) is the prolongation of the vector field (6.8).
Exponentiation of the point symmetry generator (6.8) produces a one-parameter
symmetry transformation group

(t, x, u)→ (t∗, x∗, u∗) = exp(εv)(t, x, u) (6.11)
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6. Lie Symmetries and mathematical models of tumour development

with ε the group parameter and

(t∗, x∗, u∗)|ε=0 = (t, x, u) (6.12)

the identity transformation. The explicit form of (6.8) can be obtained by
solving the system

∂t∗

∂ε
= τ(t∗, x∗, u∗), ∂x∗

∂ε
= ξ(t∗, x∗, u∗), ∂u∗

∂ε
= η(t∗, x∗, u∗), (6.13)

with initial conditions

t∗|ε=0 = t, x∗|ε=0 = x, u∗|ε=0 = u. (6.14)

The infinitesimal action of a point symmetry (6.8) on solution u(t, x) of Eq.
∆ = 0 is given by u = u(t, x)→ u∗ = u∗(t, x), where

u∗ = u+ ε
(
η(t, x, u)− τ(t, x, u)ut − ξ(t, x, u)ux

)
+O(ε2) (6.15)

which corresponds to a generator

X̃ = P ∂u, P = η − τ ut − ξ ux, (6.16)

called the characteristic form of the infinitesimal point symmetry (6.8). The
invariance condition (6.9) is then

pr(X̃)(∆) = 0 when ∆ = 0 (6.17)

for
pr(X̃) = pr(X)− τDt − ξDx when ∆ = 0. (6.18)

We obtain a set of determining equations for the infinitesimals ξ = ξ(x, t, u),
τ = τ(x, t, u) and η = η(x, t, u) by splitting the symmetry determining Eq.
(6.17). This method will be used in the next Sections to obtain solutions of
each of the Eqs. (6.4), (6.6) and (6.7).

6.3 A Fisher equation with a proliferation term dependant
on density and space

We focus now in obtaining symmetries from Eq. (6.4). It admits a Lie point
symmetry provided that

pr(2)v(∆) = 0 when ∆ = 0,
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space

where ∆ = ut−f(u)−(g(u)c(x)ux)x and pr(2)v is the second prolongation of the
vector field (6.8). We obtain a set of determining equations for the infinitesimals
ξ = ξ(x, t, u), τ = τ(x, t, u) and η = η(x, t, u). From the determining system, we
get that ξ = ξ(x, t), τ = τ(t), where η, τ, ξ, g, f and c must satisfy the following
equations:

c gu η + c τt g − 2 c ξx g = 0,
c g ηuu + c gu ηu + c guu η + c τt gu − 2 c ξx gu = 0,
2 c gu ηx + 2 c g ηux + cx gu η + cx τt g − c ξx x g − cx ξx g + ξt = 0,
−c g ηx x − cx g ηx + f ηu + ηt − fu η − τt f = 0.

(6.19)

After solving the determining equations, we can distinguish different cases
in which the symmetries are admitted by Eq. (6.4) for functional forms of
c(x), f(u) and g(u), where c′ 6= 0, f ′ 6= 0, g′ 6= 0. We distinguish as well
the corresponding generators and group transformations, which are given in
Appendix C.1.

In this section we will focus on case 4 from Appendix C.1, as function
c = c(x) is arbitrary, and functions f(u) = f1 (u− g2) + f2 (g2 − u)g1+1 and
g(u) = g3(g2−u)g1 have a biological interest in terms of modelling, respectively,
cancer cell proliferation as a Verhulst’s law of growth [267, 273, 311], and
the diffusion term as a typical glioma invasion [267, 275, 311]. By using the
generator X4, we obtain the similarity variable and similarity solution

z = x, u = ef1 t h(z) + g2, (6.20)

and the ODE4

hzz + g1 h
2
z

h
+ cz hz

c
− f2 h

c g3
= 0. (6.21)

If we set h(z) = −
√
v(z), we obtain that (6.21) is equivalent to

vzz −
v2
z

2 v (g1 − 1) + cz vz
c
− 2 f2 v

g3 c
. (6.22)

We set g1 = 1 as it provide us a linear density diffusion term, which is a
Maltusian rate of growth [312]. Then, Eq. (6.22) is transformed into

vzz + cz vz
c
− 2 f2 v

g3 c
= 0. (6.23)

It can be easily proved that a first integral of Eq. (6.23) is the Ricatti equationo

wz + w2 + cz
c
w − 2 f2

g3 c
= 0, (6.24)
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with w = w(z) and the change v(z) = exp(α(z)) for α′(z) = w(z).
Besides, we want c = c(x) to have an asymptotic behaviour (for large x)

related to tanh(x), which has biological interest as it models single and multiple
sharp transition regions [281]. With g1 = 1, we search a solution of (6.24) such
as

w(z) = 1
K1

tanh
(
z +K2

K1

)
, K1 6= 0, (6.25)

so that c = c(x) becomes

c(x) = 2 f2K1
2

g3
+
K3

√
1−

(
tanh

(
x+K2
K1

))2

tanh
(
x+K2
K1

) −K4, K1 6= 0, x ≥ 0. (6.26)

where K4 = arctanh
(

K3 g3√
4 f22K14+K32g32

)
K1 −K2 as the diffusion term cannot

be negative [267]. In this case, the asymptotic behaviour of c = c(x) is the
following:

lim
x→∞

c(x) = 2 f2K1
2

g3
−K4. (6.27)

Therefore we have provided a one-parameter family of exact solutions of the
Eq. (6.4)

u(x, t) = g2 −
ef1 t

4

√
1− tanh

(
x+K2
K1

)2
, (6.28)

for each K1 6= 0 and c = c(x) as in Eq. (6.26).
The carrying capacity in this equation can be seen as g2, and we obtained

for the solution (6.28) that
lim
t→∞

u = g2. (6.29)

This implies that in any region of the space the solutions assume the value of
the limit concentration of cells. This is shown in Figure 6.1. Correspondingly,
the density-diffusion and growth function asymptotically disappear, this is

lim
t→∞

f = 0, lim
t→∞

g = 0. (6.30)
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Figure 6.1: Graphs of population density solutions (6.28). The results
are shown for g2 = 1, K1 = 1, K2 = −1 over different times t and displacement
x given. The asymptotic behaviour can be observed.

6.4 A Fisher equation with a proliferation term involving
tumour development

From the determining system, we get that τ = τ(t), where η, τ, ξ and F = F (t)
must satisfy the following equations

ξu,u = 0,
τu,u = 0,
ηu,u − 2ξx,u = 0,
ξu + τx,u = 0,
3F u ξu(1− u) + 2 ηx,u − ξx,x + ξt = 0,
F u τu(1− u)− 2 ξx − τx,x + τt = 0,
(F (ηu − 2ξx)− τ F ′)u2 + (τ F ′ + F ( 2ξx − ηu − 2 η F ))u+ η F − ηt + ηx,x = 0.

(6.31)
After solving the determining equations, we can distinguish different cases in
which the symmetries are admitted by Eq. (6.6) for functional forms of F (t).
We distinguish as well the corresponding generators in Appendix C.2.

We now consider a special case in order to obtain exact solutions of Eq.
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(6.6). For this case, we consider the tumour mass as a form of tanh, as it may
model transition regions [281]. This is, we take F = F (t) as

F (t) = a tanh(b t) + c, a, b, c ∈ R. (6.32)

Considering the Case 4, F = F (t) as in Eq. (6.32) verifies Eq. (C.36) only if
a, c = ±b. Eq. (C.25) is then verified for

F̂ (t) = ±b tanh(b t)± b. (6.33)

F
(T
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s)

(Time)
b = 1 b = 1.2 b = 1.4 b = 1.6 b = 1.8 b = 2

t

Figure 6.2: Function F̂ (t) in Eq. (6.33). The results are shown for different
values of b, where b can be interpreted as the influence of the mass into the
proliferation term.

The use of this structure may be suitable as an upper bounded mass, and
mass tends to grow quickly as tanh. Considering the positive signs of (6.33),
two symmetries are obtained for Eq. (6.6), which are X1 and

X4∗ = ∂t + b u(tanh(b t)− 1)∂u. (6.34a)

We consider then the similarity variable and similarity solution

z = x, u = h(z)e−b t√
1− tanh(b t)2

, (6.35)
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yielding the reduction
b h(z)2 − 2 b h(z)− hzz. (6.36)

A particular solution of Eq. (6.36) is

h(z) = 3 tanh
(√

b

2 (x+ k1)
)2

− 1, k1 ∈ R, (6.37)

so that, for F as in Eq. (6.33), we have obtained a two-parameter family of
exact solutions of Eq. (6.6), which is

û(t, x) =

(
3 tanh

(√
b
2 (x+ k1)

)2
− 1
)
e−b t√

1− tanh(b t)2
, k1 ∈ R. (6.38)

The shape of this solution is consistent with the solutions found in the previous
Section. The behaviour of solution (6.38) is shown in Figures 6.3. In Figure 6.3
(A), it is observed that whenever x grows, the tumour density grows along. In
Figures 6.3(A)-(B), it can be observed how over time the tumour density tends
to stabilise. In both images it is shown the effect of parameter b, considered as
the impact of the mass into the proliferation term.

6.5 A Fisher equation describing a tumour interface
problem

The Lie symmetries of Eq. (6.7) depend on the form of the arbitrary elements
(functions f(u), g(u), and c(x)). The search for these symmetries is more
difficult than looking for symmetries of a specific partial differential equation.
In this section, we define the Lie group classification for Eq. (6.7) in the
case f gu c′ 6= 0 (this is, each term must be non-zero). In order to simplify
this analysis, we use the equivalence transformations admitted by Eq. (6.7).
Although the direct method (used first by Lie [313]) to calculate equivalence
transformations has the benefit of finding the most general equivalence group,
as it involves considerable computational difficulties, we have decided to use the
Lie infinitesimal method, which was introduced by Ovsiannikov in Ref. [292]. A
more detailed description and examples of both methods can be found in [314].
For the sake of simplicity, we prefer to introduce the new function as follows:

α(x) = c′(x)
c(x) . (6.39)
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Figure 6.3: Graphs of û(t, x) in Eq. (6.38). The results are shown (A) for a
given t = t0 (B) for a given x = x0.

As such, Eq. (6.7) can be written as

ut = f(u) + αgux + guu
2
x + guxx. (6.40)

An infinitesimal generator of the equivalence transformations of equation (6.40)
has the form

Y = Ξ1∂t + Ξ2∂x + φ∂u + µ1∂f + µ2∂α + µ3∂g, (6.41)

wherein the infinitesimal components Ξ1, Ξ2, and φ, depend on t, x, and u,
while the infinitesimal components µi, (i = 1, 2, 3) can also depend on f, g,
and α. The Lie infinitesimal criterion [292] requires invariance with respect to
a suitable prolongation of Y (the interested reader can refer to [292, 315] for
details on how the operator can be extended) of the following equations

ut = f(u) + αgux + guu
2
x + guxx, (6.42)

ft = fx = 0, (6.43)
gt = gx = 0, (6.44)
αt = αu = 0, (6.45)
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where conditions (6.43)-(6.45) represent the so called auxiliary conditions and
provide the functional dependence of functions f , g, and α. Solving the
corresponding determining system, we find in [316] that class (6.40) admits a
continuous group of equivalence transformations generated by the following
operators:

Y1 = ∂t, Y2 = ∂x, Y3 = ∂u,

Y4 = t∂t − f∂f − g∂g, Y5 = x∂x − α∂α + 2g∂g, Y6 = u∂u + f∂f .
(6.46)

The finite form of these equivalence transformations is

t̃ = ε0 + ε1t, x̃ = ε2 + ε3x, ũ = ε4 + ε5u, f̃ = ε1
ε5
f, α̃ = ε3α, g̃ = ε1

ε23
g.

(6.47)
In [316], these equivalence transformations are considered to simplify the
symmetry analysis of class (6.40).
In this study, we present the Lie group classification of (6.40) module over this
group of equivalence transformations admitted by this class of equations. The
associated Lie algebra of infinitesimal symmetries is the set of vector fields of
the form

v = ξ1 ∂

∂t
+ ξ2 ∂

∂t
+ η

∂

∂u
. (6.48)

The requirement that this operator leaves Eq. (6.40) invariant yields to
the overdetermined linear system (the so called determining system) for the
infinitesimals ξ1(t, x, u), ξ2(t, x, u) and η(t, x, u).
Having determined the infinitesimals, the form of invariant solutions is found
by solving the invariant surface condition

Φ ≡ ξ1 ∂u

∂t
+ ξ2 ∂u

∂x
− η = 0. (6.49)

From the determining system, we get ξ1 = ξ1(t), ξ2 = ξ2(t, x), and then ξ1(t),
ξ2(t, x) and η(t, x, u) must satisfy the following equations, depending on f(u),
g(u), and α(x),

g ξ1
t + gu η − 2g ξ2

x = 0,
ηu gu g + ηuu g

2 + η g guu − η g2
u = 0,

α ξ2
x g − ξ2

xx g + αx ξ
2 g + 2 ηxu g + ξ2

t + 2 ηx gu = 0,
α g2 ηx + g2 ηxx − f g ηu − g ηt + g fu η + 2f g ξ2

x − f gu η = 0.
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For arbitrary values of f , g, and α, the only symmetry generator admitted by
(6.40) is

v1 = ∂t. (6.50)

Moreover, whenever the function α(x) is constant, Eq. (6.40) also admits the
symmetry generator

v2 = ∂x. (6.51)

In order to have extra symmetry generators, the function g can not be arbitrary.
We distinguish the following cases depending on the function g

1. g = g0u
g1 , with g0 = ±1, g1 6= 0,−4/3.

2. g = g0u
−4/3, with g0 = ±1.

3. g = g0e
ug1 , with g0 = ±1 g1 6= 0.

For each of these cases we consider only the forms of the functions f and α
which yield extra symmetry generators. We have provided the corresponding
results (forms of the functions f , α, and extra generators) in the tables from
Appendix C.3.

6.5.1 Analytical exact solutions of biological interest

In this section, we get analytical exact solutions and study their behaviour
in a number of particular cases of Eq. (6.7) that present several relevant
applications in the field of mathematical biology. In [317], Belmonte-Beitia
proved the existence of upper and lower bounds for traveling waves solutions
for a particular case of Eq. (6.7) in which c(x) = constant. He considered the
following equation

∂u

∂t
= ∂

∂x

[
(1− u)∂u

∂x

]
+ ρu(1− u), (6.52)

which is a mathematical model for glioma growth and invasion.
In [273, 301, 318], Swanson et al. have based their mathematical models
on a variant of the Fisher-Kolmogorov equation. In those papers, the
authors have investigated how the proliferation and dispersal of glioma cells
combine to generate increasing degrees of cellularity, mitoses, hypoxia-induced
neoangiogenesis and necrosis. To account for the spatial heterogeneity of the
brain tissue, the authors made the diffusion coefficient a function of the spatial
variable x, differentiating regions of grey and white matter [273, 301]. Macro-
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and microscopic patterns of growth have suggested that glioma cells tend to
migrate along white matter tracts in the brain and, indeed, in vitro experiments
have shown that cells exhibit greater motility in white matter than in grey [319].
Swanson [320] reformulated the model in order to more accurately reflect the
spatial limitation of cellular proliferation and the inherent heterogeneity in the
brain by introducing the carrying capacity of the tissue, and by allowing the
diffusion coefficient to depend on the tissue environment x. In [321], Konukoglu
et al. considered a reaction-diffusion model using a modified anisotropic eikonal
equation and proposed a parameter estimation method using time series of
medical images.
Taking into account the biological perspective, we have considered the special
form of f and g based purely on the classical definition of cancer as uncontrolled
proliferation of cell with the potential for invasion and metastasis [267].
Therefore, considering Eq. (6.7), we set proliferation and diffusion terms as

f(u) = ku

(
1− u

u∗

)
, (6.53)

g(u) = ρ

(
1− u

u∗

)
, (6.54)

where the proliferation rate is k > 0, ρ is the diffusion rate, and u∗ is the limit
concentration of cells that a certain volume of tissue can hold (i.e. the carrying
capacity of the tissue). Moreover, c(x) is related to a tanh form, modelling a
single transition region [281].
Finally, the mathematical equation for cancer cell density considered here is
the following:

ut = 1
c(x)

c(x) ρ
(

1− u

u∗

)
︸ ︷︷ ︸

diffusion

ux


x

+ ku

(
1− u

u∗

)
︸ ︷︷ ︸
proliferation

; (6.55)

where u(x, t) denotes the density of cells. We have assumed that this equation
has a single interfacial transition in the diffusion coefficient, making it a very
good model to describe solutions of biological interest. We have taken the
proliferation term as Verhulst’s law of growth which is used to model cancer
cell proliferation [267, 273] and the diffusion term with the typical form g [267,
317, 318]. Scaling the cell density so that the carrying capacity becomes unity
(this corresponds to the transformation u = u∗ũ, but in the following we will
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6. Lie Symmetries and mathematical models of tumour development

omit the accent mark for sake of readability), setting ρ = 1 and making the
following change of variables

t = t, x = x, u = (1− v) ,

Eq. (6.55) can be written as

vt = k
(
v2 − v

)
+ 1
c(x) [c(x)vvx]x . (6.56)

