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Abstract: Timely acquisition of spatial flood distribution is an essential basis for flood-disaster
monitoring and management. Remote-sensing data have been widely used in water-body surveys.
However, due to the cloudy weather and complex geomorphic environment, the inability to receive
remote-sensing images throughout the day has resulted in some data being missing and unable
to provide dynamic and continuous flood inundation process data. To fully and effectively use
remote-sensing data, we developed a new decision support system for integrated flood inundation
management based on limited and intermittent remote-sensing data. Firstly, we established a
new multi-scale water-extraction convolutional neural network named DEU-Net to extract water
from remote-sensing images automatically. A specific datasets training method was created for
typical region types to separate the water body from the confusing surface features more accurately.
Secondly, we built a waterfront contour active tracking model to implicitly describe the flood
movement interface. In this way, the flooding process was converted into the numerical solution of
the partial differential equation of the boundary function. Space upwind difference format and the
time Euler difference format were used to perform the numerical solution. Finally, we established
seven indicators that considered regional characteristics and flood-inundation attributes to evaluate
flood-disaster losses. The cloud model using the entropy weight method was introduced to account
for uncertainties in various parameters. In the end, a decision support system realizing the flood
losses risk visualization was developed by using the ArcGIS application programming interface
(API). To verify the effectiveness of the model constructed in this paper, we conducted numerical
experiments on the model’s performance through comparative experiments based on a laboratory
scale and actual scale, respectively. The results were as follows: (1) The DEU-Net method had a
better capability to accurately extract various water bodies, such as urban water bodies, open-air
ponds, plateau lakes etc., than the other comparison methods. (2) The simulation results of the
active tracking model had good temporal and spatial consistency with the image extraction results
and actual statistical data compared with the synthetic observation data. (3) The application results
showed that the system has high computational efficiency and noticeable visualization effects. The
research results may provide a scientific basis for the emergency-response decision-making of flood
disasters, especially in data-sparse regions.

Keywords: land-surface reflectance; water identification; active tracking; decision support system

1. Introduction

From many historical flood events, it is observed that flood disaster is one of the most
frequent and destructive natural disasters [1]. Due to the dual impacts of global climate
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change and human activities, the frequency of extreme weather has dramatically increased,
and large-scale floods have also occurred frequently, bringing vast losses of life and prop-
erty to people [2]. For example, since the 2020 flood season, precipitation in various parts
of Southern China has been expressively higher than in previous years, causing the largest
flood disaster since 1998 (shown in Figure 1). The flood disaster was so disastrous that
more than 30 million people were affected, 141 people died, and 22,000 houses collapsed.
In addition, an economic loss of approximately 60 billion yuan occurred.
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Due to the time and resource limitations and rapid changes in the flooding process, it
is always a huge challenge to collect information for hazard mitigation promptly, as proper
actions must be performed within a limited amount of time. Today, the application of
remote sensing for flood studies is receiving considerable attention. The development in
this field has evolved from optical to radar remote sensing [3]. Though radar data could
provide frequent day and night observations of the surface under almost any weather
condition, they have relatively low resolution and high noise. The imaging of radar data
cannot provide an intuitive image experience as well. Besides, satellite synthetic aperture
radar (SAR) imagery of some urban areas is difficult to interpret because of the off-nadir
viewing configuration, for example, the confusion of floodwater with a specular reflection
of smooth land surfaces [4]. Optical remote-sensing data are used broadly for regional
monitoring and mapping. They have a cost-effective advantage over radar data for flood
extent mapping, especially under cloud-free conditions. Optical images are more suitable
for studying flood inundation with a relatively long-time span, rapid water rising, and
slow retreating, such as "coastal flood" and "fluvial flood". Meanwhile, the bad weather
was primarily concentrated in the pre-flood period, and not all of the weather was severe
during flooding. A part of the optical remote-sensing image data with relatively good
quality was available. Thus, the main objective of the research described in this paper was
to develop a decision support system to evaluate the impact of flood hazards based on
these limited remote-sensing data in a widely used Geographic Information System (GIS)
environment. State agencies need those reliable decision support systems to assess flood
loss, plan and design flood management strategies and mitigation systems, and prepare
emergency management plans that may involve.
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To carry out a flood hazard assessment from remote-sensing imagery, we should first
need to identify the water bodies and their distribution from the remote-sensing imagery.
The current water information-extraction methods mainly include the threshold method,
machine learning method, and deep learning method. The threshold method constructs a
model by selecting the appropriate band in the information transmitted from the satellite
and uses the different spectral characteristics of water bodies and non-water bodies to
extract water bodies [5]. It is divided into the single-band threshold method [6], inter-
spectral relationship method, and water-body index method [7–10], among which the water
index method is the most popular. The earliest water index method, named the Normalized
Difference Water Index (NDWI), was proposed in 1996 [7], eliminating the interference of
some vegetation and soil information to extract water. However, the threshold methods
have trouble selecting water bodies from objects with similar spectral features, such as
shadows and dark roads. With the development of machine learning, several popular
machine learning algorithms, such as Decision Tree (DT) [11,12], Support Vector Machine
(SVM) [13,14], and Random Forest (RF) [15,16], have been widely used in water body
extraction. However, these methods need to mark features artificially, and different feature
vectors are required for changed pictures; the quality of the mark has a significant impact
on the results [17]. Traditional methods mainly rely on manually designed extractors,
requiring professional knowledge and complicated parameter adjustment processes. Thus,
the generalization ability and robustness of these methods need to be improved.

Today, deep learning has become popular in image processing, including remote-
sensing images as well. The advantage of convolutional neural network (CNN) is that
features could be captured directly from the original images through multiple convolutional
layers [18], which avoid complex feature processing. Some models, such as U-Net [19],
LinkNet [20], and DeeplabV3+ [21], were popular in the field of image recognition and
had relatively good results in terms of accuracy. U-Net was widely used for its simple
and straightforward encoding–decoding structure [22]. However, U-Net is poor in edge
information extraction and easily misses part of the targets. In addition, water extraction is
different from general target extraction, and it has pronounced regional differences. Some
surface features with spectral reflectance close to water, such as shadows, roads, dark roofs,
etc., can easily interfere with the water extraction results, leading to incorrect mention and
omission of deep learning models. To date, most of the water datasets published lacked
samples in complex geological environments.

