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Endometriosis is a debilitating women’s health condition and is the most common cause

of chronic pelvic pain. Impaired cognitive control is common in chronic pain conditions,

however, it has not yet been investigated in endometriosis. The aim of this study was to

explore the neuronal correlates of cognitive control in women with endometriosis. Using

a cross-sectional study design with data collected at a single time-point, event-related

potentials were elicited during a cued continuous performance test from 20 women with

endometriosis (mean age= 28.5± 5.2 years) and 20 age- and gender-matched controls

(mean age = 28.5 ± 5.2 years). Event-related potential components were extracted and

P3 component amplitudes were derived with temporal principal components analysis.

Behavioral and ERP outcomes were compared between groups and subjective pain

severity was correlated with ERP component amplitudes. No significant behavioral

differences were seen in task performance between the groups (all p > 0.094). Target

P3b (all p < 0.034) and SW (all p < 0.040), and non-target early P3a (eP3a; all p <

0.023) and late P3a (lP3a; all p < 0.035) amplitudes were smaller for the endometriosis

compared to the healthy control group. Lower non-target eP3a (p < 0.001), lP3a (p

= 0.013), and SW (p = 0.019) amplitudes were correlated with higher pain severity

scores. Findings suggest that endometriosis-associated chronic pelvic pain is linked

to alterations in stimulus-response processing and inhibitory control networks, but

not impaired behavioral performance, due to compensatory neuroplastic changes in

overlapping cognitive control and pain networks.

Keywords: endometriosis, event-related potentials (ERPs), P3, chronic pain, cognitive control

INTRODUCTION

Chronic pelvic pain (CPP) lasts longer than 6 months, requires medical intervention, and/or
causes functional disability (Howard et al., 2000). The most common cause of CPP in women is
endometriosis (24–40%), where cells similar to that of the endometrium grow outside the uterine
cavity and create lesions. Endometriosis is associated with a range of pain symptoms such as
dysmenorrhea (period pain), dyschezia (pain on bowel motions), dysuria (pain on urination),
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and dyspareunia (pain during sexual intercourse) (Brown and
Farquhar, 2015; Mowers et al., 2016; Whitaker et al., 2016;
Johnson et al., 2017). However, there is no clear association
between the stage and morphology of endometriosis pathology
and the severity and nature of pelvic symptoms, suggesting that
other factors may be driving the magnitude and characteristics
of CPP (Gruppo Italiano per lo Studio dell’Endometriosi, 2001;
Vercellini et al., 2007; Ballard et al., 2010; Zondervan et al., 2018).
Endometriosis typically occurs during the reproductive years of
women’s lives and has profound impacts on physical and mental
health, social life, school, work, finances, and sexual relationships
(Sepulcri and do Amaral, 2009; Nnoaham et al., 2011; Pluchino
et al., 2016; Australian Institute of Health Welfare. Endometriosis
in Australia: Prevalence Hospitalisations. Canberra: AIHW.,
2019), affecting >10% of Australian women with an annual
economic burden of >$9 billion AUD (Armour et al., 2019).
Surgery to remove lesions often results in pain reoccurrence,
suggesting an alternative mechanism underpinning CPP in the
absence of endometriosis pathophysiology (Brawn et al., 2014).

Pain transitions from acute to chronic when the increased
pain signals in nociceptive pathways lead to sensitization,
hyperalgesia, and neuronal hyper-excitability (Boadas-Vaello
et al., 2017; Cohen et al., 2017; Meacham et al., 2017; Pace
et al., 2018), and is driven by maladaptive plasticity in the
central nervous system (CNS) (Boadas-Vaello et al., 2017;
Meacham et al., 2017). Women with primary dysmenorrhea
demonstrate structural alterations in regional gray matter such
as hippocampus, hypothalamus, anterior/posterior cingulate,
precuneus, medial prefrontal cortex (Tu et al., 2009). These
changes lead to cortical disinhibition, which contributes to the
generation of pain and hyperalgesia.

Pain disruptions to the CNS affect cognition (Eccleston
and Crombez, 1999). Executive function and control processes
associated with goal-directed cognition and behavior (e.g.,
inhibition, flexibility, adaptability, attentional control)
are impaired with chronic pain including low back pain,
pancreatic pain, rheumatoid arthritis, musculoskeletal pain, and
fibromyalgia (Grace et al., 1999; MacDonald et al., 2000; Dick
et al., 2002; Suhr, 2003; Weiner et al., 2006; Moriarty et al., 2011;
Hamed et al., 2012; Berryman et al., 2014; Tamburin et al., 2014).
The mechanism responsible is thought to be shared/overlapping
cortical processing pathways (e.g., anterior cingulate cortex)
(Frankenstein et al., 2001; Buffington et al., 2005; Zhao et al.,
2006; Walteros et al., 2011), where chronic pain activation
competes with cognitive resources due to compensatory
neuroplasticity, impacting executive function (Hart et al., 2000;
Seminowicz and Davis, 2007; Glass et al., 2011; Moriarty et al.,
2011; Simons et al., 2014).