This equation falls under the second case in Table 1 from Appendix C.3, with
g0 = 1, g1 = 1, f0 = k, and f1 = −k. In this case, when α(x) = c′(x)

c(x) does not
satisfy condition (C.59), Eq. (6.56) only admits the additional generator

v4 = ekt∂t − kektv∂v. (6.57)

Then we look for a solution with the form

v(x, t) = U(x)e−kt, (6.58)

where U(x) is a solution of the following equation

kU2 + c′

c
UU ′ + UU ′′ + U ′2 = 0. (6.59)

Setting U =
√
V we get the linear equation

V ′′ + c′

c
V ′ + 2kV = 0. (6.60)

The general solution of Eq. (6.60) is

V (x) = V0(x)
(
c1 + c2

∫
e−F

V 2
0 (x) dx

)
(6.61)

where F =
∫ c′(x)

c(x) dx and V0(x) is a nontrivial particular solution, if V0(x) 6= 0,
of (6.62).
If we consider c′(x)/c(x) = c0 tanh(x), with c0 as a constant, then Eq. (6.60)
becomes

V ′′ + c0 tanh(x)V ′ + 2kV = 0, (6.62)
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whose solution can be found in terms of associate Legendre functions

V (x) =c1
LegendreP

(
c0−2

2 ,

√
c2

0−8k
2 , tanh(x)

)
(cosh(x))c0/2

+

c2

LegendreQ
(
c0−2

2 ,

√
c2

0−8k
2 , tanh(x)

)
(cosh(x))c0/2

. (6.63)

Thus, solutions of Eq. (6.55) will have the following form:

u = 1− e−kt
√
V (x). (6.64)

From now on, we consider special values of the constant c0:

1. Setting c0 = 2, the transformation

V (x) = w(x)
cosh(x) (6.65)

maps Eq. (6.62) into
w′′ + (2k − 1)w = 0, (6.66)

whose general solution depends on the value of k. Taking into account
that k > 0, we have the following solutions for equations (6.66)

w(x) = c1 + c2x, if k = 1
2 , (6.67)

w(x) = c1 sin(x
√

2k − 1) + c2 cos(x
√

2k − 1), if k >
1
2 , (6.68)

w(x) = c1 sinh(x
√

1− 2k) + c2 cosh(x
√

1− 2k), if k <
1
2 .(6.69)

Accordingly, we obtain solutions of Eq. (6.55):

u = 1− e− t2
√
c1 + c2x

cosh(x) , k = 1
2 , (6.70)

u = 1− e−kt
√
c1 sin(x

√
2k − 1) + c2 cos(x

√
2k − 1)

cosh(x) , k >
1
2 ,(6.71)

u = 1− e−kt
√
c1 sinh(x

√
1− 2k) + c2 cosh(x

√
1− 2k)

cosh(x) , k <
1
2 .(6.72)
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2. Setting c0 = 2n with n a positive integer, and k = n2

2 the solutions (6.63)
of (6.62) become

V (x) = c1LegendreP (n− 1, 0, tanh(x)) + c2LegendreQ (n− 1, 0, tanh(x))
(cosh(x))n ,

(6.73)
and the corresponding solutions of Eq. (6.55) are given by (6.64). For
n = 2 we obtain the solution (6.70).

3. Setting c0 = 1 the solution of (6.62) is

V (x) =c1
LegendreP

(
−1
2 ,

i
√

8k−1
2 , tanh(x)

)
√

cosh(x)
+

c2
LegendreQ

(
−1
2 ,

i
√

8k−1
2 , tanh(x)

)
√

cosh(x)
, (6.74)

and the corresponding solutions of Eq. (6.55) are given by (6.64).

6.5.2 Discussion

In this study we have explored cell motility near interfaces. Given the
interpretability of the results, we discuss this last solutions from Eq. (6.7) in
more depth. We have been working under the assumption that the proliferation
rate k > 0, and one can easily see that, fixing x, the asymptotic behaviour of
all solutions obtained (6.70), (6.71) and (6.72) is

lim
t→∞

u = 1. (6.75)

Recalling that we scaled the cell density so that the carrying capacity u∗ is
unity, we then obtain

lim
t→∞

u = u∗. (6.76)

This is the case in any region of the space where the solutions asymptotically
assume the limiting value of the cell concentration. Accordingly, the diffusion
and also the proliferation disappear asymptotically, giving us

lim
t→∞

f = 0, lim
t→∞

g = 0. (6.77)

Furthermore, the solutions asymptotically approach the value of the limiting
concentration of cells for large values of x. To demonstrate this, we observe
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that, for solutions (6.70) and (6.71), we easily get lim
x→∞

u = 1.
As mentioned above, this is equivalent to

lim
x→∞

u = u∗. (6.78)

Taking into account that k > 0, in the solutions (6.72), and if 0 < 1− 2k < 1,
then condition (6.78) will also hold. Solution (6.64) behaves the same way,
because function V (x), given by (6.73), is infinitesimal when x approaches
infinity.
In order to provide a biological meaningful solution and discussion, we focus on
the family (6.72) of solutions of Eq. (6.7). We have c0 = 2 and set c1 = c2 = 1

2 .
Thus, we obtain a one-parameter family of solutions of Eq. (6.7) as

u = 1− e−kt
√

sinh(x
√

1− 2k) + cosh(x
√

1− 2k)
2 cosh(x) , k <

1
2 , (6.79)

where k is a free parameter. For this family of solutions, large values of x and t
tend to approach the limiting value u∗ = 1.
The family (6.79) of solutions provided can be considered as a model for an
interface in brain tumours [273, 275]. For this case, we have provided some
simulations where we set a single transition region in the centre of a one-
dimensional spatial domain for x ∈ (−20, 20) and time as t ∈ (0, 100).
As we set c′(x)/c(x) = c0 tanh(x), the interface would be located at x0 = 0.
The solutions provided succeed in modelling a higher cellular density for x < 0
and a low one for x > 0. These zones would represent respectively the grey
and white matter as in [273, 275]. For a fixed t = t0, whenever k → 1

2 the
cellular density u increases and decreases at the same speed. However, when
k decreases, cellular density grows at a slower rate when x > 0 in comparison
to whenever x < 0. As u decreases, diffusion (6.53) and proliferation (6.54)
would increase whenever x→ 0− , always depending on the parameter k. This
would be consistent with the fact that, when passing through the interface,
diffusion increases in a great factor [275]. However, the proliferation rate would
disappear when k → 0. Furthermore, now for a fixed x = x0, the density grows
faster along with k, reaching its maximal speed whenever k is closer to 1

2 .
Depending on the value k, different representations of tumour invasion at an
interface level can be considered. With higher k there is a lower diffusion and
higher proliferation rate, and over time tumour density grows quickly. With
lower k, diffusion increases and proliferation decreases, so that over time density
grows slower. These results are provided in Figures (6.4) and (6.5).
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Figure 6.4: Asymptotic behaviour of the solution u = u(x, t) in Eq.
(6.79) for fixed values of x and t. The function u = u(x, t) is shown when
Eq. (6.79) holds. The left figure shows the asymptotic behaviour of u(x, 0),
while the right shows the asymptotic behaviour of u(0, t). The interface is
centred at x = 0, and the parameter k models different cell density behaviours.
For large values of x and t, the solution u approaches the limit u∗ = 1. Units
of x and t are considered as mm and days, respectively, as in [281].

6.6 Conclusions

In this Section, we have examined generalised Fishers equation that models
biological invasions from the point of view of Lie symmetries. The study
of non-linear phenomena has been a continuous source of new problems and
has motivated the introduction of new methods in the areas of mathematical
analysis, partial differential equations, and other disciplines, thereby becoming
one of the most active areas of mathematical research over the last decades.
The investigation of exact solutions of non-linear PDEs plays an essential role
in the analysis of non-linear phenomena, particularly in obtaining analytical
solutions for interface problems. The Lie symmetry method greatly simplifies
many non-linear problems. Exact solutions are difficult to investigate in general.
The combination of Lie group theory and equivalence transformation yields
exact solutions.

In this Section we have classified the Lie symmetries of the generalised Fisher
equations (6.4), (6.6) and, (6.7). Firstly, a Fisher Eq. (6.4) with a density-space
dependent reaction-diffusion term was presented, which can be considered as an
essential part of cancer modelling and cell dynamics. By applying the classical
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Lie group method, we obtained a symmetry classification for Eq. (6.4). We have
obtained a reduction of order of the ODE4 derived from (6.4). In particular,
we have found a one-parameter family of solutions with biological meaning.
The generalised Fisher’s Eq. (C.25) has been studied in terms of a function
F describing the proliferation dynamics. By applying the classical Lie point
symmetry method, we have derived a symmetry classification for (C.25). This
was also performed for Eq. (6.6), as we also obtained several reductions. We
have provided a one-parameter family of solutions in Eq. (6.38) and simulated
solutions which described tumour dynamics.

Lastly, for Eq. (6.7)., we have studied the functions f(u), g(u) and c(x), for
which the principal Lie algebra was extended. We simplified this analysis by
using equivalence transformations. Moreover, we have provided a number of
particular cases of Eq. (6.7) of biological interest, such as tumour progression at
their interfaces. As such, we have considered the special form of f and g based
purely on the classical definition of cancer as the uncontrolled proliferation of
cell with the potential for invasion and metastasis, and the function c(x) is
specifically in tanh form, modelling a single transition region [281].

For the corresponding equations of the generalised Fisher equation that
models biological invasions, specially for Eq. (6.7), we have obtained analytical
solutions for a model of tumour progression at their interfaces. Finally, we have
qualitatively studied a special case which simulates the cell density behaviour
around an interface. This study is consistent with the biological description
of cell density and motility between the grey and white matter of the brain.
These results can be used as predictive tools or as a means of understanding
tumour growth dynamics.

The methods, results and conclusions related to this Chapter can be found
in Refs. [322, 323, 324].
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Figure 6.5: Asymptotic behaviour of the solution u = u(x, t) in Eq.

(6.79) for di�erent values of x and t Solution u is represented for di�erent
values of k and modelled by both surface representations as well as density
coloured plots. The simulations provided correspond to the values (A) k = 1

2
,

(B) k = 1

7
, (C) k = 1

20
and (D) k = 1

100
. The interface level is centred at

x0 = 0, so that a density di�erence is modelled. Whenever k decreases, the
density recovery rate when passing through the interface is lower, as well as
the density minimal value. This is consistent with a higher di�usion and lower
proliferation levels. The parameter k would then model di�erent scenarios for
tumour invasion, with a lower k for very infiltrative tumours and a higher k for
non-di�usive but proliferating tumours. Units of x and t are considered as mm
and days, respectively, as in [281].
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Conclusions and open problems





CHAPTER 7

Thesis conclusions and open
problems

Thesis conclusions

In this thesis it has been studied the plausibility of mathematical models to
describe cancer dynamics and the potential of relapse prediction.

The extracted conclusions are the following:

1. Mathematical models have proved to be an essential asset in biomedicine.
Haematological diseases are well suited to mathematical modelling, not
only with differential equations, but also with stochastic models or other
techniques. Therefore, there is a huge amount of data to combine with
the mathematical models already in the current literature. Even so, these
models may not be sufficient to characterise specific disease behaviours in
leukaemia diagnosis: one could take, for example, acute lymphoblastic
leukaemia dynamics as a particularly undeveloped issue, as studies of
chronic myeloid leukaemia appear to us to have attracted more attention.
This is probably because myeloid malignancies are most common in adults.

2. We have constructed and studied several non-linear compartmental models
describing B cell lymphocyte reconstitution. These simple models describe
the process of B-cell generation as portrayed by bone marrow data, and
we consider it a first step in a deeper exploration of the phenomena
associated with B-cell development. We verified mathematical and
biological consistence, opening the door to interesting mathematical
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research like the existence of bifurcations or the conditions for global
stability, something that finds immediate application in cases of immune
reconstitution. Studies of this kind can function as a source of hypothesis
generation in biomedical research, for example when contrasting mouse
versus human dynamics.

3. We have designed an intuitive algorithm allowing to identify on diagnosis
patients with potential of relapse versus those with no risk of relapse in
B-cell childhood acute lymphoblastic leukaemia. The most consistent
result was the association between a lower expression of CD38 marker and
relapse. CD38 is a surface receptor present in a broad variety of immune
cells. Our results aligned with the evidence presented in the literature,
suggesting that a higher frequency of low CD38 expressing B cells could
be an early indicator of relapse risk.

4. We have combined topological methods, specifically persistent homology,
and machine-learning techniques, to distinguish relapsing from non-
relapsing patients with complete certainty. The analysis based on CD10,
CD20, CD38 and CD45 expression allowed for a perfect classification
of patients according to their relapse status. It is relevant that these
markers are available during routine diagnosis and were obtained via
an unsupervised Random Forest method. Classification was performed
by using Support Vector Machine and Logistic Regression applied to
persistence images of both cohorts of patients. Besides, connected
components and one-dimensional loops distinguished via persistence
homology between relapsed and non-relapsed patients.

5. We have examined from the point of view of Lie symmetries generalised
Fisher’s equations that model biological invasions. We have obtained
analytical solutions for models that can describe tumour progression.
Finally, we have qualitatively studied a special case which simulates the
cell density behaviour around an interface. This study is consistent with
the biological description of cell density and motility between the grey
and white matter of the brain. These results can be used as predictive
tools or as a means of understanding tumour growth dynamics.

To conclude, we would like to emphasize the multidisciplinary work that
has been initiated with the development of this thesis. By creating these
collaborations, we were able to comprehend several biomedical issues from the
hand of immunology and haematology experts (Jerez, Niño Jesús, or Virgen

140



del Rocío Hospital): firstly, biological processes, such as the development of
leukaemia invasion and progression; secondly, medical procedures, such as bone
marrow transplants; finally, we highlight flow cytometry techniques, including
the gating procedures studied to account for leukaemic clones. We note that,
even if both the mathematical and biological understanding is quite a remarkable
and complex issue, the preprocessing of the data and the understanding of
its structure can be considered also as an essential asset to obtain plausible
conclusions. In this sense, when considering leukaemia data, we were able
to consider quite specific mathematical methods to capture tumour dynamics
with differential equations (University of Heidelberg, University of Cádiz), and
to classify patients in terms of relapse risk, by both topological and machine
learning methods (University of Oxford, University of Oviedo). All this work
supposed a considerable number of main collaborators and specialists which are
listed below in Table 7.1. We include as well other collaborators in Table 7.2,
who would be helping in our future work, not only by widening the knowledge
specified above, but also by offering new data to be included in this line of
research.

As a final statement, and despite the importance of the models presented, we
highlight that the only way to integrate them into clinical practice successfully
is through collaboration between mathematicians, biomedical scientists and
clinicians. This can lead to new questions and conclusions for both mathematical
models and biological problems. The development of such a useful weapon
against cancer should be unified, so that the models can be helpful for the
actual observation and treatment of disease in patients, beyond the theoretical
framework. Mathematical models require refinement in terms of being included
in hospital protocols, as a diagnostic or prognostic tool and this can only be
achieved by cooperation between the mathematical and medical world.

Open problems and future research

Given the results obtained in this thesis, new questions and problems arise
which could be considered as future research:

1. Firstly, when it comes to the mathematical modelling of lymphopoiesis,
the choice of three compartments could be refined or expanded following
a more detailed characterisation of the cells. A mathematical model
where surface markers vary continuously might be able to capture this
variation of maturation stages. Secondly, we described signalling as a
systemic phenomenon. While this was enough to recapitulate known
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Collaborator Field Location
Cristina
Blázquez-Goñi Haematology Jerez Hospital,
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Lourdes
Hermosín-Ramos

Molecular
Biology

Jerez Hospital,
Jerez de la Frontera, Spain

Águeda
Molinos-Quintana Paediatrics Virgen del Rocío Hospital,

Sevilla, Spain
Teresa
Caballero-Velázquez Immunology Virgen del Rocío Hospital,

Sevilla, Spain
Manuel
Ramírez-Orellana Haematology Hospital Infantil del Niño Jesús,

Madrid, Spain
Ana
Castillo-Robleda Immunology Hospital Infantil del Niño Jesús,

Madrid, Spain
Víctor M.
Pérez-García Mathematics University of Castilla-La Mancha,

Ciudad Real, Spain
María
Rosa-Durán Mathematics University of Cádiz,

Cádiz, Spain
Álvaro
Martínez-Rubio Mathematics University of Cádiz,

Cádiz, Spain
Juan Luis
Fernández-Martínez Mathematics University of Oviedo,

Oviedo, Spain
Anna
Marciniak-Czochra Mathematics University of Heidelberg,

Heidelberg, Germany
Thomas
Stiehl

Mathematics
and Medicine

University of Heidelberg,
Heidelberg, Germany

Helen
Byrne Mathematics University of Oxford,

United Kingdom
Bernadette J.
Stolz Mathematics University of Oxford,

United Kingdom
María Luz
Gandarias-Núñez Mathematics University of Cádiz,

Cádiz, Spain
Rita
Tracinà Mathematics University of Catania,

Catania, Italy

Table 7.1: Main collaborators in the work presented in this thesis.
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Table 7.2: Other collaborators for the future work presented in this thesis.
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B-cell behaviour, a more detailed description including two or more types
of signalling is desirable. The model would benefit from longitudinal data
coming from immune reconstitution of the B-cell line. In this regard, flow
cytometry analyses of both peripheral blood and bone marrow in routine
follow-up would allow for a more precise parametrisation and enable the
hypotheses presented above to be contrasted.