How to generate a continuous and dynamic flood process through the intermittent
flood inundation range extracted by the deep learning model still faces significant chal-
lenges. To obtain a dynamic and continuous flood inundation process, the flood evolution
model that relies on a priori data was often used in hydrology to describe the flood move-
ment process. Those methods could accurately simulate the water level, flow rate, and
changes over time by solving hydrodynamic equations. Still, the uncertainty of the parame-
ters due to regional differences reduced the accuracy of the results, especially in areas with
insufficient data [23]. Moreover, flood disasters have the characteristics of suddenness,
and many disaster-stricken sites could not provide sufficient real-time observational data.
Furthermore, remote-sensing data could be used directly to extract information about
the extent of flood inundation. It can infer hydrological model parameters by extracting
underlying surface features, such as the land cover and impervious area ratio. The data-
assimilation method can integrate the observation data information and the constraints
of the hydraulic model and use multi-source information to minimize the uncertainty in
the flood evolution process [24]. There are two main ways to use hydraulic models to
assimilate remote-sensing data. One is to assimilate water-level data extracted from remote-
sensing data with hydraulic models [25]. The assimilation effect of this method depends
on the accuracy of the extracted water-level data. The accuracy of the data obtained by the
current approach is still low and is at the meter level, which is not very compatible with
the hydraulic model. On the other hand, the remote-sensing data have a high resolution at
present, from which a high-resolution flood inundation range could be obtained. Thus, it is
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more direct and practical to use the flood-inundation-area data rather than the water-level
data to assimilate the flood evolution process. Lai et al. [26] researched the fusion of flood
inundation range data and the flood dynamics model to dynamically correct the dynamics
model. Zhang et al. [27] transformed the flood inundation process into the topological
deformation between the curves of the inundation area and performed numerical solutions
from space and time dimensions. However, these models still do not fully satisfy the needs
of city emergency management, due to model complexity, setup data requirements, and
computing times. Besides, there are still few related studies.

Since the submerged-area data obtained from remote-sensing images contain rich
hydraulic spatial information, this paper aimed to develop a robust decision support
system for integrated flood inundation management based on limited remote-sensing
images. Firstly, we established a water-extraction convolutional neural network to cost-
effectively and accurately extract the water body for the first challenge. Specific datasets
were used in training the model to separate the water body from the confusing surface
features. In addition, we built a waterfront contour active tracking model to implicitly
describe the flood movement interface for the second challenge. The spatial upwind
difference and time Euler difference methods were used to obtain the numerical solution
of the implicit function and interpolate the submerged range in time and space. Finally,
we developed a decision support system, using ArcGIS API. The decision support system
combined fast raster layer operations in the GIS platform with vulnerability models to
generate flood-hazard maps for decision-makers.

The structure of the rest of this article is as follows. First, we introduce the basic
principles of the proposed models. Secondly, we report how we tested and evaluated the
performance of the models on a laboratory scale. Simultaneously, we took the Chaohu
Lake basin, Anhui Province, as the study area to verify the actual capabilities of the models.
The daily inundation ranges from June 15 to September 30 during the flooding process
were simulated from the limited raw imagery. Finally, we packaged the models above to
develop an information system for loss assessment. The validation of the evaluation results
was carried out by cross-comparison.

2. Methodology

The model proposed in this paper was divided into three parts: multi-scale flood-
information-extraction model, water-boundary tracking model, and loss-assessment deci-
sion support system, as shown in Figure 2.

2.1. Multi-Scale Flood-Information-Extraction Model

To fully use the cost-effective optical remote-sensing data, we expected to establish
a model to extract visible floodwater by using RGB band digital numbers to obtain an
accurately distributed water extent with a relatively high spatial resolution.

2.1.1. Model Design

The multi-scale flood information extraction model called DEU-Net proposed in
this paper combines the advantages of U-Net and DenseNet. It replaces the ordinary
convolution module used for feature extraction in the original structure of U-Net with
densely connected blocks in DenseNet. U-Net is an encoding–decoding network based on
a fully convolutional neural network and is composed of a symmetrical down-sampling
process and an up-sampling process [22]. U-Net combines the information obtained from
the downsampling process and the information input from the up-sampling process to
restore the details of images [28]. DenseNet [29] is a convolutional neural network with
dense connections. There is a direct connection between any two layers in DenseNet.
The input of each layer in the network structure is the union of the outputs of all the
previous layers, and the feature maps obtained from this layer will also be directly passed
to all subsequent layers as input information [30]. The structure of the dense connection
block is shown in Figure 3. This structure could fuse information from multiple scales to
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obtain more affluent and adequate information, thus enhancing the network’s expressive
capability. In addition, since the sources of our datasets were public datasets, Landsat-
8 and GF-1, water bodies in our dataset had multi-scale features due to the gradual
improvement in resolution [31]. After training on the datasets, the multi-scale flood-
information-extraction model could fully extract a small area of water and keep the integrity
of the slender river, which performs well in dig-out water from remote-sensing images.
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In the down-sampling feature extraction part of the structure, the images were resam-
pled to a pixel resolution of 512 × 512 as input. First, the input passed through 64 filters of
size 3 × 3 to obtain an initial feature map of 256 × 256 × 64 and then entered the Dense
Block to extract the feature. Since the characteristics of water bodies in remote-sensing
images were apparent, each Dense Block set the number of layers L to 3 and the growth
rate k to 12 to reduce graphics processing unit (GPU) consumption during model training.
Each dense layer contained a convolutional layer of size 3 × 3, a batch normalization (BN)
layer, and a rectified linear unit (ReLU) layer. A transition layer connected every two Dense
Blocks. Each transition layer had the same structure and consisted of a bottleneck layer
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with a filter of size 1 × 1, an average pooling layer of size 2 × 2, and a dropout layer. Then
the input image passed through 5 Dense Blocks and four down-sampling transition layers
during the down-sampling process on the left of the model structure. The feature map
output by the fifth Dense Block was of size 16 × 16 and then went in the up-sampling ex-
pansion stage on the right. The structure on the right was similar to the structure on the left.
It was composed of 4 transition layers and 5 Dense Blocks. The role of the transition layer
was to deconvolute and expand the abstract feature map obtained by feature extraction
by using a 3 × 3 filter. While performing up-sampling, feature maps of the same size on
the left and right sides were merged through jump connections. This design improved
the utilization of feature information and provided more gradient flow information, thus
enhancing the network structure’s training performance and training speed.
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2.1.2. Sample Generation

Due to the distinct discrepancies in the water features and the surrounding environ-
ment in different regions, the accuracy of the extraction results obtained by the same model
may also be uneven. If the model was only trained by standard datasets, it was tough to get
good extraction results when the surrounding environment was relatively unsophisticated.
Therefore, in addition to making universal water datasets based on Landsat-8 OLI and
Gaofen-1 (GF-1) satellite data, we collected images of water bodies in various regions of
our country based on Landsat-8 OLI and performed detailed analysis and classification.
Regarding the nature of the water body and the confusion of surface objects, the research
fields with complex conditions were divided into four typical types. We trained the com-
mon datasets and then performed the corresponding specific datasets to get the specific
model at first. Before starting water-extraction work, the kind of research area involved
should be roughly judged. If the terrain condition is simple, we could use the model trained
by standard datasets. If the circumstance is complex, we should first determine which
feature area is closer and selected the corresponding model for water body information
extraction. The generation process of the datasets is shown in Figure 4, and some samples
in specific datasets are shown in Figure 5.
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Figure 5. Some samples in the specific datasets: (a–c) belong to built-up areas; (d–f) belong to
mountainous areas; (g–i) belong to plateau areas; (j–l) belong to multi-water areas.