Electroencephalographic event-related potentials (ERPs)
probe the neuronal activation underpinning neuroplasticity and
executive function. The conglomerate P3 component of the ERP,
a large positive deflection elicited ∼300–500ms after stimulus
onset, comprising multiple overlapping peaks [P3a, P3b, Novelty
P3, SlowWave (SW)], has been widely explored in the context of
acute and chronic pain during cognitive control tasks (Rosenfeld
and Kim, 1991; Lorenz and Bromm, 1997; Houlihan et al.,
2004) such as the oddball task, which requires participants to

identify an infrequent target/deviant stimulus amongst a series
of non-target/standard stimuli (Steiner et al., 2013a, 2016a,b).

Cross-sectional studies largely show attenuated P3 amplitudes
in people with chronic pain cf. controls. For example, reduced
auditory oddball and visual multi-source interference task P3
amplitudes are observed in fibromyalgia compared to controls
(Ozgocmen et al., 2003; Yoldas et al., 2003; Alanoğlu et al.,
2005; Samartin-Veiga et al., 2019). Similarly, auditory oddball
P3 amplitudes are reduced in rheumatoid arthritis compared
to controls (Hamed et al., 2012; Tomasevic-Todorovic et al.,
2015), and inversely correlated with pain intensity (Tomasevic-
Todorovic et al., 2015). Some studies report no difference
in visual stop-signal task P3 amplitude between people with
fibromyalgia and controls (González-Villar et al., 2019), or the
opposite relationship (i.e., larger visual oddball P3 amplitudes
and positively correlated with pain intensity) following upper
limb amputation compared to controls (Karl et al., 2004). P3
latency findings are mixed, with reductions in mixed-pathology
chronic pain (visual probe task) (Veldhuijzen et al., 2006), and
no differences in fibromyalgia (Ozgocmen et al., 2003; Alanoğlu
et al., 2005).

This study was the first that aimed to elucidate the neuronal
correlates of cognitive control in women who have endometriosis
CPP. Compared to controls, it was hypothesized that women
with endometriosis and CPP would have higher pain scores,
poorer behavioral performance (Suhr, 2003; Alanoğlu et al., 2005;
Moriarty et al., 2011; Berryman et al., 2014; Tamburin et al., 2014)
and smaller P3 amplitudes (Ozgocmen et al., 2003; Alanoğlu
et al., 2005; Hamed et al., 2012; Tomasevic-Todorovic et al., 2015;
Whitaker et al., 2016; Samartin-Veiga et al., 2019), no difference
in P3 latencies (Ozgocmen et al., 2003; Alanoğlu et al., 2005), and
that P3 amplitudes would inversely correlate with pain severity
(Tomasevic-Todorovic et al., 2015); overlapping P3 peaks were
explored for the first time with temporal principal components
analysis (PCA).

MATERIALS AND METHODS

Participants
Participants were 40 right-handed females: 20 women with
endometriosis and CPP, and 20 healthy female controls (HCs)
that were individually age matched within 6 months. Participants
were recruited from Endometriosis Australia’s website and
social media platforms, personal and professional networks.
Participants in the endometriosis group were reimbursed
for their participation with a $50 voucher to cover travel
costs, as they were part of a larger clinical trial and were
required to attend multiple site visits (baseline data from the
first site visit where no intervention was given is reported
here) (Armour et al., 2018); no reimbursement was provided
for HCs. Written informed consent was obtained prior to
testing, and the research was approved by the Western
Sydney University Human Research Ethics Committee and
the Combined Illawarra Area Health/University of Wollongong
Human Research Ethics Committee. The protocol encompassing
this study was registered with the Australian New Zealand
Clinical Trials Registry (ACTRN12617000053325).
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Eligibility Criteria
All participants had a regular menstrual cycle (21–35 days), no
history of severe concussions or head trauma, were not currently
pregnant, did not experience epilepsy, and had no major
neurological or psychiatric conditions. Participants abstained
from caffeine and alcohol within 12 h of testing, and tobacco
within 6 h of testing. All participants completed a 4-week pain
diary to gauge average daily pain ratings and to screen for
endometriosis in the HCs as this condition is often undiagnosed
(Nnoaham et al., 2011); HCs with a daily pain score >6/10
were excluded. All women with endometriosis had received
a diagnosis via laparoscopy within the past 5 years and self-
reported their endometriosis stage in accordance with the revised
American Fertility Society classification of endometriosis (Rock,
1995): 1 = minimal; 2 = mild; 3 = moderate; 4 = severe.
They also subjectively reported CPP and at least one of either
dysmenorrhea, dyspareunia, dyschezia, or dysuria throughout
the pain diary. The HC group had no current acute injuries or
other painful conditions and no history of chronic pain.