2. A mathematical model of leukaemia could be studied considering the basics
of lymphopoiesis. It could include the interaction between constantly
renewing B cells, treatment (whether its chemotherapy or new therapies
like CAR-T cells) and leukaemic cells in the bone marrow. By doing
this, we could shed some light on the clinical features that have been
observed in clinical trials and thus provide a platform for testing hypothesis
related to the success or failure of the therapy. Besides, by clustering flow
cytometry data we could target the stage of the leukaemic clone, while
high-dimensional classification methods could improve risk stratification.
This could provide new tools to account for the proportion of leukaemic
cells along time and thus be related to other classification techniques
regarding relapse that we have considered in this thesis.

3. The nature of the data used in the second part of the study is a recurrent
concern in artificial intelligence in haematology. Apart from having only
54 patients, the set of relapsing patients represented only 25% of the
whole dataset and that unbalance could introduce biases in the analysis
and make the results sensitive to overfitting. In the future, as we increase
the size of our dataset, it would be better to increase the number of
patients to carry out a 50/50 analysis. Further, there is the issue of
data variability, given that it was collected retrospectively, belonging to
patients from different years and hospitals. This highlights the importance
of the preprocessing routine, which is also amenable to improvements in
order to ensure the comparability of the samples.

4. Concerning the mathematical methods for the analysis of biomarkers, we
highlight that we can miss information that can be clinically relevant
and that refers not to the frequency of cells or intensity of expression,
but to the presence or absence of a given subpopulation. Again, we can
expect to solve or damp the accuracy of prediction by complementing
this work with the inclusion of other clinical data like cytogenetics and
molecular biology information, also relevant in the prognostic assessment
of haematological diseases.
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5. As for the topological study of the data, we could extend this work in many
ways. Firstly, the shape of data after chemotherapy, transplant or CAR-T
cell infusion could reveal significant information about the development
of resistances to those therapies. Moreover, a simple application of
the topological methods could compare the shape of the data in the
moment of the diagnosis versus whenever a patient relapses, in order
to obtain topological features that could distinguish them. Lastly, the
flow-cytometry methods can provide additional information on the bone
marrow cells and not only on the B-lymphocytes. The topological study
could be applied to other haematological conditions, such as lymphomas,
T-cell leukaemias, myeloblastic disorders, etc.

6. Regarding Lie symmetries methods, we highlight the importance of the
theoretical studies presented, but again, a factual model should include
patients’ data for it to be applicable at the clinical world. However, these
methods could be plausibly applied to the cancer-related mathematical
models worked in the future. This could be done so in order to comprehend
some dynamical behaviours that are intrinsic to the model itself, thus
obtaining solutions that may not be the most suitable ones but may
shed some light on the understanding of cellular interaction, mobility or
invasion features.
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CHAPTER 8

Conclusiones de la tesis y vías de
ampliación

Conclusiones de la tesis

En esta tesis se ha estudiado la capacidad de los modelos matemáticos para
describir la dinámica del cáncer y el potencial de la predicción de recaídas.

Las conclusiones que se derivan son las siguientes:

1. Los modelos matemáticos se manifiestan como una herramienta funda-
mental en problemas biomédicos. Las enfermedades hematólogicas se
adecuan perfectamente al modelaje matemático, no sólo mediante ecua-
ciones diferenciales, sino también con modelos estocásticos y otras técnicas.
Existe así una enorme cantidad de datos que poder combinar con modelos
matemáticos ya existentes en la literatura. De igual modo, estos modelos
pueden no ser lo suficientemente aptos para caracterizar comportamientos
específicos de la enfermedad en el diagnóstico de la leucemia: se puede
considerar, por ejemplo, a la dinámica de la leucemia linfoblástica aguda
como un problema especialmente poco desarrollado.

2. Se han construido y estudiado múltiples modelos compartimentales no-
lineales que muestran la reconstitución de linfocitos B. Estos modelos
describen la regeneración de células B tal y como se observa en datos de
médula ósea. Lo consideramos así un primer paso en una exploración
más amplia de este fenómeno, especialmente asociado al desarrollo de este
tipo de células. Se ha verificado la consistencia tanto matemática como
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biológica de los resultados, abriendo así la posibilidad a investigaciones
matemáticas de otra índole, como la existencia de bifurcaciones o
condiciones para la estabilidad global. Esta cuestión puede encontrar una
aplicación inmediata en los casos de la reconstitución inmune. Estudios
de este tipo pueden funcionar como una fuente de hipótesis en el ámbito
biomédico, por ejemplo, al contrastar dinámica entre modelos murinos y
humanos.

3. Se ha diseñado un algoritmo intuitivo capaz de identificar en el momento de
diagnosis a los pacientes con potencial de recaída en leucemia linfoblástica
aguda pediátrica tipo B. El resultado más consistente es el de la asociación
entre una baja expresión del marcador CD38 y la recaída en la enfermedad.
Este marcador de superficie se presenta en una amplia variedad de células
del sistema inmune. Nuestros resultados se ajustan a las evidencias
presentes en la literatura, sugiriendo así que una alta frecuencia de células
con bajo CD38 puede ser un indicador temprano de riesgo de recaída.

4. Se han combinado métodos topológicos, específicamente de homología de
persistencia, con técnicas de “machine-learning”, para distinguir entre
pacientes que recaen o no con seguridad plena. El análisis basado en
la expresión de CD10, CD20, CD38 y CD45 permite una clasificación
perfecta de los pacientes según la posibilidad o no de recaída. Es
importante mencionar que estos marcadores se encuentran disponibles
en el diagnóstico de rutina y se han obtenido a través de un método de
“Random-forest” de manera no-supervisada. La clasificación se ha realizado
a través de métodos como “Support Vector Machine” y de Regresión
Logística, aplicados a imágenes de persistencia de ambas cohortes de
pacientes. Además, la existencia de componentes conexas y de bucles
unidimensionales es capaz de distinguir a través de esta homología de
persistencia entre pacientes con y sin recaída.

5. Se han examinado, desde el punto de vista de las simetrías de Lie,
ecuaciones de Fisher generalizadas que modelan la invasión biológica. Se
han obtenido soluciones analíticas de modelos que son capaces de describir
la progresión de un tumor. Finalmente, se ha estudiado cualitativamente
un caso especial que simula el comportamiento de la densidad celular
alrededor de una interfaz tumoral. Este estudio es consistente con la
descripción de la densidad celular y su movilidad entre la materia gris y
blanca cerebral. Estos resultados son de utilidad considerándolos como

148



herramientas predictivas o como medio para comprender la dinámica de
crecimiento tumoral.

Para concluir, se quiere enfatizar en el carácter multidisciplinar que ha
requerido el desarrollo de esta tesis. Mediante estas colaboraciones, se han
podido comprender múltiples problemas biomédicos de la mano de expertos en
inmunología y hematología (Hospital de Jerez, Niño Jesús o Virgen del Rocío):
en primer lugar, procesos biológicos, como lo es el desarrollo de la leucemia, su
invasión y progresión; procedimientos médicos, como el de trasplante de médula
ósea; finalmente, otros como las técnicas de citometría de flujo, incluyendo así
los procedimientos de selección para el conteo de clones leucémicos. Queremos
remarcar que, aunque la comprensión tanto matemática como biológica son
un problema complejo y de interés, el propio preprocesado de los datos, así
como entender su estructura interna, se puede considerar también como un
elemento necesario para poder obtener conclusiones sólidas. En este aspecto, al
considerar datos de leucemia, se ha podido contar con métodos matemáticos
específicos que son capaces de reflejar, por un lado, la dinámica tumoral mediante
ecuaciones diferenciales (Universidad de Heidelberg, Universidad de Cádiz),
y, por otro lado, la capacidad de clasificación para el riesgo de recaída, tanto
por métodos topológicos como de “machine learning” (Universidad de Oxford,
Universidad de Oviedo). Todo este trabajo conlleva un elevado número de
colaboradores principales que se encuentran en la Tabla 8.1. Incluimos a su vez
otros colaboradores en la Tabla 8.2, que estarían en disposición de colaborar en
proyectos futuros, no sólo al ampliar los estudios mencionados anteriormente,
sino también a la hora de proporcionar nuevos datos que incluir en esta línea
de investigación.

Como conclusión final, y a pesar de la importancia de los modelos teóricos
presentados, el modo de integrarlos convenientemente en la práctica clínica se
basa en la creación de colaboraciones entre matemáticos, científicos biomédicos
y personal clínico. Esto puede llevar al planteamiento de nuevas preguntas y
conclusiones tanto de modelos matemáticos como de problemas biológicos. El
desarrollo de un arma contra el cáncer, como es la de los modelos matemáticos,
debe ser unificado, de manera que puedan ser útiles para la observación del
mundo real y para el tratamiento de enfermedades, alejándose del entorno
puramente teórico. Los modelos matemáticos requieren de una optimización
para poder así ser incluidos en protocolos hospitalarios, sea como herramienta
de diagnóstico o de pronóstico, y esto solo puede llevarse a cabo a través de la
cooperación entre el mundo médico y matemático.
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Colaborador Campo Lugar
Cristina
Blázquez-Goñi Hematología Hospital de Jerez,

Jerez de la Frontera, España
Juan Francisco
Rodríguez-Gutiérrez Inmunología Hospital de Jerez,

Jerez de la Frontera, España
Lourdes
Hermosín-Ramos

Biología
Molecular

Hospital de Jerez,
Jerez de la Frontera, España

Águeda
Molinos-Quintana Pediatría Hospital Virgen del Rocío,

Sevilla, España
Teresa
Caballero-Velázquez Inmunología Hospital Virgen del Rocío,

Sevilla, España
Manuel
Ramírez-Orellana Hematología Hospital Infantil del Niño Jesús,

Madrid, España
Ana
Castillo-Robleda Inmunología Hospital Infantil del Niño Jesús,

Madrid, España
Víctor M.
Pérez-García Matemáticas Universidad de Castilla-La Mancha,

Ciudad Real, España
María
Rosa-Durán Matemáticas Universidad de Cádiz,

Cádiz, España
Álvaro
Martínez-Rubio Matemáticas Universidad de Cádiz,

Cádiz, España
Juan Luis
Fernández-Martínez Matemáticas Universidad de Oviedo,

Oviedo, España
Anna
Marciniak-Czochra Matemáticas Universidad de Heidelberg,

Heidelberg, Germany
Thomas
Stiehl

Matemáticas
y Medicina

Universidad de Heidelberg,
Heidelberg, Germany

Helen
Byrne Matemáticas Universidad de Oxford,

Reino Unido
Bernadette J.
Stolz Matemáticas Universidad de Oxford,

Reino Unido
María Luz
Gandarias-Núñez Matemáticas Universidad de Cádiz,

Cádiz, España
Rita
Tracinà Matemáticas Universidad de Catania,

Catania, Italy

Table 8.1: Colaboradores principales del trabajo presentado en esta tesis.
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Colaborador Campo Lugar
Odelaisy
León-Triana Matemáticas Universidad de Castilla-La Mancha,

Ciudad Real, España
Soukaina
Sabir Matemáticas Mohammed V Universidad de Rabat,

Rabat, Marruecos
Gabriel
F. Calvo Matemáticas Universidad de Castilla-La Mancha,

Ciudad Real, España
Juan
Belmonte-Beitia Matemáticas Universidad de Castilla-La Mancha,

Ciudad Real, España
Mariano
Torrisi Matemáticas Universidad de Catania,

Catania, Italia
Masood
Khalique Matemáticas Universidad North-West ,

Potchefstroom, Sudáfrica
Antonio
Pérez-Martínez Matemáticas Hospital de La Paz,

Madrid, España
Gema
Salas-Camacho Hematología Hospital Virgen de las Nieves,

Granada, España
Jose Luis
Fuster-Soler Hematología Hospital Virgen de la Arrixaca,

Murcia, España
Alfredo
Minguela-Puras Inmunología Hospital Virgen de la Arrixaca,

Murcia, España
Inmaculada
Marchante-Cepillo Hematología Hospital Puerta del Mar,

Cádiz, España
Almudena
Sampalo-Lainz Inmunología Hospital Puerta del Mar,

Cádiz, España
Roberto
Raynero-Mellado Hematología Hospital Virgen de la Salud,

Toledo, España
Nerea
Domínguez-Pinilla Hematología Hospital Virgen de la Salud,

Toledo, España

Table 8.2: Otros colaboradores principales para el trabajo futuro a desarrollar
presentado en esta tesis.
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Vías de ampliación e investigación futura

Dados los resultados obtenidos en esta tesis, surgen nuevas preguntas y
problemas que se puede considerar como proyectos futuros:

1. En lo que respecta al modelaje matemático de la linfopoiesis, el hecho de
haber distinguido en tres compartimentos celulares podría ser refinado y/o
expandido siguiendo una caracterización más detallada del tipo celular.
Un modelo matemático que considere una continuidad en los marcadores
de superficie de las células puede ser capaz de capturar esta variación
en los estados de maduración. En segundo lugar, se ha descrito a la
señalización celular como un fenómeno sistémico. Aunque esto haya sido
suficiente para recabar el ya conocido comportamiento de las células B,
sería conveniente una descripción más detallada, que pueda incluir dos o
más tipos de señalización. El modelo se beneficiaría de datos longitudinales
provenientes de reconstitución inmune de la línea B. En este aspecto, los
análisis de seguimiento y rutina de citometría de flujo tanto de sangre
periférica como de médula ósea permitirían una parametrización más
precisa capaz de contrastar las hipótesis presentadas con anterioridad.

2. Un nuevo modelo matemático de leucemia se podría estudiar considerando
la base de la linfopoiesis. Podría incluir la interacción tanto entre células B
en continua renovación, como con el tratamiento (tanto si es quimioterapia
como nuevas terapias como las células CAR-T) y junto a las células
leucémicas en la médula ósea. A través de esto, podríamos esclarecer
las características clínicas que se observan en los ensayos clínicos y así
proporcionar una plataforma de testeo de hipótesis asociadas al éxito o
fallo de la terapia. Además, a través de métodos de “clustering”, se podría
seleccionar el estadio del clon leucémico, mientras que otras técnicas de
clasificación en datos de citometría de flujo podría mejorar la asignación
del riesgo del paciente. Esto puede proporcionar nuevas herramientas que
consideren la proporción de células leucémicas a lo largo del tiempo y
relacionarlo así con otras técnicas de clasificación de recaída que se hayan
considerado en esta tesis.

3. La naturaleza de los datos usados en la segunda parte de este estudio es un
problema recurrente en la inteligencia artificial asociada a la hematología.
Además de únicamente contar con 54 pacientes, el conjunto de pacientes
con recaída representa solo el 25% del total de los datos, siendo esta
descompensación un factor de parcialidad en el análisis, haciendo los
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resultados sensibles a “overfitting”. En el futuro, con el incremento del
tamaño de nuestra muestra de datos, sería aconsejable incrementar el
número de pacientes y hacer un análisis 50/50. Más allá de esto, se da el
problema de la variabilidad de los datos, dado que se han recolectado de
manera retrospectiva, siendo de pacientes de años y hospitales diferentes.
Esto realza la importancia de la rutina de preprocesado, que es sensible
también a mejora para asegurar la comparabilidad entre las muestras.

4. Según los modelos matemáticos de análisis de biomarcadores, se recalca
que se ha podido perder información que puede ser clínicamente relevante
y que se refiere no tanto a la frecuencia del número de células o a su
intensidad de expresión en el marcaje celular, sino a la presencia o ausencia
de una subpoblación específica. Así, se puede solventar o mejorar la
capacidad de precisión de la predicción al complementar este trabajo con
la inclusión de otros datos clínicos como información citogenética o de
biología molecular, ya que se considera también relevante en la evaluación
de enfermedades hematológicas.

5. Conforme a los estudios topológicos de los datos, se podría extender
su trabajo de múltiples modos. Primero, la forma de los datos tras
quimioterapia, transplante de progenitores hematopoyéticos, o infusión
de células CAR-T podrían revelar información acerca del desarrollo de
resistencias a dichas terapias. Además, una simple aplicación de los
métodos topológicos podría comparar la forma de los datos en el momento
de diagnosis y en el momento de recaída del paciente, para así obtener
características topológicas para distinguirlos. Finalmente, los métodos de
citometría de flujo pueden proporcionar información, ya no solo de los
linfocitos B, sino también de otras células de la médula ósea. Este estudio
topológico podría ser aplicado a otras condiciones hematológicas, como
pueden ser linfomas, leucemias tipo T o leucemias mieloides.