The specific datasets were divided into four typical regions:

• Built-up areas: the shapes of water bodies in built-up areas are relatively regular,
mainly natural or artificial rivers and lakes. However, the surface features are some-
what complex, and there are several confusing features, such as building shadows,
roads, dark lawns, and dark roofs [17].

• Mountainous areas: The water bodies in mountainous areas are primarily rivers.
Mountain rivers have many branches, and it is hard to accurately extract the edges for
the most part. Moreover, they are easily confused with mountain shadows.

• Plateau areas: The chief water bodies in the plateau areas are plateau lakes and plateau
rivers. Because of their rich mineral ions, the colors of the water bodies are different
from the common ones, such as turquoise and light blue. Confusing features are
mountain shadows and cloud shadows left in the image due to the shooting angle.

• Multi-water areas: These areas contain rich water resources, mainly in farming regions
such as paddy fields and fish ponds. The water bodies in this area are compactly
distributed with many types and different scales. They may include lakes, rivers,
and ponds, as well as small puddles. Ground objects that are easy to confuse include
farmland and masking nets. In the low resolution of remote-sensing images, water
bodies may be indistinguishable from dark farmland.

2.2. Water Boundary Tracking Model

The results obtained in the previous section have a high spatial resolution but a low
temporal resolution. To receive a flooding process with a high resolution in both time and
space, we expected to develop a model to dig out the dynamic and continuous process of
flood extent change based on the obtained flood extraction results.
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2.2.1. Curve Evolution

The active boundary tracking method is an effective tool for processing the topological
changes of the motion curve with time, based on techniques of curve evolution. The
problem becomes the "mean-curvature flow"—similar to evolving active contour, it will
stop on the expected boundary. We presented a numerical algorithm by using finite
differences. This method describes the continuous function φ(x, y, t) : R3 → R as the
implicit expression of a closed evolution curve C(p, t) : 0 6 p 6 1 at time t. That is, the
curve C(p, t) at time t corresponds to the zero-level set of φ(x, y, t). In this paper, the flood
inundation range at time t1 was the source surface φ1, and the flood inundation range
at time t2 was the target surface φ2 (t1 < t2). Thus, the evolution process of the flood
inundation range was transformed into the process of φ1 infinitely approaching φ2 under
the control of partial differential equations (see Figure 6).

Remote Sens. 2021, 13, 2818 8 of 27 
 

 

 Mountainous areas: The water bodies in mountainous areas are primarily rivers. 

Mountain rivers have many branches, and it is hard to accurately extract the edges 

for the most part. Moreover, they are easily confused with mountain shadows. 

 Plateau areas: The chief water bodies in the plateau areas are plateau lakes and 

plateau rivers. Because of their rich mineral ions, the colors of the water bodies are 

different from the common ones, such as turquoise and light blue. Confusing features 

are mountain shadows and cloud shadows left in the image due to the shooting 

angle. 

 Multi-water areas: These areas contain rich water resources, mainly in farming 

regions such as paddy fields and fish ponds. The water bodies in this area are 

compactly distributed with many types and different scales. They may include lakes, 

rivers, and ponds, as well as small puddles. Ground objects that are easy to confuse 

include farmland and masking nets. In the low resolution of remote-sensing images, 

water bodies may be indistinguishable from dark farmland. 

2.2. Water Boundary Tracking Model 

The results obtained in the previous section have a high spatial resolution but a low 

temporal resolution. To receive a flooding process with a high resolution in both time and 

space, we expected to develop a model to dig out the dynamic and continuous process of 

flood extent change based on the obtained flood extraction results. 

2.2.1. Curve Evolution 

 The active boundary tracking method is an effective tool for processing the 

topological changes of the motion curve with time, based on techniques of curve 

evolution. The problem becomes the "mean-curvature flow"—similar to evolving active 

contour, it will stop on the expected boundary. We presented a numerical algorithm by 

using finite differences. This method describes the continuous function 𝜙(𝑥, 𝑦, 𝑡)：𝑅3 →
𝑅 as the implicit expression of a closed evolution curve 𝐶(𝑝, 𝑡): 0 ⩽ 𝑝 ⩽ 1 at time t. That 

is, the curve C(𝑝, 𝑡) at time t corresponds to the zero-level set of 𝜙(𝑥, 𝑦, 𝑡). In this paper, 

the flood inundation range at time 𝑡1  was the source surface 𝜙1 , and the flood 

inundation range at time 𝑡2  was the target surface 𝜙2 (𝑡1 < 𝑡2). Thus, the evolution 

process of the flood inundation range was transformed into the process of 𝜙1 infinitely 

approaching 𝜙2 under the control of partial differential equations (see Figure 6). 

 

Figure 6. Front of the flood inundation range propagating with speed, 𝐹. 

2.2.2. Mathematical Derivation of the Model 

Let 𝛺 be a bounded open subset of ℝ2 with 𝜕𝛺 its boundary. Let 𝑢0: Ω̅ → ℝ be a 

given area, and 𝐶(𝑠): [0,1] → ℝ2  be the parameterized evolving curve in 𝛺 , as the 

boundary of an open subset ω of 𝛺. In what follows, 𝑖𝑛𝑠𝑖𝑑𝑒(𝐶) denotes the region ω, 

and 𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝐶) denotes the 𝛺 ∖ �̅�. Assume that the area is formed by two regions of 

Figure 6. Front of the flood inundation range propagating with speed, F.

2.2.2. Mathematical Derivation of the Model

Let Ω be a bounded open subset of R2 with ∂Ω its boundary. Let u0 : Ω → R be
a given area, and C(s) : [0, 1]→ R2 be the parameterized evolving curve in Ω, as the
boundary of an open subset ω of Ω. In what follows, inside(C) denotes the region ω,
and outside(C) denotes the Ω r ω. Assume that the area is formed by two regions of
approximatively piecewise-constant intensities, of distinct values ui

0 and uo
0, representing

the flooded area and the un-inundated area. Suppose further that the object to be detected
is represented by the area with the value ui

0. Let denote its boundary by C0. Then we
have inside the object [or inside (C0)], and outside the object [or outside (C0)]. Let us now
consider the following “fitting” term:

F1(C) + F2(C) =
∫

inside(C)|u0(x, y)− c1|2dxdy

+
∫

outside(C)|u0(x, y)− c2|2dxdy,
(1)

where C is any closed curve, and the constants C1 and C2, depending on C, are the averages
of u0 inside and outside, respectively. It is obvious that C0, the boundary of the object, is
the minimum value of the fitting term, as shown in Figure 7.