6. En cuanto a los métodos de simetrías de Lie, recalcamos la importancia
de los estudios teóricos presentados, aunque un modelo real debería de
incluir datos de pacientes para poder ser aplicable en el mundo clínico.
Sin embargo, estos métodos podrían ser aplicados convenientemente a
modelos matemáticos relacionados con el cáncer que se desarrollen en
el futuro. Esto podría ser realizado para entender los comportamientos
dinámicos que fuesen intrínsecos al modelo, obteniendo así soluciones que
pueden no ser las más apropiadas pero que pueden arrojar algo de luz en
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la comprensión de interacciones celulares, movilidad o características de
invasión.
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APPENDIX A

Stability analysis for models 3.6

A.1 Stability analysis for non-trivial equilibria in model A

A.1.1 Model A1

We recall the model from Section ??. From Eq. (3.22) we obtained the steady
states PA1

i for i = 1, 2, 3.
Let us consider stability for the equilibrium point PA2

3 . We obtain the
characteristic equation

λ3 + b2λ
2 + b1λ+ b0 = 0, (A.1)

where

b2 = α2 + α3 −
α1ρ2

ρ1
, (A.2a)

b1 = α3

(
α2 −

α2
1ρ2

ρ2
1

)
, (A.2b)

b0 = α1α3(α1 − ρ1)(α1ρ2 − α2ρ1)
ρ2

1
. (A.2c)

Using the Routh-Hurwitz Criterion, for PA1
3 to be positive and stable we must

have
b2b1 − b0 > 0, b2 > 0, b0 > 0. (A.3)

The positivity conditions found in Eq. (3.28) yield b0 > 0, b2 > 0. Furthermore,
the stability condition b2b1 − b0 > 0 is satisfied if ρ1 ≤ ρ2. If ρ1 > ρ2, the
stability criterion is equivalent to satisfying either

α2
1ρ2 ≤ ρ1(α2

1 − α1ρ1 + α2ρ1) (A.4)
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or

α2ρ
2
1
(
α2

1 + ρ1(α2 + α3)
)

+ α3
1ρ

2
2

α1ρ1
> α1ρ2 (αT − ρ1) + α2ρ1(ρ1 + ρ2), (A.5)

where αT =
∑3
i=1 αi.

A.1.2 Model A2

We recall the model from Section ??. We obtained in Eq. (3.29) the steady
states PA2

i for i = 1, 2, 3.
We use the Routh-Hurwitz Criterion to study the stability of PA2

3 . We
obtain the characteristic equation

λ3 + b2λ
2 + b1λ+ b0 = 0, (A.6)

where

b2 = (α2α3(α2 + α3)ρ2
1 + α1 ρ1(α2

2ρ1 + α2α3(3ρ1 − 2ρ2)
ρ1β

+ (A.7a)

+ α2
3(ρ1 − ρ2))− α2

1( α3(ρ1 − ρ2)ρ2 + α2ρ1(α3 + ρ2))
ρ1β

,

b1 =
α3
(
α2

2α3ρ
3
1 + 2α1α2ρ

2
1(α2ρ1 + α3(ρ1 − ρ2))− α3

1ρ1(ρ1 − ρ2)(α2 + ρ2)
)

ρ2
1β

+

(A.7b)

+ α3α
4
1(ρ1 − ρ2)ρ2

ρ2
1β

− α3α
2
1ρ1(α2

2ρ1 + α3(ρ1 − ρ2)ρ2 + α2ρ1(α3 − ρ1 + 2ρ2))
ρ2

1β
,

b0 = α1α3(α1 − ρ1)(α1ρ2 − α2ρ1)
ρ2

1
. (A.7c)

Positivity conditions for PA2
3 as in Eq. (3.35) and in Eq. (3.36) yield b0 > 0.

Finally, stability conditions b2 > 0 and b2b1 − b0 > 0 result in

(α2α3(α2 + α3)ρ2
1 + α1 ρ1(α2

2ρ1 + α2α3(3ρ1 − 2ρ2)
ρ1β

+

+ α2
3(ρ1 − ρ2))− α2

1(α3(ρ1 − ρ2)ρ2 + α2ρ1(α3 + ρ2))
ρ1β

> 0 (A.8a)
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and

(r1ρ
2
1 + r2ρ1 + r3(ρ1 − ρ2))(r4ρ

3
1 + r5ρ

2
1 + r6(ρ1 − ρ2)))

β3 +

+ α1(ρ1 − α1)ρ2
1(α1ρ2 − α2ρ1) > 0 (A.8b)

where

r1 = α1α
2
2 + 3α1α2α3 + α2α3(α2 + α3),

r2 = −(α2
1α2 + 2α1α2α3)ρ2 − α2

1α2α3,

r3 = α1α3(α3ρ1 − α1ρ2),
r4 = α2

1α2 + 2α1α
2
2 + α2

2α3, (A.8c)
r5 = −α2

1α
2
2 − α2

1α2α3 − 2α2
1α2ρ2,

r6 = 2α1α2α3ρ
2
1 + α4

1ρ2 − ρ1α
2
1(α1α2 + ρ2(α1 + α3)).

A.2 Stability analysis for models B

A.2.1 Model B1

Let us consider Eqs. (3.8) with last stage signalling sα = s1(t) as in Eq. (3.4),
this is, N = C3. The steady states for this model are

PB1
1 = (0, 0, 0), (A.9a)

PB1
2 =

(
0, α3(α2 − ρ2)

kα2ρ2
,
α2 − ρ2

kρ2

)
, (A.9b)

PB1
3 =

(
α3(α1 − ρ1)(α2ρ1 − α1ρ2)

kα1α2ρ2
1

,
α3(α1 − ρ1)
kα2ρ1

,
α1 − ρ1

kρ1

)
. (A.9c)

The Jacobian matrix is JB1(C1, C2, C3) = JB1 such that

JB1 =



ρ1 −
α1

C3k + 1 0 α1C1k

(C3k + 1)2

α1

C3k + 1 ρ2 −
α2

C3k + 1
α2C2k − α1C1k

(C3k + 1)2

0 α2

C3k + 1 −α2C2k + α3

(C3k + 1)2


. (A.10)
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Substituting PB1
i for i = 1, 2, 3 in Eq. (A.10) we obtain the eigenvalues

governing linear stability. First, for PB1
1 , we obtain the same eigenvalues as for

PA1
1 , i.e.

λB1
1,1 = −α3, (A.11a)
λB1

1,2 = ρ1 − α1, (A.11b)
λB1

1,3 = ρ2 − α2. (A.11c)

For PB1
2 we get

λB1
2,1 = ρ1 −

α1ρ2

α2
, (A.12a)

λB1
2,2 = −α3ρ2 +√α3ρ2

√
4α2 + α3 − 4ρ2

2α2
, (A.12b)

λB1
2,3 = α3ρ2 −

√
α3ρ2

√
4α2 + α3 − 4ρ2

2α2
. (A.12c)

Finally, for PB1
3 , we obtain the characteristic equation

λ3 + b2λ
2 + b1λ+ b0 = 0, (A.13)

where

b2 = α2ρ1 + α3ρ1 − α1ρ2

α1
, (A.14a)

b1 = α3ρ1(α2ρ1 + ρ2(ρ1 − 2α1))
α2

1
, (A.14b)

b0 = α3(α1 − ρ1)ρ2
1(α1ρ2 − α2ρ1)
α3

1
. (A.14c)

Considering positivity conditions for PB1
2 and PB1

3 , we find that λB1
1,i < 0 for

i = 1, 2, 3, and therefore PB1
1 is always stable. From the positivity conditions

we also get
ρ1

ρ2
>
α1

α2
. (A.15a)

which implies λB1
2,1 > 0 and therefore PB1

2 is unstable.
Stability of this equilibrium PB1

3 can be analysed by the Routh-Hurwitz
Criterion from Eq. (A.3). However, given its own positivity conditions, we get
b0 < 0, implying PB1

3 is always unstable.
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A.2.2 Model B2

Let us now consider Eqs. (3.8) with signalling coming from all cellular
compartments sα = s1(t) as in Eq. (3.5), this is, N =

∑3
i=1 Ci. The steady

states of the model are

PB2
1 = (0, 0, 0), (A.16a)

PB2
2 =

(
0, α3(α2 − ρ2)
k(α2 + α3)ρ2

,
α2(α2 − ρ2)
k(α2 + α3)ρ2

)
, (A.16b)

PB2
3 =

(
α3(α1 − ρ1)(α2ρ1 − α1ρ2)

ρ1kβ
,
α1α3(α1 − ρ1)

kβ
,
α1α2(α1 − ρ1)

kβ

)
,

(A.16c)

where
β = (α2α3ρ1 + α1(α2ρ1 + α3(ρ1 − ρ2))) . (A.17)

The Jacobian matrix of Eqs. (3.8) with signal s given by Eq. (3.5) is
JB2 = JB2(C1, C2, C3) such that

JB2 = s2


C1kα1 −

α1

s
+ ρ1

s2 C1kα1 C1kα1

α1 + kR1 kR2 −
α2

s
+ ρ2

s2 kR2

kR3 α2 + kR4 −α3 − kR5

 , (A.18)

where

R1 = C2(α1 + α2) + C3α1, (A.19a)
R2 = C2α2 − C1α1, (A.19b)
R3 = C3α3 − C2α2, (A.19c)
R4 = C1α2 + C3(α2 + α3), (A.19d)
R5 = C1α3 + C2(α2 + α3). (A.19e)

Substituting PB2
i for i = 1, 2, 3 in Eq. (A.18) we obtain the eigenvalues

governing the linear stability. Specifically, for PB2
1 , we again get

λB2
1,1 = −α3, (A.20a)
λB2

1,2 = ρ1 − α1, (A.20b)
λB2

1,3 = ρ2 − α2. (A.20c)
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For PB2
2 , we get the eigenvalues

λB2
2,1 = ρ1 −

α1ρ2

α2
, (A.21a)

λB2
2,2 = −α

2
3ρ2 + α3ρ

2
2 + h∗(α2, α3, ρ2)

2α2(α2 + α3) , (A.21b)

λB1
2,3 = −α

2
3ρ2 − α3ρ

2
2 + h∗(α2, α3, ρ2)

2α2(α2 + α3) . (A.21c)

where h∗ = h∗(α2, α3, ρ2) such that

h∗ = √α3ρ2

√
4α2(α2

2 + α2(2α3 − ρ2) + α3(α3 − 2ρ2)) + α3(α3 − ρ2)2.

(A.22)
Finally, for PB2

3 , we obtain the characteristic equation

λ3 + b2λ
2 + b1λ+ b0 = 0, (A.23)

where

b2 = α2α3ρ
2
1(α2 + α3 + ρ1) + α1ρ1(α2

2ρ1 + α2α3(ρ1 − 2ρ2)
α1β

+ (A.24a)

+ α2
3(ρ1 − ρ2))− α2

1(α2ρ1 + α3(ρ1 − ρ2))ρ2

α1β
,

b1 = α3ρ1(α2ρ
2
1(α3ρ1 + α2(α3 + ρ1)) + α3

1(ρ1 − ρ2)ρ2

α2
1β

+ (A.24b)

− α1α2ρ1(ρ2
1 − 2α3ρ2 − ρ1ρ2)− α2

1(α2ρ
2
1 + (α3 + ρ1)(ρ1 − ρ2)ρ2)

α2
1β

,

b0 = α3(α1 − ρ1)ρ2
1(α1ρ2 − α2ρ1)
α3

1
. (A.24c)

Every equilibrium stability is influenced by the positivity conditions of the
other points. From the positivity of PB2

2 , we get that

α2 > ρ2. (A.25)

Two different scenarios arise from the positivity conditions of PB2
3 ; either

β > 0, (A.26a)
α1 > ρ1, (A.26b)

168



A.3. Summary of stability conditions

α2ρ1 > α1ρ2; (A.26c)

or

β < 0, (A.27a)
α1 < ρ1, (A.27b)

α2ρ1 < α1ρ2. (A.27c)

Whenever Eq. (A.26) holds, equilibrium PB2
1 is stable (mainly α1 < ρ1, as

Eq.(A.25) is true whenever PB2
2 > 0). Moreover, equilibrium PB2

2 would also
be stable whenever Eq. (A.27) holds and also

|R(h∗)| < α2
3ρ2 + α3ρ

2
2 (A.28)

where h∗ is defined as in Eq. (A.22). However, the stability of PB2
1 and PB2

2
is biologically uninteresting. Focusing on the non-trivial state, with the above
constraints Eq.(A.26) or Eq.(A.27) and the Routh-Hurtwitz criterion, we have
b0 < 0. Therefore, PB2

3 is positive but always unstable.

A.3 Summary of stability conditions

We summarise in Table A.1 the conclusions of the mathematical analysis
regarding stability of the non-trivial state.

Steady Model A1 Model A2 Model B1 Model B2
State sρ = s1, sα = 1 sρ = s2, sα = 1 sρ = 1, sα = s1 sρ = 1, sα = s2

P j
1 Unstable Unstable Stable Conditionally

stable
P j

2 Unstable Conditionally Unstable Conditionally
stable stable

P j
3 Conditionally Conditionally Unstable Unstable

Stable Stable

Table A.1: Steady-state stability for every model from Eq. (3.6) under conditions
of positivity of the non-trivial steady state. Index j stands for the four
models considering the different feedback regulations: A1 for cell proliferation
regulation, all cell feedback; A2 for proliferation regulation, late cell feedback;
B1 for transition rate regulation, late cell feedback; and B2 for transition rate
regulation, all cell feedback.
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B. Supplementary information for topological data analysis

Dataset 1 Dataset 2

CD10

Dataset 1&2

CD10 CD13
CD123 CD15
CD13 CD19 CD10
CD19 CD20 CD13
CD20 CD22 CD19
CD24 CD24 CD20
CD33 CD33 CD24
CD34 CD34 CD33
CD38 CD38 CD34
CD45 CD45 CD38
CD66c CD58 CD45
CD7 CD66c CD66c
CD9 CD7 CD7
Kappa CD71
Lambda HLADR

IGM
cyCD3

Table B.1: IPT markers included in the study. Sets of IPT markers in
common for all patients in each dataset are presented in this table.
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Figure B.1: Topological feature analysis with 5 biomarkers for relapsed
(orange) and non-relapsed (blue) patients. Results are computed for
markers CD10, CD20, CD38, CD45 and CD7. The features included are
maximal persistence, minimal persistence, mean persistence, and the analysis is
performed in dimensions 0 and 1.
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B. Supplementary information for topological data analysis

Figure B.2: Topological feature analysis with 4 biomarkers for relapsed
(orange) and non-relapsed (blue) patients. Results are computed for
markers CD10, CD20, CD38, and CD45. The features included are maximal
persistence, minimal persistence, mean persistence, and the analysis is performed
in dimensions 0 and 1.
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Marker comb. AUC OOB TPR TNR PPV NPV FPR FNR FDR ACC