In addition, we added some regularizing terms, such as the length of the curve and
the region’s area inside. We introduced the energy functional F(c1, c2, C), which is defined
as follows:

F(c1, c2, C) = µ· Length(C) + v · Area(in side(C)) + λ1
∫

inside(C)|u0(x, y)− c1|2dxdy

+λ2
∫

outside(C)|u0(x, y)− c2|2dxdy,
(2)

where µ ≥ 0, ν ≥ 0, λ1, and λ2 > 0 are fixed parameters. Length(C) is the length of the
closed contour line C, Area(inside(C)) is the internal area of C, and λ1 and λ2 are the weight
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coefficients of each energy term. In almost all of our numerical calculations (see further),
we fix λ1 = λ2. Therefore, we considered the minimization problem: inf

c1,c2,C
F(c1, c2, C).
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We sought the best approximation of the function that took only two kinds of values,

namely u =

{
u < 0 inside C
u>0 outside C

. The initialization of the function u is simple for the regular

initial contour, and the curve C we selected is a normal circle with a center (x0, y0) and a ra-

dius of r. The calculation formula of the function u is u0(x, y) =
√
(x− x0)

2 + (y− y0)
2− r.

Then, using the Heaviside function H and the one-dimensional Dirac measure, δ0, defined

by H(z) =
{

1, if z ≥ 0
0, if z < 0

and δ0(z) = d
dz H(z), we expressed the terms in the energy in

the following way:

F(c1, c2, φ) = µ
∫

Ω δ(φ(x, y))
∣∣∣∇φ(x, y)

∣∣∣dxdy + v
∫

Ω H(φ(x, y))dxdy + λ1
∫

Ω|u0(x, y)− c1|2H(φ(x, y))dxdy

+λ2
∫

Ω|u0(x, y)− c2|2(1− H(φ(x, y)))dxdy,
(3)

Keeping φ fixed, with respect to the constants and c2, it is easy to express these
constants’ function of by using the following:

c1(φF(c1, c2, φ)) =

∫
Ω u0(x, y)H(φ(x, y))dxdy∫

Ω H(φ(x, y))dxdy
, (4)

c2(φ) =

∫
Ω u0(x, y)(1− H(φ(x, y)))dxdy∫

Ω(1− H(φ(x, y)))dxdy
(5)

By the previous formulas, we saw that the energy F(c1, c2, φ) could be written the
only function of H(φ(x, y)). Keeping c1 and c2 fixed, and minimizing F(c1, c2, φ) with
respect to φ, we deduced the associated Euler–Lagrange equation for φ. Parameterizing
the descent direction by an artificial time t ≥ 0, we realized the dynamic evolution of the
level set function.

∂φ

∂t
= δ(φ)

[
µdiv

(
∇φ

|∇φ|

)
− ν− λ1(u0 − c1)

2 +λ2(u0 − c2)
2
]
= 0 in (0, ∞)×Ω, (6)
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δ(φ)

|∇φ|
∂φ

∂
→
n

= 0 on ∂Ω, (7)

To discretize the equation in φ, we used a finite differences implicit scheme. Firstly, we
recalled the usual notations: let h be the space step, ∆t be the time step,

(
xi, yj

)
= (ih, jh)

be the grid points, and φn
i,j = φ

(
n∆t, xi, yj

)
be an approximation of φ(t, x, y). To ensure the

accuracy of the solution and avoid numerical dissipation, the spatial upwind difference
format and the time Euler difference format were selected for discretization. The finite
differences are as follows:

∆x
−φi,j = φi,j − φi−1,j, (8)

∆x
+φi,j = φi+1,j − φi,j, (9)

∆y
−φi,j = φi,j − φi,j−1, (10)

∆y
+φi,j = φi,j+1 − φi,j. (11)

where ∆x
+φi,j and ∆x

−φi,j represent the forward difference format and backward difference
format in the x-direction, respectively. ∆y

+φi,j and ∆y
−φi,j represent the forward and back-

ward difference formats in the y-direction. The discretization of the divergence operator
and the iterative algorithm is as follows. Knowing φn, we first computed c1(φ

n) and c2(φ
n).

Then, we computed φn+1 by the following discretization and linearization.

φn+1
i,j −φn

i,y
∆t = δn

(
φn

ij

)
[ µ

h2 ∆x
− ·

 ∆x
+φn+1

l, f√(
∆x
+φn

ij

)2
/(h2)+

(
φn

i,j+1−φn
h,j−1

)2
/(2h)2


+ µ

h2 ∆y ·

 ∆y
+φn+1

i,j√(
φn

i+1, f−φn
i−1,j

)2
/(2h)2+

(
∆y
+φn

i,j

)2
/(h2)

− v− λ1
(
u0,i,j − c1(φ

n)
)2

+ λ2(u0i,l − c2(φ
n))2].

(12)

When the implicitly expressed function φt
i,j was used for surface evolution, the zero

isosurface C(t) =
{
(i, j) ∈ Ω : φt

i,j = 0
}

of the function was the evolving shape of the flood
inundation range at that point in time t.

2.3. Decision Support System for Integrated Flood-Loss Assessment

The final task of this research was to develop an innovative decision support system for
integrated flood-loss assessment that allows for a detailed evaluation of the consequences
of a flood event. A collection of GIS-based decision-support modules constitutes the core
of the proposed system [32]. The previous model provides information about the extent of
the flooded area, spatial distributions of flood depth, the arrival time of the flood, and its
duration at each point of the computational domain. To carry out these tasks, we need to
complement the GIS decision support system with various geospatial information, such as
land use, census data, building density, and road network [33]. The system mainly includes
the following aspects: remote-sensing image, vector-element resources, flood-inundation
data, loss-calculation model, and client implementation, as shown in Figure 8. We used the
high-performance platform to obtain the flood inundation data of the computing area and
utilized the data conversion tool to convert the data into the corresponding time-series layer.
All data were provided to the client in representational state transfer (REST) transmission
format. The client used the integrated application server to aggregate data from different
sources and realized functions such as browsing, query, analysis, and calculation.
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To accurately and rapidly evaluate the risk of flood inundation, we selected the cloud
model to assess the flood disaster loss and used the entropy weight method to calculate the
weight of each indicator. The cloud model [34] is a fuzzy mathematics method based on
the uncertainty of concepts in natural language, which starts from the connection between
ambiguity and randomness, and realizes the uncertain conversion between qualitative
concepts and their quantitative values. The cloud is composed of disordered cloud drops,
and a cloud drop means the quantitative realization of a qualitative concept. The more
cloud drops, the more it could symbolize the characteristics of the qualitative concept.
The main parameters of the cloud model are the expectation (Ex), the entropy (En), and
the hyper-entropy (He). Forward Cloud Generator is the most popular among the cloud
models, and it was used in this study. After obtaining the certainty degrees of different
indicators through the Forward Cloud Generator, we used the entropy weight method [35]
to calculate the weight of each indicator in the flood-disaster loss assessment. The detailed
computational flow of the cloud model is presented in Table A1 in Appendix A.