CD10-CD123 0.56 0.25 0.17 0.91 0.33 0.76 0.09 0.83 0.67 0.72
CD10-CD13 0.61 0.26 0.25 0.95 0.75 0.8 0.05 0.75 0.25 0.77
CD10-CD19 0.75 0.33 0.35 0.97 0.89 0.84 0.03 0.65 0.11 0.84
CD10-CD20 0.86 0.27 0.24 0.92 0.49 0.84 0.08 0.76 0.51 0.79
CD10-CD24 0.8 0.21 0.36 0.95 0.68 0.84 0.05 0.64 0.32 0.81
CD10-CD33 0.87 0.22 0.39 0.97 0.91 0.84 0.03 0.61 0.09 0.83
CD10-CD34 0.77 0.28 0.35 0.87 0.51 0.82 0.13 0.65 0.49 0.75
CD10-CD38 0.78 0.2 0.41 0.88 0.56 0.82 0.12 0.59 0.44 0.76
CD10-CD45 0.7 0.3 0.2 0.86 0.29 0.78 0.14 0.8 0.71 0.69
CD10-CD66c 0.9 0.2 0.51 0.88 0.58 0.86 0.12 0.49 0.42 0.77
CD10-CD7 0.94 0.17 0.52 0.98 0.91 0.87 0.02 0.48 0.09 0.87
CD10-CD9 0.81 0.18 0.51 0.91 0.63 0.87 0.09 0.49 0.37 0.81
CD10-KAPPA 0.93 0.19 0.53 0.95 0.84 0.86 0.05 0.47 0.16 0.84
CD10-LAMBDA 0.92 0.16 0.4 0.95 0.81 0.84 0.05 0.6 0.19 0.81
CD123-CD13 0.93 0.18 0.45 0.98 0.92 0.85 0.02 0.55 0.08 0.85
CD123-CD19 0.77 0.2 0.16 0.98 0.67 0.77 0.02 0.84 0.33 0.77
CD123-CD20 0.64 0.25 0.08 0.94 0.22 0.77 0.06 0.92 0.78 0.73
CD123-CD24 0.58 0.19 0.14 0.91 0.2 0.78 0.09 0.86 0.8 0.72
CD123-CD33 0.69 0.17 0.22 0.91 0.51 0.78 0.09 0.78 0.49 0.73
CD123-CD34 0.68 0.29 0.28 0.9 0.31 0.81 0.1 0.72 0.69 0.75
CD123-CD38 0.69 0.24 0.3 0.87 0.39 0.81 0.13 0.7 0.61 0.73
CD123-CD45 0.6 0.28 0.15 0.88 0.37 0.78 0.12 0.85 0.63 0.71
CD123-CD66c 0.58 0.37 0.37 0.84 0.33 0.82 0.16 0.63 0.67 0.72
CD123-CD7 0.6 0.28 0.16 0.92 0.61 0.78 0.08 0.84 0.39 0.73
CD123-CD9 0.6 0.33 0.11 0.85 0.09 0.76 0.15 0.89 0.91 0.67
CD123-KAPPA 0.56 0.26 0.19 0.91 0.45 0.79 0.09 0.81 0.55 0.74
CD123-LAMBDA 0.7 0.27 0.37 0.87 0.49 0.84 0.13 0.63 0.51 0.73
CD13-CD19 0.82 0.22 0.32 0.96 0.8 0.84 0.04 0.68 0.2 0.82
CD13-CD20 0.71 0.33 0.25 0.88 0.37 0.84 0.12 0.75 0.63 0.75
CD13-CD24 0.74 0.21 0.41 0.9 0.53 0.84 0.1 0.59 0.47 0.78
CD13-CD33 0.79 0.23 0.5 0.96 0.79 0.86 0.04 0.5 0.21 0.84
CD13-CD34 0.65 0.24 0.07 0.95 0.29 0.75 0.05 0.93 0.71 0.72
CD13-CD38 0.75 0.16 0.4 0.96 0.78 0.84 0.04 0.6 0.22 0.82
CD13-CD45 0.71 0.28 0.34 0.88 0.34 0.82 0.12 0.66 0.66 0.75
CD13-CD66c 0.76 0.16 0.36 0.92 0.67 0.81 0.08 0.64 0.33 0.76
CD13-CD7 0.67 0.29 0.2 0.92 0.36 0.8 0.08 0.8 0.64 0.75
CD13-CD9 0.52 0.34 0.26 0.88 0.3 0.81 0.12 0.74 0.7 0.73
CD13-KAPPA 0.71 0.21 0.33 0.9 0.61 0.81 0.1 0.67 0.39 0.75
CD13-LAMBDA 0.77 0.23 0.31 0.92 0.41 0.85 0.08 0.69 0.59 0.8
CD19-CD20 0.79 0.29 0.16 0.98 0.67 0.8 0.02 0.84 0.33 0.8
CD19-CD24 0.83 0.22 0.45 0.94 0.74 0.87 0.06 0.55 0.26 0.83
CD19-CD33 0.85 0.23 0.46 0.95 0.76 0.84 0.05 0.54 0.24 0.82
CD19-CD34 0.69 0.21 0.22 0.94 0.66 0.77 0.06 0.78 0.34 0.73
CD19-CD38 0.86 0.23 0.38 0.98 0.91 0.83 0.02 0.62 0.09 0.83
CD19-CD45 0.79 0.2 0.54 0.9 0.6 0.89 0.1 0.46 0.4 0.81
CD19-CD66c 0.87 0.16 0.58 0.94 0.74 0.89 0.06 0.42 0.26 0.86
CD19-CD7 0.68 0.21 0.38 0.9 0.49 0.83 0.1 0.62 0.51 0.77
CD19-CD9 0.82 0.24 0.51 0.9 0.52 0.88 0.1 0.49 0.48 0.81
CD19-KAPPA 0.81 0.24 0.31 0.95 0.64 0.81 0.05 0.69 0.36 0.79
CD19-LAMBDA 0.69 0.2 0.16 0.97 0.63 0.77 0.03 0.84 0.37 0.75
CD20-CD24 0.7 0.23 0.42 0.82 0.44 0.84 0.18 0.58 0.56 0.73
CD20-CD33 0.7 0.24 0.27 0.88 0.41 0.81 0.12 0.73 0.59 0.73
CD20-CD34 0.66 0.22 0.11 0.91 0.3 0.75 0.09 0.89 0.7 0.71

Table B.2: Random Forest classification results for dataset 1 (1/3) for
different marker combinations. AUC: Area under the ROC curve. OOB:
Out of bag error. TPR: True positive rate. TNR: True negative rate. PPV:
Positive predictive value. NPV: Negative predictive value. FPR: False positive
rate. FNR: False negative rate. FDR: False discovery rate. ACC: Accuracy
(Coefficient of determination).
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Marker comb. AUC OOB TPR TNR PPV NPV FPR FNR FDR ACC

CD20-CD38 0.68 0.32 0.43 0.89 0.56 0.84 0.11 0.57 0.44 0.79
CD20-CD45 0.75 0.21 0.31 0.94 0.57 0.81 0.06 0.69 0.43 0.77
CD20-CD66c 0.56 0.32 0.15 0.88 0.33 0.78 0.12 0.85 0.67 0.71
CD20-CD7 0.54 0.36 0.25 0.84 0.37 0.8 0.16 0.75 0.63 0.71
CD20-CD9 0.73 0.27 0.18 0.92 0.32 0.78 0.08 0.81 0.68 0.74
CD20-KAPPA 0.82 0.13 0.5 0.93 0.64 0.86 0.07 0.5 0.36 0.82
CD20-LAMBDA 0.62 0.3 0.19 0.87 0.37 0.77 0.13 0.81 0.63 0.7
CD24-CD33 0.78 0.15 0.58 0.84 0.53 0.89 0.16 0.42 0.47 0.78
CD24-CD34 0.84 0.18 0.56 0.9 0.7 0.87 0.1 0.44 0.3 0.8
CD24-CD38 0.88 0.16 0.63 0.94 0.83 0.9 0.06 0.37 0.17 0.86
CD24-CD45 0.72 0.21 0.36 0.87 0.65 0.83 0.13 0.64 0.35 0.74
CD24-CD66c 0.74 0.36 0.11 0.94 0.4 0.79 0.06 0.89 0.6 0.76
CD24-CD7 0.77 0.14 0.39 0.96 0.82 0.83 0.04 0.61 0.18 0.81
CD24-CD9 0.69 0.24 0.35 0.87 0.5 0.82 0.13 0.65 0.5 0.74
CD24-KAPPA 0.75 0.28 0.38 0.88 0.62 0.83 0.12 0.62 0.38 0.76
CD24-LAMBDA 0.87 0.18 0.66 0.96 0.74 0.91 0.04 0.34 0.26 0.89
CD33-CD34 0.75 0.23 0.33 0.87 0.52 0.82 0.13 0.67 0.48 0.73
CD33-CD38 0.96 0.2 0.46 0.97 0.8 0.86 0.03 0.54 0.2 0.85
CD33-CD45 0.82 0.21 0.48 0.87 0.55 0.86 0.13 0.52 0.45 0.78
CD33-CD66c 0.76 0.25 0.52 0.9 0.68 0.85 0.1 0.48 0.32 0.79
CD33-CD7 0.56 0.27 0.27 0.86 0.25 0.8 0.14 0.73 0.75 0.7
CD33-CD9 0.79 0.21 0.46 0.95 0.74 0.88 0.05 0.54 0.26 0.86
CD33-KAPPA 0.68 0.27 0.32 0.9 0.46 0.81 0.1 0.68 0.54 0.75
CD33-LAMBDA 0.74 0.28 0.48 0.8 0.47 0.84 0.2 0.52 0.53 0.72
CD34-CD38 0.82 0.23 0.32 0.95 0.74 0.83 0.05 0.68 0.26 0.81
CD34-CD45 0.78 0.27 0.53 0.85 0.52 0.88 0.15 0.46 0.48 0.78
CD34-CD66c 0.81 0.21 0.28 0.91 0.55 0.82 0.09 0.72 0.45 0.76
CD34-CD7 0.64 0.29 0.27 0.83 0.35 0.81 0.17 0.73 0.65 0.7
CD34-CD9 0.8 0.2 0.48 0.91 0.69 0.84 0.09 0.52 0.31 0.8
CD34-KAPPA 0.63 0.3 0.25 0.94 0.58 0.8 0.06 0.75 0.42 0.76
CD34-LAMBDA 0.84 0.24 0.31 0.99 0.9 0.82 0.01 0.69 0.1 0.82
CD38-CD45 0.8 0.22 0.47 0.89 0.57 0.87 0.11 0.52 0.43 0.8
CD38-CD66c 0.71 0.29 0.26 0.96 0.78 0.82 0.04 0.74 0.22 0.8
CD38-CD7 0.81 0.17 0.46 0.95 0.81 0.84 0.05 0.54 0.19 0.83
CD38-CD9 0.75 0.16 0.37 0.92 0.57 0.84 0.08 0.63 0.43 0.79
CD38-KAPPA 0.81 0.23 0.48 0.94 0.76 0.86 0.06 0.52 0.24 0.82
CD38-LAMBDA 0.87 0.23 0.59 0.92 0.69 0.89 0.08 0.41 0.31 0.84
CD45-CD66c 0.61 0.28 0.18 0.88 0.48 0.77 0.12 0.82 0.52 0.71
CD45-CD7 0.65 0.35 0.29 0.88 0.51 0.82 0.12 0.71 0.49 0.74
CD45-CD9 0.81 0.26 0.33 0.93 0.71 0.82 0.07 0.67 0.29 0.78
CD45-KAPPA 0.63 0.3 0.16 0.88 0.26 0.8 0.12 0.84 0.74 0.73
CD45-LAMBDA 0.76 0.14 0.18 0.99 0.8 0.75 0.01 0.82 0.2 0.75
CD66c-CD7 0.66 0.24 0.16 0.96 0.56 0.78 0.04 0.84 0.44 0.76
CD66c-CD9 0.58 0.3 0.13 0.86 0.17 0.78 0.14 0.87 0.83 0.7
CD66c-KAPPA 0.73 0.22 0.33 0.94 0.72 0.8 0.06 0.67 0.28 0.77
CD66c-LAMBDA 0.65 0.3 0.14 0.93 0.37 0.8 0.07 0.86 0.63 0.75
CD7-CD9 0.65 0.26 0.3 0.94 0.68 0.82 0.06 0.7 0.32 0.79
CD7-KAPPA 0.73 0.2 0.28 0.9 0.33 0.79 0.1 0.72 0.67 0.73
CD7-LAMBDA 0.69 0.23 0.29 0.94 0.64 0.82 0.06 0.71 0.36 0.79
CD9-KAPPA 0.81 0.19 0.29 0.98 0.88 0.8 0.02 0.71 0.12 0.79
CD9-LAMBDA 0.68 0.19 0.23 0.86 0.29 0.76 0.14 0.77 0.71 0.67
KAPPA-LAMBDA 0.63 0.32 0.36 0.88 0.4 0.83 0.12 0.64 0.6 0.76

Table B.3: Random Forest classification results for dataset 1 (2/3) for
different marker combinations. AUC: Area under the ROC curve. OOB:
Out of bag error. TPR: True positive rate. TNR: True negative rate. PPV:
Positive predictive value. NPV: Negative predictive value. FPR: False positive
rate. FNR: False negative rate. FDR: False discovery rate. ACC: Accuracy
(Coefficient of determination).
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Marker comb. AUC OOB TPR TNR PPV NPV FPR FNR FDR ACC

CD10-CD13 0.5 0.42 0.2 0.74 0.29 0.69 0.26 0.8 0.71 0.59
CD10-CD15 0.59 0.39 0.15 0.86 0.32 0.72 0.14 0.85 0.68 0.66
CD10-CD19 0.3 0.4 0.0 0.76 0.0 0.64 0.24 1.0 1.0 0.54
CD10-CD20 0.52 0.4 0.25 0.76 0.37 0.71 0.24 0.75 0.63 0.61
CD10-CD22 0.46 0.44 0.1 0.78 0.22 0.67 0.22 0.9 0.78 0.59
CD10-CD24 0.54 0.35 0.15 0.78 0.13 0.7 0.22 0.85 0.87 0.6
CD10-CD33 0.34 0.51 0.05 0.7 0.04 0.64 0.3 0.95 0.96 0.51
CD10-CD34 0.23 0.49 0.05 0.84 0.07 0.69 0.16 0.95 0.93 0.61
CD10-CD38 0.68 0.38 0.3 0.84 0.44 0.76 0.16 0.7 0.56 0.69
CD10-CD45 0.38 0.41 0.1 0.82 0.21 0.68 0.18 0.9 0.79 0.61
CD10-CD58 0.7 0.47 0.15 0.86 0.26 0.72 0.14 0.85 0.74 0.66
CD10-CD66c 0.43 0.35 0.3 0.78 0.37 0.75 0.22 0.7 0.63 0.64
CD10-CD7 0.54 0.38 0.25 0.82 0.43 0.73 0.18 0.75 0.57 0.66
CD10-CD71 0.25 0.53 0.0 0.84 0.0 0.67 0.16 1.0 1.0 0.6
CD10-HLADR 0.45 0.37 0.15 0.84 0.21 0.74 0.16 0.85 0.79 0.64
CD10-IGM 0.29 0.56 0.05 0.74 0.05 0.66 0.26 0.95 0.95 0.54
CD10-cyCD3 0.4 0.37 0.1 0.76 0.18 0.67 0.24 0.9 0.82 0.57
CD13-CD15 0.64 0.34 0.45 0.9 0.76 0.8 0.1 0.55 0.24 0.77
CD13-CD19 0.13 0.53 0.0 0.78 0.0 0.64 0.22 1.0 1.0 0.56
CD13-CD20 0.48 0.44 0.15 0.7 0.12 0.67 0.3 0.85 0.88 0.54
CD13-CD22 0.62 0.38 0.2 0.8 0.25 0.72 0.2 0.8 0.75 0.63
CD13-CD24 0.29 0.48 0.0 0.92 0.0 0.69 0.08 1.0 1.0 0.66
CD13-CD33 0.41 0.4 0.1 0.66 0.04 0.64 0.34 0.9 0.96 0.5
CD13-CD34 0.46 0.46 0.05 0.8 0.05 0.66 0.2 0.95 0.95 0.59
CD13-CD38 0.74 0.41 0.3 0.82 0.44 0.74 0.18 0.7 0.56 0.67
CD13-CD45 0.51 0.4 0.2 0.78 0.2 0.71 0.22 0.8 0.8 0.61
CD13-CD58 0.74 0.42 0.6 0.74 0.52 0.84 0.26 0.4 0.48 0.7
CD13-CD66c 0.76 0.36 0.4 0.86 0.69 0.78 0.14 0.6 0.31 0.73
CD13-CD7 0.77 0.4 0.3 0.88 0.5 0.78 0.12 0.7 0.5 0.71
CD13-CD71 0.72 0.36 0.5 0.8 0.51 0.83 0.2 0.5 0.49 0.71
CD13-HLADR 0.6 0.41 0.45 0.84 0.67 0.81 0.16 0.55 0.33 0.73
CD13-IGM 0.68 0.32 0.35 0.88 0.62 0.77 0.12 0.65 0.38 0.73
CD13-cyCD3 0.61 0.39 0.3 0.88 0.56 0.76 0.12 0.7 0.44 0.71
CD15-CD19 0.74 0.43 0.45 0.86 0.63 0.8 0.14 0.55 0.37 0.74
CD15-CD20 0.79 0.42 0.45 0.92 0.79 0.82 0.08 0.55 0.21 0.79
CD15-CD22 0.47 0.43 0.05 0.9 0.12 0.7 0.1 0.95 0.88 0.66
CD15-CD24 0.47 0.45 0.2 0.86 0.36 0.73 0.14 0.8 0.64 0.67
CD15-CD33 0.57 0.37 0.2 0.76 0.17 0.71 0.24 0.8 0.83 0.6
CD15-CD34 0.9 0.22 0.55 0.92 0.83 0.86 0.08 0.45 0.17 0.81
CD15-CD38 0.43 0.4 0.15 0.76 0.16 0.69 0.24 0.85 0.84 0.59
CD15-CD45 0.66 0.43 0.35 0.8 0.45 0.79 0.2 0.65 0.55 0.67
CD15-CD58 0.62 0.38 0.55 0.7 0.4 0.83 0.3 0.45 0.6 0.66
CD15-CD66c 0.68 0.46 0.35 0.84 0.52 0.77 0.16 0.65 0.48 0.7
CD15-CD7 0.78 0.36 0.25 0.86 0.5 0.75 0.14 0.75 0.5 0.69
CD15-CD71 0.4 0.46 0.15 0.74 0.12 0.68 0.26 0.85 0.88 0.57
CD15-HLADR 0.49 0.41 0.35 0.64 0.23 0.75 0.36 0.65 0.77 0.56
CD15-IGM 0.65 0.36 0.45 0.74 0.36 0.79 0.26 0.55 0.64 0.66
CD15-cyCD3 0.5 0.37 0.25 0.84 0.45 0.74 0.16 0.75 0.55 0.67
CD19-CD20 0.46 0.39 0.15 0.86 0.25 0.72 0.14 0.85 0.75 0.66
CD19-CD22 0.3 0.41 0.0 0.9 0.0 0.69 0.1 1.0 1.0 0.64
CD19-CD24 0.36 0.52 0.2 0.76 0.19 0.71 0.24 0.8 0.81 0.6

Table B.4: Random Forest classification results for dataset 1 (3/3) for
different marker combinations. AUC: Area under the ROC curve. OOB:
Out of bag error. TPR: True positive rate. TNR: True negative rate. PPV:
Positive predictive value. NPV: Negative predictive value. FPR: False positive
rate. FNR: False negative rate. FDR: False discovery rate. ACC: Accuracy
(Coefficient of determination).
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Marker comb. AUC OOB TPR TNR PPV NPV FPR FNR FDR ACC