3. Model Performance Testing and Discussion

A laboratory environment was constructed to benchmark the performance of the
model and the accuracy of the simulations. The purpose of doing this is that the laboratory
environment is manageable and the observational data obtained are more accurate.

3.1. Performance Comparison of the Water Extraction Model Technologies

To evaluate the performance of the model DEU-Net, we made a qualitative and quan-
titative comparison with the traditional method NDWI based on land-surface reflectance
and the machine-learning method SVM, and two widely used deep-learning models, U-
Net and DeeplabV3+. Qualitative evaluation was to visualize the water-extraction results
produced in five typical ways and compare the performance of these methods from visual
interpretation. The overall accuracy (OA), the false water rate (FWR), the missing water
rate (MWR), and the mean intersection over union (MIoU) were used in the quantitative
assessment. The formulas are listed in Table 1.



Remote Sens. 2021, 13, 2818 12 of 26

Table 1. Four evaluation metrics for accuracy assessment of the identified outcomes.

Evaluation Index Definition Formula

OA The ratio to quantify the degree of match between the
predicted value and the actual value OA = TP+TN

TP+FP+FN+TN × 100%

FWR The ratio of the number of pixels misclassified as water and
the number of predicted water pixels FWR = FP

TP+FP × 100%

MWR The ratio of the number of water pixels that are not
recognized as water and the number of actual water pixels MWR = FN

TP+FN × 100%

MIoU The average of the intersection and union of each type of
predicted and actual value MIoU = 1

2

(
TP

TP+FP+FN + TN
TN+FP+FN

)
TP, TN, FN, and FP represent the numbers of pixels of actual water, factual background, false background, and false water, respectively.

The results of the water-body extraction using different methods on the test images
are shown in Figure 9, and the consequences of accuracy analysis are shown in Table 2.
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Figure 9. Comparison of water extraction results made by different models: (a–d), respectively, corre-
spond to samples taken from plateau area, built-up area, mountainous areas, and multi-water areas.

Table 2. Comparison of the overall identification accuracy of different models for water bodies.

Method OA FWR MWR MIoU

NDWI 0.8769 0.1773 0.0690 0.7807
SVM 0.9216 0.0972 0.0607 0.8546

DeeplabV3+ 0.9566 0.0578 0.0310 0.9168
U-Net 0.9620 0.0396 0.0382 0.9267

DEU-Net 0.9730 0.0303 0.0245 0.9473

As can be seen that NDWI based on land surface reflectance had a humble ability
to distinguish between shadows and water bodies, and it was easy to cause false extrac-
tion (Figure 9a–c), especially in the built-up area with dense buildings (Figure 9b). In
the mountainous area (Figure 9c), the NDWI method confused mountain shadows with
water bodies, and the extraction results of tributaries were poor. In the water-rich place
(Figure 9d), large-area water bodies had good extraction results, but tiny rivers were diffi-
cult to extract accurately. The outcomes extracted by the SVM method had severe noise
problems, especially in the built-up area (Figure 9b) and the multi-water area (Figure 9d).

DeeplabV3+, U-Net, and DEU-Net all belong to deep learning methods. These three
methods were generally better than the water spectral indices and SVM methods according
to their performances. In the plateau area, except for a small part of snow that DeeplabV3+
correctly mentioned, these three methods had little difference (Figure 9a). Moreover, they
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were good at distinguishing the shadow of the building and the water bodies (Figure 9b).
However, as the water body in the lower-left corner was rich in aquatic plants, these three
deep learning methods all had a certain degree of error extraction, among which DEU-Net
had the lowest degree. In addition, a small part of the water bodies adjacent to the bridge
was omitted when using U-Net. DeeplabV3+ had much false extraction in the mountainous
area, which confused mountain shadows with water bodies (Figure 9c). In the multi-water
area, several dark lands were confused with the water bodies by DeeplabV3+, and the
phenomenon of over-extraction was serious. U-Net had two apparent omissions in the
lower-left corner, and the results of DEU-Net were the best (Figure 9d).

According to the results of the accuracy analysis shown in Table 2, DEU-Net performed
better than the others in all four indicators, and NDWI performed worst. As one of the best
models for semantic segmentation, DeeplabV3+, performed poorly in FWR in this study
but slightly better in MWR. Combined with U-Net, it appeared that DeeplabV3+ was easy
to perform overfitting when training for water extraction. The accuracy analysis confirmed
the performance of the DEU-Net proposed in this paper.

3.2. Laboratory-Scale Experiment of Dike Flood Boundary Simulation

This experiment was a laboratory-scale dike breach process. The calculation area was
a rectangular flat-bottomed beach of 10.0 m × 8.0 m, shown in Figure 10a. Five different
land-use types were evenly distributed in the study area from left to right, the roughness of
which was 0.03, 0.04, 0.05, 0.06, and 0.07, respectively. Assuming that the water flow entered
the beach from a fixed breach with a width of 0.4 m from the left-center, the flow process at
the fracture boundary is shown in Figure 10b. The duration of the breach was 5 s.
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Figure 10. Dike breach experiment: (a) presents the rupture flow process, and the red curve represents the change of unit
discharge over time; (b) presents the flow of water over ground of different roughness, with the blue curve representing the
current water boundary.

We used the observational data and the results calculated by the 2D hydrodynamic
model by using the above-assumed parameters to carry out model verification experi-
ments, as shown in Figure 11. The advantage was that it could deduct the interference of
factors, such as the observation and experiment errors, and it was suitable for verifying the
proposed model.

Based on the observation data obtained by the simulation, we carried out the numerical
experiments of the model. We recorded the actual submerged range at t = 1, 2, 3, 4, and 5 s.
Furthermore, we designed three sets of experimental programs based on the data in the
submerged area. The specific experimental programs are shown in Table 3.
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Figure 11. Simulation process based on a 2D hydrodynamic model: (a–f) respectively correspond to
the simulation state of water flow at t = 0–5 s.

Table 3. Experimental protocol description.

Test Protocol Test Protocol Description

Test A Only the submerged range at t = 5 s
Test B Only the submerged range at t = 1, 5 s
Test C Only the submerged range at t = 1, 3, 5 s

In those cases, we first established an initial continuous function

φ0(x, y) =
√
(x− x0)

2 + (y− y0)
2− r, and the zero isosurface C0(t) = {(i, j) ∈ Ω : φ0(x, y) = 0}

of the function was the initial evolution shape of the flood inundation range at time 0.
Then we used Formula (20) to perform the iterative evolution of the surface function.
The intersection of the surface with the plane created the implicit contour of the flood
inundation range, as shown in Figure 12.
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Figure 13 shows the comparison between the boundary line of the submerged area
calculated by using different sets of observation data and the actual value. When only
the final state data (Test A) was used as the input parameter, the simulated value differed
significantly from the observed data, especially at the moment of t = 1. When the initial
state was added to the input parameter (Test B), although the intermediate outcomes at t
= 2 and 3 s were still unsatisfactory, the degree of compliance had improved enormously.
When the data of the submerged range at t = 1, 3, and 5 s were all used as input parameters
(Test C), the simulation effect was close to the actual value. It could be seen that the effect
of the simulation was closely related to the constraints in the simulation process. More
restrictions could better control the deformation of the curve and make the curve evolve
in the right direction. The shorter the time interval, the more constraints and the more
accurate the simulation results.
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4. Case Study

A real-life environment that requires a solution to the proposed challenge was chosen
to further validate our model’s effectiveness.