CD19-CD33 0.56 0.51 0.05 0.84 0.06 0.69 0.16 0.95 0.94 0.61
CD19-CD34 0.37 0.5 0.15 0.78 0.26 0.69 0.22 0.85 0.74 0.6
CD19-CD38 0.46 0.49 0.4 0.6 0.27 0.71 0.4 0.6 0.73 0.54
CD19-CD45 0.48 0.5 0.2 0.72 0.26 0.67 0.28 0.8 0.74 0.57
CD19-CD58 0.8 0.27 0.65 0.82 0.58 0.88 0.18 0.35 0.42 0.77
CD19-CD66c 0.37 0.52 0.15 0.7 0.12 0.66 0.3 0.85 0.88 0.54
CD19-CD7 0.82 0.37 0.4 0.86 0.58 0.82 0.14 0.6 0.42 0.73
CD19-CD71 0.43 0.53 0.15 0.76 0.14 0.69 0.24 0.85 0.86 0.59
CD19-HLADR 0.49 0.48 0.3 0.76 0.35 0.72 0.24 0.7 0.65 0.63
CD19-IGM 0.58 0.49 0.05 0.78 0.11 0.66 0.22 0.95 0.89 0.57
CD19-cyCD3 0.38 0.49 0.05 0.88 0.2 0.69 0.12 0.95 0.8 0.64
CD20-CD22 0.44 0.44 0.1 0.86 0.14 0.71 0.14 0.9 0.86 0.64
CD20-CD24 0.12 0.51 0.0 0.8 0.0 0.66 0.2 1.0 1.0 0.57
CD20-CD33 0.6 0.34 0.1 0.78 0.1 0.68 0.22 0.9 0.9 0.59
CD20-CD34 0.52 0.36 0.1 0.94 0.42 0.73 0.06 0.9 0.58 0.7
CD20-CD38 0.46 0.46 0.05 0.86 0.06 0.69 0.14 0.95 0.94 0.63
CD20-CD45 0.4 0.54 0.25 0.74 0.39 0.69 0.26 0.75 0.61 0.6
CD20-CD58 0.37 0.38 0.1 0.72 0.17 0.66 0.28 0.9 0.83 0.54
CD20-CD66c 0.36 0.52 0.15 0.56 0.07 0.61 0.44 0.85 0.93 0.44
CD20-CD7 0.59 0.36 0.4 0.86 0.6 0.78 0.14 0.6 0.4 0.73
CD20-CD71 0.47 0.43 0.0 0.86 0.0 0.68 0.14 1.0 1.0 0.61
CD20-HLADR 0.56 0.36 0.35 0.78 0.39 0.79 0.22 0.65 0.61 0.66
CD20-IGM 0.61 0.46 0.25 0.82 0.47 0.73 0.18 0.75 0.53 0.66
CD20-cyCD3 0.31 0.46 0.15 0.76 0.14 0.69 0.24 0.85 0.86 0.59
CD22-CD24 0.45 0.45 0.15 0.76 0.17 0.69 0.24 0.85 0.83 0.59
CD22-CD33 0.24 0.48 0.05 0.64 0.02 0.61 0.36 0.95 0.98 0.47
CD22-CD34 0.53 0.5 0.15 0.86 0.31 0.72 0.14 0.85 0.69 0.66
CD22-CD38 0.36 0.51 0.1 0.66 0.08 0.64 0.34 0.9 0.92 0.5
CD22-CD45 0.32 0.51 0.25 0.66 0.17 0.7 0.34 0.75 0.83 0.54
CD22-CD58 0.24 0.47 0.1 0.66 0.06 0.59 0.34 0.9 0.94 0.5
CD22-CD66c 0.74 0.39 0.5 0.82 0.5 0.83 0.18 0.5 0.5 0.73
CD22-CD7 0.48 0.45 0.4 0.82 0.48 0.8 0.18 0.6 0.52 0.7
CD22-CD71 0.84 0.28 0.4 0.88 0.54 0.8 0.12 0.6 0.46 0.74
CD22-HLADR 0.46 0.4 0.05 0.82 0.04 0.68 0.18 0.95 0.96 0.6
CD22-IGM 0.46 0.44 0.15 0.72 0.2 0.65 0.28 0.85 0.8 0.56
CD22-cyCD3 0.36 0.47 0.0 0.78 0.0 0.65 0.22 1.0 1.0 0.56
CD24-CD33 0.22 0.41 0.05 0.9 0.1 0.7 0.1 0.95 0.9 0.66
CD24-CD34 0.85 0.36 0.5 0.88 0.65 0.84 0.12 0.5 0.35 0.77
CD24-CD38 0.45 0.48 0.15 0.6 0.09 0.64 0.4 0.85 0.91 0.47
CD24-CD45 0.48 0.49 0.25 0.78 0.26 0.73 0.22 0.75 0.74 0.63
CD24-CD58 0.29 0.49 0.1 0.78 0.1 0.68 0.22 0.9 0.9 0.59
CD24-CD66c 0.71 0.43 0.6 0.74 0.49 0.85 0.26 0.4 0.51 0.7
CD24-CD7 0.46 0.42 0.35 0.74 0.48 0.73 0.26 0.65 0.52 0.63
CD24-CD71 0.56 0.45 0.25 0.8 0.22 0.74 0.2 0.75 0.78 0.64
CD24-HLADR 0.32 0.56 0.1 0.74 0.09 0.67 0.26 0.9 0.91 0.56
CD24-IGM 0.68 0.38 0.65 0.66 0.42 0.86 0.34 0.35 0.58 0.66
CD24-cyCD3 0.6 0.35 0.3 0.88 0.69 0.75 0.12 0.7 0.31 0.71
CD33-CD34 0.75 0.28 0.6 0.78 0.52 0.86 0.22 0.4 0.48 0.73
CD33-CD38 0.58 0.45 0.05 0.84 0.14 0.68 0.16 0.95 0.86 0.61
CD33-CD45 0.56 0.48 0.25 0.78 0.24 0.74 0.22 0.75 0.76 0.63
CD33-CD58 0.55 0.44 0.3 0.62 0.16 0.71 0.38 0.7 0.84 0.53
CD33-CD66c 0.41 0.54 0.2 0.7 0.15 0.7 0.3 0.8 0.85 0.56

Table B.5: Random Forest classification results for dataset 2 (1/2)
different marker combinations. AUC: Area under the ROC curve. OOB:
Out of bag error. TPR: True positive rate. TNR: True negative rate. PPV:
Positive predictive value. NPV: Negative predictive value. FPR: False positive
rate. FNR: False negative rate. FDR: False discovery rate. ACC: Accuracy
(Coefficient of determination).
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Marker comb. AUC OOB TPR TNR PPV NPV FPR FNR FDR ACC

CD33-CD7 0.78 0.46 0.65 0.7 0.53 0.86 0.3 0.35 0.47 0.69
CD33-CD71 0.65 0.51 0.15 0.94 0.42 0.75 0.06 0.85 0.58 0.71
CD33-HLADR 0.48 0.55 0.2 0.76 0.2 0.7 0.24 0.8 0.8 0.6
CD33-IGM 0.52 0.54 0.4 0.66 0.25 0.74 0.34 0.6 0.76 0.59
CD33-cyCD3 0.43 0.39 0.1 0.84 0.12 0.7 0.16 0.9 0.88 0.63
CD34-CD38 0.33 0.47 0.1 0.72 0.1 0.66 0.28 0.9 0.9 0.54
CD34-CD45 0.37 0.34 0.2 0.74 0.19 0.7 0.26 0.8 0.81 0.59
CD34-CD58 0.39 0.42 0.1 0.86 0.19 0.7 0.14 0.9 0.81 0.64
CD34-CD66c 0.51 0.53 0.1 0.82 0.14 0.69 0.18 0.9 0.86 0.61
CD34-CD7 0.09 0.44 0.05 0.78 0.03 0.61 0.22 0.95 0.97 0.57
CD34-CD71 0.46 0.48 0.15 0.92 0.42 0.73 0.08 0.85 0.58 0.7
CD34-HLADR 0.7 0.4 0.2 0.92 0.58 0.74 0.08 0.8 0.42 0.71
CD34-IGM 0.58 0.35 0.05 0.84 0.2 0.67 0.16 0.95 0.8 0.61
CD34-cyCD3 0.52 0.41 0.1 0.86 0.17 0.71 0.14 0.9 0.83 0.64
CD38-CD45 0.51 0.5 0.15 0.74 0.14 0.68 0.26 0.85 0.86 0.57
CD38-CD58 0.51 0.53 0.25 0.72 0.18 0.72 0.28 0.75 0.82 0.59
CD38-CD66c 0.5 0.46 0.1 0.8 0.22 0.68 0.2 0.9 0.78 0.6
CD38-CD7 0.81 0.37 0.7 0.82 0.63 0.89 0.18 0.3 0.37 0.79
CD38-CD71 0.38 0.55 0.2 0.76 0.23 0.7 0.24 0.8 0.77 0.6
CD38-HLADR 0.51 0.52 0.2 0.7 0.22 0.68 0.3 0.8 0.78 0.56
CD38-IGM 0.6 0.47 0.35 0.8 0.54 0.75 0.2 0.65 0.46 0.67
CD38-cyCD3 0.52 0.46 0.15 0.82 0.17 0.71 0.18 0.85 0.83 0.63
CD45-CD58 0.98 0.19 0.65 0.96 0.92 0.88 0.04 0.35 0.08 0.87
CD45-CD66c 0.53 0.27 0.05 0.9 0.08 0.7 0.1 0.95 0.92 0.66
CD45-CD7 0.68 0.3 0.55 0.66 0.32 0.82 0.34 0.45 0.68 0.63
CD45-CD71 0.37 0.46 0.05 0.7 0.04 0.62 0.3 0.95 0.96 0.51
CD45-HLADR 0.3 0.48 0.0 0.78 0.0 0.65 0.22 1.0 1.0 0.56
CD45-IGM 0.41 0.43 0.25 0.88 0.57 0.74 0.12 0.75 0.43 0.7
CD45-cyCD3 0.74 0.3 0.55 0.76 0.5 0.85 0.24 0.45 0.5 0.7
CD58-CD66c 0.72 0.41 0.45 0.8 0.45 0.82 0.2 0.55 0.55 0.7
CD58-CD7 0.9 0.39 0.2 0.94 0.71 0.75 0.06 0.8 0.29 0.73
CD58-CD71 0.5 0.47 0.15 0.66 0.11 0.64 0.34 0.85 0.89 0.51
CD58-HLADR 0.72 0.4 0.35 0.9 0.58 0.79 0.1 0.65 0.42 0.74
CD58-IGM 0.76 0.4 0.3 0.84 0.46 0.75 0.16 0.7 0.54 0.69
CD58-cyCD3 0.69 0.39 0.1 0.86 0.25 0.7 0.14 0.9 0.75 0.64
CD66c-CD7 0.34 0.45 0.05 0.76 0.04 0.66 0.24 0.95 0.96 0.56
CD66c-CD71 0.66 0.35 0.4 0.8 0.47 0.78 0.2 0.6 0.53 0.69
CD66c-HLADR 0.45 0.44 0.15 0.84 0.26 0.71 0.16 0.85 0.74 0.64
CD66c-IGM 0.53 0.43 0.4 0.8 0.51 0.8 0.2 0.6 0.49 0.69
CD66c-cyCD3 0.27 0.4 0.1 0.64 0.06 0.61 0.36 0.9 0.94 0.49
CD7-CD71 0.52 0.38 0.35 0.88 0.65 0.77 0.12 0.65 0.35 0.73
CD7-HLADR 0.44 0.52 0.2 0.76 0.15 0.72 0.24 0.8 0.85 0.6
CD7-IGM 0.43 0.42 0.25 0.64 0.25 0.62 0.36 0.75 0.75 0.53
CD7-cyCD3 0.66 0.39 0.3 0.8 0.36 0.77 0.2 0.7 0.64 0.66
CD71-HLADR 0.38 0.5 0.0 0.78 0.0 0.64 0.22 1.0 1.0 0.56
CD71-IGM 0.47 0.38 0.25 0.66 0.22 0.67 0.34 0.75 0.78 0.54
CD71-cyCD3 0.5 0.48 0.25 0.84 0.29 0.75 0.16 0.75 0.71 0.67
HLADR-IGM 0.44 0.5 0.1 0.8 0.11 0.69 0.2 0.9 0.89 0.6
HLADR-cyCD3 0.45 0.41 0.1 0.8 0.11 0.69 0.2 0.9 0.89 0.6
IGM-cyCD3 0.82 0.39 0.45 0.74 0.43 0.78 0.26 0.55 0.57 0.66

Table B.6: Random Forest classification results for dataset 2 (1/2) for
different marker combinations. AUC: Area under the ROC curve. OOB:
Out of bag error. TPR: True positive rate. TNR: True negative rate. PPV:
Positive predictive value. NPV: Negative predictive value. FPR: False positive
rate. FNR: False negative rate. FDR: False discovery rate. ACC: Accuracy
(Coefficient of determination).
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Marker comb. AUC OOB TPR TNR PPV NPV FPR FNR FDR ACC

CD10-CD13 0.35 0.34 0.06 0.84 0.07 0.75 0.16 0.94 0.93 0.66
CD10-CD19 0.41 0.35 0.08 0.85 0.12 0.76 0.15 0.92 0.88 0.67
CD10-CD20 0.6 0.33 0.2 0.86 0.31 0.79 0.14 0.8 0.69 0.71
CD10-CD24 0.47 0.34 0.1 0.87 0.16 0.77 0.13 0.9 0.84 0.7
CD10-CD33 0.59 0.33 0.18 0.88 0.32 0.79 0.12 0.82 0.68 0.72
CD10-CD34 0.53 0.37 0.12 0.83 0.12 0.76 0.17 0.88 0.88 0.67
CD10-CD38 0.68 0.25 0.46 0.85 0.53 0.84 0.15 0.54 0.47 0.76
CD10-CD45 0.43 0.36 0.04 0.84 0.11 0.75 0.16 0.96 0.89 0.65
CD10-CD66c 0.5 0.32 0.08 0.89 0.21 0.77 0.11 0.92 0.79 0.71
CD10-CD7 0.63 0.28 0.18 0.87 0.25 0.79 0.13 0.82 0.75 0.71
CD13-CD19 0.31 0.34 0.06 0.88 0.15 0.76 0.12 0.94 0.85 0.69
CD13-CD20 0.32 0.36 0.04 0.79 0.05 0.73 0.21 0.96 0.95 0.62
CD13-CD24 0.54 0.32 0.1 0.88 0.21 0.77 0.12 0.9 0.79 0.7
CD13-CD33 0.48 0.32 0.18 0.86 0.28 0.78 0.14 0.82 0.73 0.7
CD13-CD34 0.45 0.35 0.14 0.81 0.21 0.76 0.19 0.86 0.79 0.66
CD13-CD38 0.58 0.33 0.18 0.92 0.4 0.78 0.08 0.82 0.6 0.74
CD13-CD45 0.54 0.35 0.08 0.91 0.17 0.76 0.09 0.92 0.83 0.71
CD13-CD66c 0.38 0.36 0.08 0.82 0.12 0.74 0.18 0.92 0.88 0.65
CD13-CD7 0.52 0.34 0.12 0.85 0.22 0.76 0.15 0.88 0.78 0.68
CD19-CD20 0.56 0.35 0.12 0.87 0.17 0.76 0.13 0.88 0.83 0.69
CD19-CD24 0.51 0.31 0.14 0.81 0.14 0.75 0.19 0.86 0.86 0.65
CD19-CD33 0.65 0.34 0.18 0.88 0.28 0.77 0.12 0.82 0.72 0.71
CD19-CD34 0.44 0.34 0.08 0.88 0.16 0.75 0.12 0.92 0.84 0.69
CD19-CD38 0.64 0.35 0.16 0.88 0.32 0.77 0.12 0.84 0.68 0.7
CD19-CD45 0.5 0.36 0.22 0.8 0.24 0.77 0.2 0.78 0.76 0.66
CD19-CD66c 0.54 0.37 0.18 0.84 0.28 0.77 0.16 0.82 0.72 0.68
CD19-CD7 0.35 0.33 0.0 0.92 0.0 0.75 0.08 1.0 1.0 0.7
CD20-CD24 0.4 0.35 0.2 0.76 0.23 0.75 0.24 0.8 0.77 0.63
CD20-CD33 0.32 0.36 0.02 0.85 0.03 0.73 0.15 0.98 0.97 0.65
CD20-CD34 0.57 0.3 0.16 0.88 0.34 0.77 0.12 0.84 0.66 0.7
CD20-CD38 0.61 0.3 0.3 0.78 0.29 0.78 0.22 0.7 0.71 0.67
CD20-CD45 0.57 0.3 0.14 0.85 0.19 0.76 0.15 0.86 0.81 0.68
CD20-CD66c 0.43 0.33 0.1 0.82 0.1 0.74 0.18 0.9 0.9 0.65
CD20-CD7 0.7 0.3 0.36 0.86 0.42 0.81 0.14 0.64 0.58 0.74
CD24-CD33 0.52 0.31 0.14 0.86 0.19 0.76 0.14 0.86 0.81 0.69
CD24-CD34 0.5 0.35 0.14 0.85 0.22 0.76 0.15 0.86 0.78 0.68
CD24-CD38 0.62 0.32 0.14 0.92 0.35 0.77 0.08 0.86 0.65 0.73
CD24-CD45 0.44 0.34 0.08 0.91 0.21 0.76 0.09 0.92 0.79 0.71
CD24-CD66c 0.32 0.38 0.08 0.82 0.07 0.74 0.18 0.92 0.93 0.64
CD24-CD7 0.54 0.33 0.24 0.84 0.3 0.78 0.16 0.76 0.7 0.7
CD33-CD34 0.52 0.31 0.12 0.82 0.1 0.75 0.18 0.88 0.9 0.65
CD33-CD38 0.41 0.33 0.08 0.84 0.1 0.75 0.16 0.92 0.9 0.66
CD33-CD45 0.49 0.35 0.1 0.85 0.12 0.75 0.15 0.9 0.88 0.67
CD33-CD66c 0.41 0.33 0.1 0.81 0.15 0.74 0.19 0.9 0.85 0.64
CD33-CD7 0.52 0.35 0.14 0.86 0.21 0.76 0.14 0.86 0.79 0.69
CD34-CD38 0.33 0.35 0.0 0.88 0.0 0.74 0.12 1.0 1.0 0.67
CD34-CD45 0.43 0.37 0.12 0.82 0.12 0.75 0.18 0.88 0.88 0.66
CD34-CD66c 0.54 0.34 0.2 0.88 0.38 0.78 0.12 0.8 0.62 0.71
CD34-CD7 0.38 0.37 0.0 0.84 0.0 0.73 0.16 1.0 1.0 0.64
CD38-CD45 0.67 0.35 0.2 0.89 0.37 0.79 0.11 0.8 0.63 0.72
CD38-CD66c 0.48 0.33 0.1 0.87 0.25 0.75 0.13 0.9 0.75 0.69
CD38-CD7 0.54 0.27 0.22 0.87 0.24 0.79 0.13 0.78 0.76 0.71
CD45-CD66c 0.54 0.35 0.12 0.82 0.12 0.75 0.18 0.88 0.88 0.65
CD45-CD7 0.56 0.32 0.12 0.86 0.27 0.76 0.14 0.88 0.73 0.69
CD66c-CD7 0.39 0.38 0.12 0.84 0.18 0.75 0.16 0.88 0.82 0.67