4.1. Study Site

We selected Chaohu Lake and surrounding areas as the study areas, aiming to research
the impact of the 2020 flood in the Chaohu Lake basin. The Chaohu Lake Basin, located
in the middle of Anhui Province, includes 13 county-level units in Chaohu City, Feidong
County, Feixi County, Lujiang County, Changfeng County, Shushan District, Luyang
District, Yaohai District, Baohe District, Hanshan County, He County, Wuwei City, and
Shucheng County. Its latitude ranges from 30◦57′05′′ N to 32◦32′20′′ N, and longitude
ranges from 116◦25′20′′ E to 118◦30′00′′ E. Moreover, the geographic location is shown in
Figure 14.

4.2. Data Collection and Preprocessing

The data sources used in this paper are shown in Table 4. The data sources of the
standard datasets for water-body information extraction produced in this paper were
two open-source datasets, Gaofen Image Dataset (GID) [36] and Aerial Image Dataset
(AID) [37], GF-1 and Landsat-8 OLI, since they are relatively cost-effective remote-sensing
image data and highly accessible. The datasets included images with multiple river scales
and various representative interferences, such as mountain shadows, clouds occlusion,
road interference, different sand content of the river, dry river bed interference, and mosaic
changes of images. The data source of the specific datasets was Landsat-8 OLI, which
contained four types: plateau area, mountainous area, built-up area, and multi-water area.
The source of flood data in the study area was Landsat-8 OLI. Due to the continuous
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rainy weather during the flood period, the remote-sensing data were insufficient. Thus,
we selected only five phases of Landsat-8 OLI remote-sensing images of relatively good
quality across the life cycle of the flood event of the Chaohu Lake Basin, and the acquisition
time was 17 May, 20 July, 5 August, 6 September, and 24 October in 2020. The geographic
data were used to establish the flood loss assessment model in the Chaohu Lake Basin. In
addition, official statistics data of Anhui Province and public-releases data were used to
verify the correctness of experimental results.
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Table 4. Data information used in this paper.

Type Content Source Purpose

Open-source dataset GID http://captain.whu.edu.cn/GID/
To create datasetsAID https://pan.baidu.com/s/1mifOBv6#list/path=%2F

Remote-sensing data GF-1 http://www.gscloud.cn/search To create datasets

Landsat-8 OLI http://eds.ceode.ac.cn/nuds/freedataquery To create datasets and obtain
flooding data

Basic geographic data

Elevation Map https://www.databox.store/Home/Index

To assess the loss of flood damage
Land-use map https://www.databox.store/Home/Index

Chinese administrative divisions map https://www.databox.store/Home/Index
Population-density map https://www.worldpop.org/
Road-distribution map https://www.openstreetmap.org/

Statistical data
Anhui Province’s statistical yearbook http://tjj.ah.gov.cn/ssah/qwfbjd/tjnj/index.html To verify the accuracy of

experimental resultsOfficial Public Releases http://yjt.ah.gov.cn/public/9377745/145229191.html

4.3. Results and Discussion

The whole simulation was subdivided into two parts as well. It starts with the
extraction of information on the distribution of water bodies at different points in time
through remote-sensing imagery. Secondly, we intend to obtain a dynamic continuous
flood process by modeling this discrete water level distribution information. Finally, we
will conclude with a systematic evaluation and analysis of the probable impacts of this
flooding process.

4.3.1. Flood Extraction Results on the Study Site

The proposed U-Net model was used to extract the flood, and we could see the
comparison of satellite images and extracted areas in Figure 15. The total outcomes of
flood extraction based on date-specific remote-sensing images are shown in Figure 16.
According to the consequences, we could deduce that the regions affected by the flood in
the Chaohu Lake Basin were primarily located in the southwest, followed by the northeast.
20 July was almost the peak time of this flood event, and the areas around Chaohu Lake
were more or less submerged. Before 5 August, the floods did not fall significantly. By 6
September, the floods in the northern area had subsided, and only the southwestern areas
were still severely affected. On 24 October, the flooding situation was similar to when
there was no flood on 17 May. According to the flooding-related information assembled,

http://captain.whu.edu.cn/GID/
https://pan.baidu.com/s/1mifOBv6#list/path=%2F
http://www.gscloud.cn/search
http://eds.ceode.ac.cn/nuds/freedataquery
https://www.databox.store/Home/Index
https://www.databox.store/Home/Index
https://www.databox.store/Home/Index
https://www.worldpop.org/
https://www.openstreetmap.org/
http://tjj.ah.gov.cn/ssah/qwfbjd/tjnj/index.html
http://yjt.ah.gov.cn/public/9377745/145229191.html
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flood peaks in various regions were concentrated on 18 to 24 July, and the floods had
receded before 30 September. It could be seen that there was a good concordance with our
extraction results.
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Figure 15. Comparison of satellite image and extracted areas. The two illustrative regions are
located in the northwestern and northeastern parts of the study area. The left portion represents the
original remote-sensing satellite image, and the right portion represents the extraction results of the
water bodies.

Simultaneously, the water-body ranges extracted from the remote-sensing image on
17 May were selected as the original input data as the start time of the flood. The flood
inundation range on 20 July was the peak-time data, and the range on 24 October was
selected as the input data of the low-tide period. Flood-spreading process simulation was
carried out through the water-boundary tracking model. Meanwhile, the extraction results
from 5 August and 6 September were used as a validation dataset to verify the accuracy of
the simulation.

4.3.2. Overland Flow Routing Simulation Result

We finally gained the daily flood inundation simulation results from 15 June to
30 September through the active boundary tracking model. Considering the different
characteristics of the floodwater increase and decrease, the simulation process was di-
vided into two stages: the rising water and falling water stage. The results are shown in
Figures 17 and 18, respectively.
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in 2020.
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on 22 June, 16 July, 18 July, and 20 July, in 2020.
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Figure 18. Simulation of flood receding process: (a–f), respectively, correspond to the simulation
results on 25 July, 30 July, 5 August, 20 August, 6 September, and 30 September, in 2020.

I Simulation of water rising process
Figure 17 shows that the inundation area of the Chaohu Lake Basin did not increase

significantly until 22 June. The spread of flooding became apparent on 16 July, and a
sizeable flooded area appeared in the southwest. On 18 July, the low-lying areas around
Chaohu Lake were flooded rapidly. The southwestern regions saw the fastest water rise,
followed by the northeast areas, and the southeast areas had the lightest water accumula-
tion. The flooding situation in Lujiang County and Chaohu City was even more serious.
On 20 July, the flooded area reached its maximum.

II Simulation of water-receding process
Figure 18 shows that after the flood’s peak on 20 July, the flood area began to decrease.

The floods in the northwest and southeast areas receded promptly, while the southwest ar-
eas receded gradually. On 20 August, the northwestern regions dried up, and on 25 August,
the northeastern part also retreated. Moreover, Lujiang County continued to be flooded
until the end of September.

To demonstrate the effectiveness of the model simulated in detail, we chose a tiny
region on the western side of the study area as an area of interest (AOI). Here we displayed
results in terms of binary maps of flood extents over the selected AOI shown in panel (a),
together with an example of a water rise course map in panel (b) as provided for the same
day in Figure 19. More details of the spatial inundation pattern were visible in the selected
region. The result showed that the tracking model based on remote-sensing observation
data could swiftly generate a higher resolution and accurate flood disaster map. The
evolution process could be seen more intuitively.
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Figure 19. Example of flood binary map (a), and corresponding water-rise time course map for the
first AOI selected (b). Meanwhile, (c,d) represent the flood binary map and water-rise time course
map of the second AOI area respectively.

To verify the accuracy of this method, we established a confusion matrix for accuracy
evaluation by comparing the simulation results on 5 August and 6 September with the
remote-sensing image extraction results, as shown in Figure 20. The results are shown in
Table 5. The Kappa values of the two tests were 0.9078 and 0.9211, which showed that the
simulation results and the remote-sensing image extraction results were in good agreement.

In addition, we picked certain videos, reports, and bulletins released by authorita-
tive agencies to provide supplementary validation, as shown in Table 6. The simulation
outcomes better match the actual situation described in the validation information.

Table 5. Accuracy verification between simulation and extraction results.

Data Simulation Time Correct Rate Misclassification Rate Omission Rate Kappa

August 5 0.9540 0.0602 0.0272 0.9078
September 6 0.9606 0.0470 0.0288 0.9211
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Figure 20. Comparison of simulation results with extraction results on 5 August and 6 September:
(a,b) represent a comparison on 5 August; (c,d) represent a comparison on 6 September.

Table 6. The list of information released by authoritative agencies providing complementary validation.

Time Place Description of Event Results Involved Data Source

19 August 2020 Feidong County

There was flood water depth
over 3 meters in some parts, on
7 August, and on 17 August, it

was receded [38].

7.30
8.5

8.30

Anhui Broadcasting
Corporation

22 September 2020 Feixi County Floodwaters have primarily
receded in mid-September [39].

9.6
9.30

Anhui Broadcasting
Corporation

29 September 2020 Lujiang County There was still no receding
flooding in Tongda town [40]. 9.30

Lujiang County
Government Official

Website

20 October 2020 Lujiang County
Flood in Baihu Farm was

drained at the end of
September [41].

9.30 Anhui Provincial
Bureau of Statistics

4.3.3. Prediction of Potential Flooding Risk

To offer decision support to policymakers, we needed to estimate flood risk adequately.
Thus, seven indicators were selected from the characteristics of the study area and flood in-
undation attributes to form a flood-disaster loss-evaluation system. These seven indicators
are shown in Table 7. The indicators U1, U2, U3, and U4 were from the basic geographic
data on the Internet. The maximum submerged area indicator came from the extraction
results of remote-sensing images. The average maximum submerged depth indicator was
obtained by kriging interpolation based on the elevation points of the submerged boundary
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in ArcGIS [42]. The average flooding duration indicator was obtained by creating random
sample points on the continuous simulation results and calculating the time difference
between the beginning and the end of the flooding.

Table 7. Indicator system for flood-risk assessment.

Category Evaluation Indicator Serial Number

Study area characteristics

The census block density U1
Road network density U2

Building density U3
Farmland density U4

Flood inundation attributes

Maximum submerged area U5
Average maximum
submerged depth U6

Average submerged duration U7

We divided the degree of flooding loss into five grades and separated the interval
of each indicator. The parameters Ex and En of the cloud model were calculated by

Ex ij =
x1

ij+x2
ij

2 and En ij =
x2

ij−x1
ij

2.355 , and the value of the parameter He was manually adjusted
through multiple trials. In these formulas, x1

ij and x2
ij represented the lower and upper

boundary values of a specific interval of an indicator, respectively. The calculated parameter
matrix of the cloud model is shown in Table 8.

Table 8. Parameter matrix for the risk-assessment cloud model.

Evaluation Index Very Low Loss Low Loss Moderate Loss High Loss Very High Loss

U1 (215.76, 183.24, 0.1) (531.99, 85.21, 0.1) (1148.13, 437.95, 0.1) (2032.10, 312.76, 0.1) (3143.35, 630.97, 0.1)
U2 (0.0588, 0.0499, 0.01) (0.1791, 0.0523, 0.01) (0.3318, 0.0773, 0.01) (0.6705, 0.2103, 0.01) (1.0329, 0.0975, 0.01)
U3 (0.0240, 0.0203, 0.01) (0.0970, 0.0417, 0.01) (0.1951, 0.0417, 0.01) (0.2932, 0.0417, 0.01) (0.3913, 0.0417, 0.01)
U4 (0.1288, 0.1093, 0.01) (0.3293, 0.0610, 0.01) (0.4967, 0.0811, 0.01) (0.6374, 0.0383, 0.01) (0.7249, 0.0360, 0.01)
U5 (0.50, 0.42, 0.01) (1.50, 0.42, 0.01) (2.57, 0.48, 0.01) (4.12, 0.84, 0.01) (6.00, 0.76, 0.01)
U6 (1.75, 1.49, 0.1) (7.01, 2.98, 0.1) (22.06, 9.80, 0.1) (57.04, 19.90, 0.1) (127.60, 40.03, 0.1)
U7 (0.61, 0.52, 0.1) (2.12, 0.76, 0.1) (5.46, 2.07, 0.1) (9.78, 1.61, 0.1) (15.76, 3.47, 0.1)

For each indicator, according to the cloud model parameter matrix shown in Table 9,
we could generate the certainty degree matrix under different loss levels through the for-
ward cloud generator. Considering the randomness of the calculation results, we calculated
1000 times to obtain higher accuracy. After obtaining the certainty degree matrixes of all
indicators, combined with the weight coefficient calculated through the entropy weight
method, the comprehensive flooding loss evaluation of 13 county-level regions in the
Chaohu Lake Basin could be performed. The results of flooding loss evaluation are shown
in Table 9, and the distribution of disaster losses and the two-dimensional flood impact
assessment visualization platform is shown in Figure 21. Lujiang County and Chaohu City,
which were the closest to Chaohu Lake, were the worst affected. Meanwhile, Yaohai District
and Shushan District, which were far away, were the least affected. The more severe loss
areas were primarily distributed in the southwest and northeast. According to the Emer-
gency Management Department of Anhui Province, Lujiang County, Feixi County, Chaohu
City, Shucheng County, Hanshan County, He County, and Wuwei County in the Chaohu
Lake Basin were considered as the hard-hit counties, and the statistics were in good agree-
ment with our evaluation results (http://yjt.ah.gov.cn/public/9377745/145229191.html,
accessed on 20 October 2020).

http://yjt.ah.gov.cn/public/9377745/145229191.html
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Table 9. The results of the Chaohu Basin Flood Hazard Risk Assessment.