Table B.7: Random Forest classification results for both datasets
combined, depending on the marker combination. AUC: Area under
the ROC curve. OOB: Out of bag error. TPR: True positive rate. TNR: True
negative rate. PPV: Positive predictive value. NPV: Negative predictive value.
FPR: False positive rate. FNR: False negative rate. FDR: False discovery rate.
ACC: Accuracy (Coefficient of determination).
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Figure B.3: Mean persistence images for markers CD10, CD20, CD38
and CD45 for relapsed and non-relapsed patients. The results are shown
considering the dataset (1,2 or both) and dimension analysed (0,1 or 2), which
also depends on the choose of persistence image grid (50×50 or 100×100) and
spread of the Gaussian 2D distributions (0.01 or 0.05). The representative area
between both cohorts are shown for each dataset.
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Figure B.4: Mean persistence images for markers CD10, CD20, CD38,
CD45 and CD7 for relapsed and non-relapsed patients. The results
are shown considering the dataset (1,2 or both) and dimension analysed (0,1
or 2), which also depends on the choose of persistence image grid (50 ×50 or
100 ×100) and spread of the Gaussian 2D distributions (0.01 or 0.05). The
representative area between both cohorts are shown for each dataset.
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2D Gaussian Dist. spread = 0.01

100x100 grid 50x50 grid

Markers Dim. Dataset Method Score Accuracy Score Accuracy

10
,2

0,
38

,4
5,

7

0

1 LR 1 1 1 1
SVM 1 1 1 1

2 LR 0.88 0.45 0.88 0.45
SVM 0.95 0.72 0.95 0.72

1&2 LR 0.96 0.8 0.96 0.8
SVM 0.98 0.9 0.98 0.9

1

1 LR 0.97 0.84 0.97 0.84
SVM 0.97 0.84 0.97 0.84

2 LR 0.88 0.45 0.88 0.45
SVM 0.88 0.45 0.88 0.45

1&2 LR 0.96 0.8 0.96 0.8
SVM 0.98 / 1 0.9 / 1 0.98 0.9

2

1 LR 0.79 -0.28 0.79 -0.28
SVM 0.79 -0.28 0.75 / 0.78 -0.44 / -0.28

2 LR 0.78 -0.11 0.78 -0.11
SVM 0.78 -0.11 0.78 -0.11

1&2 LR 0.78 -0.21 0.84 0.09
SVM 0.85 0.19 0.78 -0.21

10
,2

0,
38

,4
5

0

1 LR 1 1 1 1
SVM 1 1 1 1

2 LR 1 1 1 1
SVM 1 1 1 1

1&2 LR 1 1 1 1
SVM 1 1 1 1

1

1 LR 0.89 0.36 0.92 / 0.94 0.52 / 0.68
SVM 0.97 0.84 0.97 0.84

2 LR 1 1 1 1
SVM 1 1 1 1

1&2 LR 0.98 0.9 0.98 0.9
SVM 1 1 1 1

2

1 LR 0.78 -0.29 0.75 -0.45
SVM 0.78 -0.29 0.69 -0.77

2 LR 0.77 -0.11 0.9 0.45
SVM 0.9 0.45 0.9 0.45

1&2 LR 0.78 -0.22 0.8 / 0.81 -0.11 / -0.01
SVM 0.89 / 0.96 0.39 / 0.8 0.89 / 0.94 0.39 / 0.7

Table B.8: Classification results of the Support Vector Machine (SVM)
and Logistic Regression (LR) for a 2D Gaussian Distribution spread
of 0.01. These results depend on the IPT marker set analysed, dataset,
dimension, spread of the 2D Gaussian distribution generated, and size of the
grid of the persistence images used. Score is understood as the mean score after
a 5-fold cross-validation and accuracy represents the coefficient of determination
R2. Leave-One-Out cross-validation results are also provided in case they were
different to the 5-fold cross-validation ones.
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2D Gaussian Dist. spread = 0.05

100x100 grid 50x50 grid

Markers Dim. Dataset Method Score Accuracy Score Accuracy

10
,2

0,
38

,4
5,

7

0

1 LR 1 1 1 1
SVM 1 1 1 1

2 LR 0.88 0.45 0.88 0.45
SVM 0.95 0.72 0.95 0.72

1&2 LR 0.98 0.9 0.98 0.9
SVM 0.98 0.9 0.98 0.9

1

1 LR 1 1 1 1
SVM 1 1 1 1

2 LR 0.88 0.45 0.88 0.45
SVM 0.88 0.72 0.94 0.72

1&2 LR 0.98 0.9 0.98 0.9
SVM 0.98 0.9 0.98 0.9

2

1 LR 0.79 -0.28 0.79 -0.28
SVM 0.89 / 0.94 0.36 / 0.68 0.86 / 0.94 0.20 / 0.68

2 LR 0.72 -0.38 0.78 -0.11
SVM 0.73 -0.38 0.73 -0.38

1&2 LR 0.76 -0.31 0.78 -0.21
SVM 0.89 / 0.9 0.4 / 0.5 0.87 0.29

10
,2

0,
38

,4
5

0

1 LR 1 1 1 1
SVM 1 1 1 1

2 LR 1 1 1 1
SVM 1 1 1 1

1&2 LR 1 1 1 1
SVM 1 1 1 1

1

1 LR 0.78 -0.29 0.94 0.68
SVM 1 1 1 1

2 LR 0.93 0.72 0.93 0.72
SVM 0.93 0.72 0.93 0.72

1&2 LR 0.98 0.9 0.98 0.9
SVM 1 1 1 1

2

1 LR 0.78 -0.29 0.78 -0.29
SVM 0.78 -0.29 0.78 -0.29

2 LR 0.72 -0.38 0.72 -0.38
SVM 0.83 0.17 0.9 0.45

1&2 LR 0.7 -0.32 0.7 -0.32
SVM 0.98 0.9 0.98 0.9

Table B.9: Classification results of the Support Vector Machine (SVM)
and Logistic Regression (LR) for a 2D Gaussian Distribution spread
of 0.05. These results depend on the IPT marker set analysed, dataset,
dimension, spread of the 2D Gaussian distribution generated, and size of the
grid of the persistence images used. Score is understood as the mean score after
a 5-fold cross-validation and accuracy represents the coefficient of determination
R2. Leave-One-Out cross-validation results are also provided in case they were
different to the 5-fold cross-validation ones.
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APPENDIX C

Lie symmetry generators of the
equations in study

C.1 Lie symmetry generators for Eq. (6.4)

In this Section we present the corresponding generators for Eq. (6.4). Case 1.
For c = c(x), f = f(u) and g = g(u) arbitrary functions we get the generator

X1 = ∂t. (C.1a)
(x∗, t∗, u∗) = (x, t+ ε, u) time translation. (C.1b)

Case 2. For f = f(u), g = g(u) arbitrary functions and c(x) = 1
4 (c1 x+ c2)2

we get the generator X1 and besides

X2 = (c1x+ c2)∂x. (C.2a)

(x∗, t∗, u∗) =
(
ec1 ε

(
x+ c2

c1

)
− c2
c1
, t, u

)
scaling and shift. (C.2b)

Case 3. For f(u) = f2(g2 − u)−f1 , g(u) = g3(g2 − u)g1 and c(x) = c3(c2 − x)c1

with arbitrary values of the constants f1, g1, such that f1 + g1 + 1 6= 0, equation
(6.4) admits admits the generator X1 and the following:

X3 =(c2 − x)∂x + (c1 − 2)(f1 + 1)t
f1 + g1 + 1 ∂t + (c1 − 2)(u− g2)

f1 + g1 + 1 ∂u. (C.3a)

(x∗, t∗, u∗) =
(
e−ε (x− c2) + c2, exp

(
(c1 − 2)(f1 + 1)
f1 + g1 + 1 ε

)
t, (C.3b)
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g2 + exp
(

c1 − 2
f1 + g1 + 1ε

)
(u− g2)

)
scaling and shift.

3.1. If f1 + g1 + 1 = 0 then equation (6.4) admits X1 as a generator for c(x)
an arbitrary function.

Case 4. For f(u) = f1 (u− g2) + f2 (g2 − u)g1+1, g(u) = g3(g2 − u)g1 and
c = c(x) an arbitrary function with arbitrary values of the constants f1, g1, g2
such that g1, f1 6= 0, equation (6.4) admits the generator X1 and the following:

X4 = e−f1 g1 t∂t + e−f1 g1 tf1 (u− g2) ∂u. (C.4a)

(x∗, t∗, u∗) =
(

1
f1g1

ln
∣∣ef1 g1 t + f1g1ε

∣∣ , x, (C.4b)

g2 + exp
(

f1 ε

f1 g1 ε+ ef1 g1 t

)
(u− g2)

)
time dilation and shift.

4.1. If f1 = 0, with f(u) = f2 (g2 − u)g1+1, g(u) = g3(g2 − u)g1 and arbitrary
c(x), then equation (6.4) admits the generator X1 and as g1 6= 0,

X4a = t ∂t + (u− g2)
g1

∂u (C.5a)

(x∗, t∗, u∗) =
(
eε t, x, exp

(
ε

g1

)
(u− g2) + g2

)
scaling and shift.

(C.5b)

Case 5. For f(u) = f2 (g2 − u)−f1 , g(u) = g3(g2 − u)g1 , with arbitrary values
of the constants f1, f2, g1, g2, g3, we consider the following subcases:

5.1. For c(x) =
(

(2 g1 +3)(c1 x+c2)
3 g1+4

) 3 g1+4
2 g1+3 with arbitrary values of the constants

c1, c2 such that f1 + g1 + 1 6= 0, g1 6= 0,− 4
3 ,−

3
2 , equation (6.4) admits

the following generator X1, and besides:

X5 =(c1 x+ c2)∂x + (f1 + 1) (g1 + 2)c1 t
(2 g1 + 3) (g1 + f1 + 1)∂t+ (C.6a)

− (g2 − u) (g1 + 2)c1
(2 g1 + 3) (g1 + f1 + 1)∂u.
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(x∗, t∗, u∗) =
(
ec1 ε

(
x+ c2

c1

)
− c2
c1
, exp

(
c1(g1 + 2)(f1 + 1)

(2g1 + 3)(g1 + f1 + 1)ε
)
t,

(C.6b)

g2 + exp
(

c1(g1 + 2)
(2g1 + 3)(g1 + f1 + 1)ε

)
(u− g2)

)
scaling and shift.

5.2. We consider c (x) = c2 exp(c1x) for arbitrary values of the constants c1, c2.
If g1 = − 3

2 , and f1 6= 1
2 then equation (6.4) admits the generators X1 and

X5b =−2 t (f1 + 1) c1
2 f1 − 1 ∂t + ∂x + 2 (g2 − u) c1

2 f1 − 1 ∂u. (C.7a)

(x∗, t∗, u∗) =
(
t exp

(
−2 (f1 + 1) c1ε

2 f1 − 1

)
, x+ ε, (C.7b)

exp
(
− 2 c1ε

2 f1 − 1

)
(u− g2) + g2

)
scaling and shift.

5.3. We consider c (x) = c2 exp(c1x) for arbitrary values of the constants c1, c2.
If g1 = − 3

2 , and f1 = 1
2 then equation (6.4) admits the generators X1 and

X5c =c1 t

2 ∂t + ∂x + c1 (u− g2)∂u. (C.8a)

(x∗, t∗, u∗) =
(
t e

c1 ε
2 , x+ ε, ec1 ε(u− g2) + g2

)
scaling and shift.

(C.8b)

5.4. If g1 = − 4
3 or f1 + g1 + 1 = 0 , then equation (6.4) admits the generator

X1 for c(x) an arbitrary function.

Case 6. For f(u) = f2 (g1 u + g2)
f1
g1 , g(u) =

(
− 4

3 (g1 u + g2)−1
) 4

3 and
c(x) = c3 (c2 − x)c1 with arbitrary values of the constants f1, f2, g1, g2, c1, c2,
c3 such that 3f1 + g1 6= 0, g1 6= 0, c1 6= 0, equation (6.4) admits the generator
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X1 and the following:

X6 =(c2 − x)∂x + 3 (c1 − 2) (f1 − g1) t
3 f1 + g1

∂t (C.9a)

− 3 (u + g2) (c1 − 2) g1

3 f1 + g1
∂u.

(x∗, t∗, u∗) =
(
e−ε (x− c2) + c2, exp

(
3 (c1 − 2) (f1 − g1)

3 f1 + g1
ε

)
t, (C.9b)

exp
(
−3 (c1 − 2) g1

3 f1 + g1
ε

)
(u+ g2)− g2

)
scaling and shift.

6.1. If 3f1 + g1 = 0 then equation (6.4) admits the generators X1 and

X6∗ = t ∂t + 3(u− g2)
4 ∂u (C.10a)

(x∗, t∗, u∗) =
(
eε t, x, exp

(
3ε
4

)
(u− g2) + g2

)
scaling and shift.

(C.10b)

Case 7. For c = c(x) an arbitrary function, f(u) = f1

(
u + g2

g1

)
+

f2

(
u+ g2

g1

)− 1
3 and g(u) =

(
− 4

3 (g1 u + g2)−1
) 4

3 , with arbitrary values of the
constants f1, f2, g1, g2 such that g1 6= 0, equation (6.4) admits the generator
X1 and the following:

X7 = e−
4
3 f1 t∂t −

f1 (g1 u + g2) e− 4
3 f1 t

g1
∂u. (C.11a)

(x∗, t∗, u∗) =
(
−3
4 f1

ln
∣∣∣∣e− 4

3 f1 t − 4
3f1ε

∣∣∣∣ , x, (C.11b)

exp
(
f1

(
4
3f1ε− e−

4
3 f1 t

)
ε

)(
u+ g2

g1

)
− g2

g1

)
exponential dilation and shift. (C.11c)

Case 8. For f(u) = f1 (u− g2) + f2(u− g2)g1+1 and g(u) = g3(g2 − u)g1 , we
consider arbitrary values of the constants f1, f2, g1, g2, and g3. We distinguish
the following subcases:
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C.1. Lie symmetry generators for Eq. (6.4)

8.1. We consider c(x) =
(

(2 g1 +3)(c1 x+c2)
3 g1+4

) 3 g1+4
2 g1+3 for arbitrary values of the

constants c1, c2. If f2 = 0 and g1 6= −2,− 4
3 ,−

3
2 ,−1, then equation (6.4)

admits the generators X1, X4 and also

X8a = g1 (2 g1 + 3) (c1 x+ c2)
c1 (g1 + 2) ∂x + (u− g2)∂u, (C.12a)

(x∗, t∗, u∗) =
((

x+ c2
c1

)
exp

(
g1(2 g1 + 3)
g1 + 2 ε

)
− c2
c1
, (C.12b)

t, eε(u− g2)− g2

)
scaling and shift.

and

X8b = 2
g1 c1

(2 g1 + 3)(c1 x+ c2)
(
x+ c2

c1

)− g1+1
2 g1+3

∂x+ (C.13a)

+ 2
c1

(g1 + 1)(u− g2)
(
x+ c2

c1

)− g1+1
2 g1+3

∂u.

(x∗, t∗, u∗) =
(((

x+ c2
c1

) g1+1
2 g1+3

+ 2ε+ 2ε
g1

) 2 g1+3
g1+1

− c2
c1
, t, (C.13b)

e

(
2
c1

(g1+1) g1 ε
((
x+ c2

c1

) g1+1
2 g1+3 g1+2ε (g1+1)

)−1
)

(u− g2) + g2

)
exponential dilation and shift.