County Unit Very Low Loss Low Loss Moderate Loss High Loss Very High Loss Level Official
Released

Yaohai District 0.517 0.223 0.102 0.054 0.019 Very low loss No mention
Luyang District 0.172 0.629 0.264 0.032 0.057 Low loss No mention
Shushan District 0.463 0.209 0.083 0.097 0.000 Very low loss No mention

Baohe District 0.231 0.629 0.264 0.032 0.057 Low loss No mention
Chaohu City 0.000 0.038 0.221 0.375 0.426 Very high loss Hard-hit

Changfeng County 0.379 0.425 0.154 0.169 0.022 Low loss No mention
Feidong County 0.125 0.301 0.395 0.113 0.025 Moderate loss No mention

Feixi County 0.104 0.092 0.368 0.394 0.212 High loss Hard-hit
Lujiang County 0.000 0.152 0.104 0.328 0.539 Very high loss Hard-hit
Wuwei County 0.043 0.116 0.253 0.314 0.182 High loss Hard-hit

Shucheng County 0.079 0.211 0.535 0.268 0.118 Moderate loss Hard-hit
Hanshan County 0.108 0.102 0.294 0.377 0.176 High loss Hard-hit

He County 0.215 0.208 0.317 0.142 0.093 Moderate loss Hard-hit
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5. Conclusions

Rapid-response mapping of floodwater extents in flood events, such as “coastal flood”
and “fluvial flood”, while essential for early damage assessment and rescue operations,
also presents significant image interpretation challenges. Images from the visible band
(red–green–blue (RGB)) remote sensors are the most common and cost-effective for real-
time applications. Despite the poor quality of optical remote-sensing images caused by
the weather conditions experienced during the flood event, this study developed a robust
decision support system based on limited and intermittent optical remote-sensing data
to fully and effectively use the optical remote-sensing data. The system was constructed
based on two primary modules. An automatized multi-scale water extraction model
was established to extract visible floodwater, using RGB band digital numbers. Visible
floodwater denotes the floodwater on the ground surface that can be observed by remote
sensing and is a crucial information source for the analysis of real-time floodwater extent;
floodwater under tree canopies and in shadows was excluded from the visible floodwater
class. The methodology was applied to delineate visible floodwater distribution from
selected Landsat-8 optical image data acquired during the 2020 Chaohu flood event. The
spatial resolution of the identified outcomes was high, but the temporal resolution was low.
In addition, we developed a waterfront active tracking model to simulate the dynamic and
continuous flood-range change based on the obtained flood extraction results, converting
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the flooding process into the numerical solution of the partial differential equation of the
boundary function, and ultimately received a flooding process with a high resolution in
both time and space.

An essential conclusion is that relatively high-resolution optical RGB imagery can
provide the source of information for rapid response mapping of visible floodwater distri-
butions during the life cycle of a flood event, despite the limited lower temporal resolution.
The decision support system developed in this study could be used as a primary tool for
rapid extraction of the visible floodwater from RGB image data and estimate flood risk
through temporal interpolation. The application results showed that this system had high
computational efficiency and noticeable visualization effects, providing a quick overview
of the condition and comprehensive insights into the affected area for decision-makers and
relief organizations to distribute their resources with maximum efficiency.

In future work, we expect to compare and consider selecting multi-source satellite
data with relatively higher spatial and temporal resolution and use data-fusion techniques
to further improve the accuracy and real-time performance of the system.

Author Contributions: Conceptualization, H.S., X.D. and W.S.; methodology, H.S. and X.D.; software,
H.S.; validation, H.S., W.S. and J.W.; formal analysis, H.S. and X.R.; investigation, H.S. and X.D.;
resources, X.D. and X.R.; data curation, H.S. and X.D.; writing—original draft preparation, H.S. and
X.D. and X.R.; writing—review and editing, H.S., X.D., W.S., J.W. and X.R.; visualization, H.S. and
X.R.; supervision, H.S. and W.S.; project administration, H.S.; funding acquisition, H.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
numbers U1706226, 41906185, and 52071307.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study will be available in July 2021 here:
Remote-sensing data: http://www.gscloud.cn/search, http://eds.ceode.ac.cn/nuds/freedataquery.
Basic geographic data: https://www.databox.store/Home/Index, https://www.worldpop.org/,
https://www.openstreetmap.org/. Statistical data: http://tjj.ah.gov.cn/ssah/qwfbjd/tjnj/index.
html, http://yjt.ah.gov.cn/public/9377745/145229191.html, all accessed on 18 July 2021.

Acknowledgments: We sincerely thank anonymous reviewers for their careful work and thoughtful
suggestions, which greatly improve this article. At the same time, we also thank the editors for all
their kind work and consideration on publication of our article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this section we present material that we believe is essential to the reproducibility
of our study, although not indispensable to the main part of the thesis. The calculation
principle of the forward cloud generator is described below. Supposing there are m
evaluation objects and n evaluation indicators for each object, the normalized flood loss
evaluation matrix, X, could be structured. Subsequently, the weight matrix, W, is then
combined with the deterministic degree of the indicators calculated by the cloud model
to gain the final flood disaster loss degree of each region. The whole calculation process
embedded in the system is shown in Table A1.

http://www.gscloud.cn/search
http://eds.ceode.ac.cn/nuds/freedataquery
https://www.databox.store/Home/Index
https://www.worldpop.org/
https://www.openstreetmap.org/
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http://tjj.ah.gov.cn/ssah/qwfbjd/tjnj/index.html
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Table A1. The risk calculation process of the cloud models embedded in the system.

Input Steps Output

1. Digital Features (Ex , En, He)
2. The number of cloud drops N

1© Create a normal random number E′n with En as
the expected value and H2

e as the variance.

Drop(xi, µi)

2© Create a normal random number xi with Ex as
the expected value and E′n2 as the variance.

3© Calculate the certainty degree µi = e
−(xi−Ex )2

2(E′n )
2

4© Generate a cloud drop with µi and xi.
5© Repeat steps 1~4 until the number of cloud

drops reaches N

3. The number of objects m
4. The number of indicators n

6© Calculate the proportion of each indicator
fij =

1+xij

n+∑n
j=1 xij

(i and j represent the serial number of the objects
and indicators, respectively)

The weight matrix, W7© Calculate the entropy value of each indicator

ei = − 1
ln m

m
∑

j=1
fij ln fij

8© Obtain the weight of each indicator
wi = 1−ei

n−∑n
i=1 ei
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