8.2. We consider c (x) = − f1 g2 x
2

2 g3
+c1 x+c2 for arbitrary values of the constants

c1, c2. If f2 = 0 and g1 = −1, then equation (6.4) admits the generators
X1, X4 and X8c for K =

√
g3 (c12g3 + 2 c2 f1 g2) with

r(x) = arctanh
(
c1 g3 − f1 g2 x

K

)
(C.14)
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and

X8c =1
2 r (x)

(
f1 g2 x

2 − 2 g3 (c1 x+ c2)
)
∂x+ (C.15a)

+ (g2 − u) ((f1 g2 x− c1 g3) r (x) +K) ∂u.

(x∗, t∗, u∗) = 1
f1 g2

(
− tanh

(
e1/2Kεr(x)

)
K + c1 g3

)
, t, (C.15b)

(u− g2) e
−
(
− tanh

(
e
Kε

2 r(x)
)
Karctanh

(
tanh

(
e
Kε

2 r(x)
))

+K
)
ε

+ g2

)
oscillatory dilation and shift.

8.3. If f2 = 0 and g1 = −2, then equation (6.4) admits the generators X1,
X4a and X8d and X8e for any c(x) that verifies

c′′(x) = c′(x)2 g3 − 4 c(x)f1

2 g3 c(x) (C.16)

with

X8d =∂x + (u− g2)c′(x)
2 c(x) ∂u. (C.17a)

(x∗, t∗, u∗) =
(
x+ ε, t, exp

(
ε c′(x+ ε)
2 c(x+ ε)

)
(u− g2) + g2

)
(C.17b)

scaling and shift.

and

X8e =x ∂x + (u− g2)
(
x c′(x)
2 c(x) − 1

)
∂u. (C.18a)

(x∗, t∗, u∗) =
(
eεx, t, exp

(
ε (x+ ε) c′(x+ ε)

2 c(x+ ε) − ε
)

(u− g2) + g2

)
(C.18b)

scaling and shift.

8.4. We consider c (x) = c2 exp(c1x) for arbitrary values of the constants c1, c2.
If f2 = 0 and g1 = − 3

2 , then equation (6.4) admits the generators X1, X4
and

X8f = 3
2 c1

∂x + (u− g2)∂u. (C.19a)
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(x∗, t∗, u∗) =
(
x+ 3

2 c1
ε, t, eε(u− g2) + g2

)
scaling and shift.

(C.19b)

8.5. If f2 = 0 and g1 = − 4
3 then equation (6.4) admitsX1 andX4 as generators

with c(x) an arbitrary function.

8.6. If f2 6= 0 then equation (6.4) admits X1 and X4 as generators with c(x)
an arbitrary function.

Case 9. For f(u) = f1 (u− g2) + f2(u − g2)g1+1, g(u) = g3(g2 − u)g1 we
distinguish the following subcases:

9.1. For c(x) = − (c1−x)2

2(2+g1) , with g1 6= −2,− 4
3 ,−1, and f1 6= 0, we obtain the

generators X1, 1
f1
X4 and the following:

X9 = x− c1√
−2(2 + g1)

∂x. (C.20a)

(x∗, t∗, u∗) =
(

exp
(

ln |x− c1|+
ε√

−2(2 + g1)

)
+ c1, t, u

)
(C.20b)

exponential dilation and shift.

9.2. If f1 6= 0 and g1 = −2,− 4
3 ,−1, we obtain the generators X1, and X4 for

arbitrary c(x).

9.3. If f1 = 0 we obtain the generators X1 and X4a for arbitrary c(x).

Case 10. For f(u) = f1

(
u + g2

g3

)
+ f2

(
u+ g2

g3

)− 1
3 , g(u) =(

− 4
3 (g3 u + g2)−1

) 4
3 and c(x) = 1

4 (c1 x+ c2)2 with arbitrary values of the
constants f1, f2, g3, g2, c1, c2 we distinguish the following subcases:
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10.1. If g3 = −1 then we obtain for equation (6.4) the generators X1, X4 for
g1 = − 4

3 , and

X10a =1
2

(
x+ c2

c1

)
∂x. (C.21a)

(x∗, t∗, u∗) =
(

exp
( ε

2

)(
x+ c2

c1

)
− c2
c1
, t, u

)
scaling and shift.

(C.21b)

10.2. If g3 6= −1 then we obtain the generators X1 and X7

Case 11. For f(u) = f2 e
f1 u, g(u) = g2 e

g1 u, c(x) = c2 e
c1 x with arbitrary

values of the constants f1, f2, g3, g2, c1, c2 we distinguish the following subcases:

11.1. If f1 6= g1, then we obtain the generator X1 and the following

X11a = c1 f1 t

f1 − g1
∂t + ∂x −

c1
f1 − g1

∂u. (C.22a)

(x∗, t∗, u∗) =
(

exp
(

c1 f1

f1 − g1
ε

)
t, x+ ε, u− c1

f1 − g1
ε

)
scaling and shift.

(C.22b)

11.2. If f1 = g1, then we obtain the generator X1 and the following

X11b =t ∂t −
1
f1
∂u (C.23a)

(x∗, t∗, u∗) =
(
eε t, x, u− 1

f1
ε

)
scaling and shift. (C.23b)

C.2 Lie symmetry generators for Eq. (6.6)

In this Section we present the corresponding generators for Eq. (6.6). Case 1.
For F (t) an arbitrary function we get the generator

X1 = ∂x. (C.24)
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Case 2. For F = F (t) verifying that

F ′′′′ =
∑6
i=0 Fi(t)
F0(t) (C.25a)

where

F0(t) = F 2 (−F 4 + 2F F ′′ − 3(F ′)2) , (C.25b)
F1(t) = 3F 3 (F ′′′)2

, (C.25c)
F2(t) = −F ′ F

(
11F 4 + 14F F ′′ − 3(F ′)2) , (C.25d)

F3(t) = 8F 2 (F ′′)3, (C.25e)
F4(t) = 2F

(
(F ′)2 − F 4) , (C.25f)

F5(t) = −F 8 + 40F 4 (F ′)2 − 3 (F ′)4, (C.25g)
F6(t) = −2 (F ′)2 F 3 (15(F ′)2 − F 4), (C.25h)

with F0(t) 6= 0, then we obtain the characteristic form P = (A1x + A2)ux +
B(t, x, u, ut), where A1, A2 ∈ R and B = B(t, x, u, ut) depends on the function
F such that

B(t, x, u, ut) = A1
B1(t)ut +B2(t)u+B3(t)

B0(t) (C.26a)

and

B0(t) =F (F ′
(
F 4 + 4F F ′′ − 3 (F ′)2)− F 2F ′′′), (C.26b)

B1(t) =2F 2 (−F 4 + 2F F ′′ − 3 (F ′)2) , (C.26c)
B2(t) =2F

(
6F ′(F F ′′ − (F ′)2)− F 2F ′′′

)
, (C.26d)

B3(t) =F F ′′′
(
F ′ + F 2)+ F ′′

(
F 4 − 6F ′ F 2 + (F ′)2)− (C.26e)

− 2F
(
(F ′′)2 + (F ′)2(F 2 − 3F ′)

)
,

for B0(t) 6= 0.

Case 3. When considering F0(t) = 0 in Eq. (C.25b), we obtain

F (t) = 4 f1

(t+ f2)2
f1

2 − 4
(C.27)
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for f1, f2 ∈ R, so that we get the generators X1,

X31 = ∂t + G1(t, u)
G0(t) ∂u, X32 = t∂t + x

2∂x + G2(t, u)
G0(t) ∂u, (C.28)

where

G0(t) = 4
(

(t+ f2)2
f2

1 − 4
)
,

G1(t, u) = f1

(
4 + (t+ f2)2

f1
2 + 4 (t+ f2) (2u− 1) f1

)
,

G2(t, u) = 2
(
(t2 − f2

2 )(2u− 1)f1
2 + 2f1(2 t+ f2) + 8u− 4

)
−f2 (t+ f2)2

f1
3.

This case arises from the equation

k2
1 F

2 + 2F F ′′ − 3 (F ′)2 − F 4 = 0. (C.29)

For k1 = 0 we obtain the solutions F = F (t) as (C.27) and

F (t) = 1
f2 ± t

, f2 ∈ R. (C.30)

With the change of variables

u(t, x) = h(t) + g(t) · v(t, x) (C.31)

with
h(t) = F ′ + F 2

2F 2 , g(t) = − 1
F
, (C.32)

it yields that Eq. (6.6) can be transformed into

vt = vx,x + v2, (C.33)

For this equation, a symmetry involving a non-Painlevé-type second-order ODE
reduction can be obtained [283]. The case for F as in (C.30) will be studied in
Section C.2.1.
Whenever k1 6= 0 in (C.29), with the change of variables (C.31) and

h(t) = k1 F + F ′ + F 2

2F 2 , g(t) = k2

F
, (C.34)
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Eq. (6.6) can be transformed into

vt = vx,x − k1 v − k2 v
2. (C.35)

The particular case when k1 = −1 has already been studied as a linear diffusion
equation [325], where solutions considering travelling waves can be provided for
Eq. (C.35).

Case 4. We now consider whenever B0(t) = 0 , as stated in Eq. (C.26b),
yielding that for any F = F (t) with

F ′
(
F 4 + 4F F ′′ − 3 (F ′)2)− F 2F ′′′ = 0, (C.36)

then F also verifies Eq. (C.25). For any f1, f2, f3 ∈ R, the solution of Eq.
(C.36) is

F (t) = 4 e−
√
f1(f3+t)f1(

e−
√
f1(f3+t)

)2
+ 4 f2 e

−
√
f1(f3+t) + 4 f2

2 − 4 f1

. (C.37)

We obtain the generators X1 and X4, this last in terms of F and its derivatives
as

X4 = ∂t −
(
−F

′ u

F
+ F ′

2F + F ′′

2F 2 −
(F ′′)2

2F 3

)
∂u. (C.38)

Case 5. For F = F (t) verifying

F ′′′ = 2(F ′′)2F + (−F 4 + 6F 2(F ′)− (F ′)2)F ′′ + 2(F ′)2F 3 − 6(F ′)3F

F (F 2 + F ′)
(C.39)

we obtain the generators X1 and

X5 = x ∂x + −2F (F 2 + F ′)∂t + 2u((F ′′)F − 2(F ′)2)∂u
F 2(F ′) + (F ′′)F − (F ′)2 . (C.40)

For the sake of simplicity, we have assumed that the functions

F (t) = 1
f1 + f2 t

, (C.41)

F (t) = f1 exp(f1 t+ f2)
exp(f1 t+ f2)− 1 , (C.42)

are not considered in the prior cases, as the function in Eq. (C.42) only holds
within Case 1, and the function in Eq. (C.41) will be specifically exposed in
the next Subsection.
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C.2.1 Generators and reductions for special cases of F

From the general analysis arises the function

F (t) = 1
f1 + f2 t

(C.43)

which is studied independently, as it does not fit in the cases studied previously.
Its generators are studied in terms of the parameters f1, f2 ∈ R. For these
cases, we will consequently obtain the resulting reduced equations, as F = F (t)
is given explicitly:

Case 6.1. For F (t) = 1
f1 + f2 t

and f2 ∈ R − {1,−1}, we obtain the
generator X1 and the generator

X61 = 2
(
t+ f1

f2

)
∂t + x ∂x. (C.44)

Generator X61 yields a similarity variable and similarity solution of the form

z =

√
f1
f2

+ t

x
, u = h(z), (C.45)

obtaining the reduced ODE61:

b z4hzz + hz

(
b z

2 − 2 b z3
)

+ h(1− h) = 0. (C.46)

Case 6.2. For f2 = 1 we obtain the generators X1 and

X621 = ∂t + u

f1 + t
∂u, X622 = t ∂t + x

2∂x −
f1 u

f1 + t
∂u. (C.47)

Generator X621 yields a similarity variable and similarity solution of the form

z = t, u = h(z)(f1 + z), (C.48)

obtaining the reduced ODE621:

− hz (f1 + z)− h f1 + h− h2(f1 + z) = 0. (C.49)

For the generator X622, a similarity variable and similarity solution is obtained:

z = x2

t
, u = h(z)f1 + t

t
, (C.50)
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yielding the reduced ODE622:

4hz,z z + hz z + 2hz + h(1− h) = 0. (C.51)

Case 6.3. For f2 = −1 we obtain the generator X1 and besides

X631 = ∂t + 1− u
f1 − t

∂u, X632 = t ∂t + x

2∂x + f1(1− u)
f1 − t

∂u. (C.52)

Generator X631 yields a similarity variable and similarity solution of the form

z = t, u = 1− h(z)(f1 − z), (C.53)

obtaining the reduced ODE631:

hz (f1 − z) + h f1 + h− h2(f1 − z) = 0. (C.54)

For the generator X632, a similarity variable and similarity solution is obtained

z = x2

t
, u = 1− h(z) t− f1

t
(C.55)

yielding the same reduce ODE632 as in (C.51).

C.3 Lie symmetry generators for Eq. (6.7)

In this Section we present the corresponding generators for Eq. (6.7). For the
sake of readability please see the notes below.

Notes:
(1) In this case α, f0 and g1 must satisfy the condition

H1(x)2H(x) = constant, (C.56)

where
H1(x) = e−A

(
c4(3g1 + 4) + 2(g1c1 + c2)

∫
eA dx

)
, (C.57)

H(x) = 2g0((2 + g1)α2 + (3g1 + 4)αx)− f0(3g1 + 4)2. (C.58)
(2) The constants c1, c2 and c4 are linked to α, f0 and g1 by condition (C.56).
(3) In this case, α, f0, and g1 must satisfy the condition

H2(x)2H(x) = constant, (C.59)
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i α f vk

1.1 ∀ f0u
g1+1 v3 = t∂t −

u

g1
∂u

1.2 ∀ f0u
g1+1 + f1u, f1 6= 0 v4 =

e−f1g1t

f1
∂t + e−f1g1tu∂u

1.3 (1) f0u
g1+1, g1 6= −4/3 v = c2v3 + c4v51 + c2+c1g1

g1(4+3g1) v52, (2)
v51 = e−A

(
∂x − 2αu

3g1+4∂u
)
,

withA = g1
3g1+4

∫
αdx,

v52 =
(

2g1e
−A
∫
eA dx

)
∂x+

+4u
(

1− g1αe−A
3g1+4

∫
eA dx

)
∂u

1.4 (3) f0u
g1+1 + f1u, f1 6= 0, g1 6= −4/3 v4,v = c4v51 + c1

4+3g1
v52, (4)

1.5
α1

x
f0u

f1 , f1 6= g1 + 1 v6 =
2(1− f1)t
1 + g1 − f1

∂t + x∂x +
2u

1 + g1 − f1
∂u

Table C.1: Lie symmetry generators for Eq. (6.7) for g = g0u
g1 .

i α f vk

2.1 (5) f0u
−1/3 v3,v50 =

1
α
∂x +

3αx
2α2 u∂u

2.2 (5) f0u
−1/3 + f1u, f1 6= 0 v4,v50

Table C.2: Lie symmetry generators for Eq. (6.7) for g = g0u
−4/3.

where H(x) is given by (C.58), and

H2(x) = e−A
(
c4(3g1 + 4) + 2g1c1

∫
eA dx

)
. (C.60)

(4) The constants c1 and c4 are linked to α, f0, and g1 by condition (C.59).
(5) In this case α and f0 must satisfy the equation

3g0(α3αxx − 2α2α2
x + 6α3

x − 6ααxαxx + α2αxxx)− 4f0α
2αx = 0. (C.61)

(6) In this case α, f0, and g1 must satisfy the condition

H3(x)2H5(x) = constant, (C.62)

where
H3(x) = e−B

(
c5 + 2

3c1
∫
eB dx

)
, (C.63)
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i α f vk

3.1 ∀ f0eg1u + f1, f1 6= 0 v1,v7 =
e−f1g1t

f1
∂t + e−f1g1t∂u

3.2 ∀ f0eg1u v1,v8 = t∂t − 1
g1
∂u

3.3 (6) f1 + f0eg1u, f1 6= 0 v1,v7 , v9 = c5v91 + c1v92, (7)
v91 = e−B

(
∂x − 2α

3g1
∂u
)
,withB = 1

3

∫
αdx

v92 =
(

2
3 e

−B
∫
eB dx

)
∂x − 4

9g1

(
αe−B

∫
eB dx− 3

)
∂u

3.4 (8) f0eg1u v1,v9 = c2v8 + c5v91 + c1v92, (9)
3.5

α1

x
f0ef1u v1,v10 =

2t
f1 − g1

∂t +
x

f1
∂x −

2
f1(f1 − g1)

∂u

Table C.3: Lie symmetry generators for Eq. (6.7) for g = g0e
ug1

H5(x) = 9g1f0 − 2g0(3αx + α2). (C.64)

(7) The constants c1 and c5 are linked to α, f0, and g1 by condition (C.62).
(8) In this case α, f0, and g1 must satisfy the condition

H4(x)2H5(x) = constant, (C.65)

where H5(x) is given by (C.64), and

H4(x) = e−B
(
c5 + 2

3(c1 + c2)
∫
eB dx

)
. (C.66)

(9) The constants c1, c2, and c5 are linked to α, f0 and g1 by condition (C.65).
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