Procedure
After completing the pain diary prior to testing, all participants
presented for testing on days 4–11 of their menstrual cycle
(within 1 week of completing the pain diary) to control
for hormonal changes which may influence ERPs or level
of CPP in the endometriosis group; if the participant was
on hormonal contraception they were able to complete
the test on any day (Johnston and Wang, 1991; Kluck
et al., 1992; Tasman et al., 1999; O’Reilly et al., 2004).
Testing for this study took place on a single site visit at
the HEADBOX and NICM Neurocognition Lab at Western
Sydney University, Campbelltown campus. After providing
written informed consent, participants completed a standard
electroencephalography (EEG) screening questionnaire, the
Edinburgh Handedness Inventory, and were fitted with EEG
recording equipment and seated approximately 80 cm from a
21-inch screen (LG Flatron W2253TQ) with a keyboard placed
in front of them before completing a brief electro-oculogram
(EOG) calibration task (Croft and Barry, 2000) and a continuous
performance test (AX-CPT).

AX-CPT Task
The AX variant of the CPT (Rosvold et al., 1956) is a
cognitively demanding visual-attention task which uses a
contextual cue to investigate attention, processing speed, and
executive functions including inhibition, interference control,
and response activation (Servan-Schreiber et al., 1996), and
reliably elicits the conglomerate P3 complex (Dias et al., 2003;
Berryman et al., 2014). This task requires an individual to
respond to the target letter X but only if it is preceded by the
cue letter A. Stimuli consisting of the letters A, X, B, and Y
were presented in a quasi-random sequence. Participants were
instructed to respond via a number pad key press (1) with their
dominant hand, as quickly and accurately as possible to the
target letter X when it was preceded by the cue letter A. All
stimuli were presented for a duration of 250ms at a fixed inter-
stimulus interval (ISI) of 1,200ms. The probability of correct AX

pairings (cued targets) was 70% to develop a pre-potent motor
response. Incorrect AY (cued non-target), BX (uncued target)
and BY (uncued non-target) pairings were each presented at a
probability of 10%. A total of 500 stimuli were presented (AX =

350, AY = 50, BX = 50, and BY = 50); only cued-target AX and
cued-non-target AY stimulus pairs were assessed.

Display and stimulus markers were controlled by a separate
Dell Optiplex 760 computer using Compumedics Stim2
(4.0.09302005) software. The task was carried out in 2 blocks
(approximately 5min each), with a self-timed break in between,
and a brief practice beforehand. Participants with endometriosis
also completed other tasks as part of a larger study (Armour
et al., 2018); these are not reported here.

EEG Recording
Continuous EEG was recorded from a 62-channel electrode cap
and M2 (Fp1, Fpz, Fp2, AF3, AF4, F7, F5, F3, F1, Fz, F2, F4,
F6, F8, FT7, FC5, FC3, FC1, FCz, FC2, FC4, FC6, FT8, T7,
C5, C3, C1, Cz, C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPz,
CP2, CP4, CP6, TP8, P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7,
PO5, PO3, POz, PO4, PO6, PO8, O1, Oz, O2, CB1, CB2). Cap
electrodes were referenced online to M1, and grounded by an
electrode positioned between Fpz and Fz. EOG was recorded
from electrodes placed 2 cm above and below the left eye for
vertical movements, and electrodes placed on the outer canthus
of each eye for horizontal movements. All electrodes were
sintered Ag/AgCl, and impedances were kept below 10 K�.
Data were acquired from DC−70Hz, with a 50Hz notch filter,
and were digitized at 1,000Hz using Compumedics Neuroscan
Synamps2 digital signal-processing system and Neuroscan 4.5.1
Acquire software.

Data Pre- and Post-processing,
Quantification, and Extraction
EEG data were corrected offline for eye movements using the
Revised Aligned-Artifact Average (RAAA) procedure (Croft and
Barry, 2000), digitally re-referenced to linked mastoids, and
low-pass filtered (30Hz, FIR zero phase shift, 24 dB/Octave).
CB1 and CB2 were omitted from all analyses due to excessive
noise, leaving 60 electrodes in the montage. For each trial, data
were epoched −100ms to 900ms relative to stimulus onset, and
baseline corrected to the pre-stimulus period (−100 to 0ms).
Trials with extreme amplitudes (outside ±100 µV), omission or
commission errors were rejected. AX trials were also rejected if
they did not have valid reaction times within± 2 SD of the intra-
individual mean. The remaining epochs were used to generate
ERPs to target (AX) and non-target (AY) trials.

ERP data were down-sampled to 250Hz and submitted
to four separate unrestricted temporal PCAs: one for each
group (endometriosis, HC) and condition (target, non-target).
Separate PCAs were used as this is recommended to reduce
misallocation of ERP variance when ERP latencies, amplitudes
and/or topographies are expected to vary between groups and/or
conditions (Barry et al., 2016). Input for each PCA was 1,200
cases (20 participants × 60 scalp electrode sites) and 250
variables (time points), producing a case:variable ratio of 4.8.
All PCAs were conducted in MATLAB (the Mathworks, v 8.0,
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R2012b) with Dien’s (2010) ERP PCA toolkit (v. 2.23) using the
covariance matrix with Kaiser normalization, and all 250 factors
underwent unrestricted Varimax rotation to optimally distribute
error variance (Kayser and Tenke, 2003).

PCA factors explaining more than 1.5% of the ERP variance
were reconstituted into “virtual” ERPs and correlated at the
midline sites (Cz, Fz, and Pz) with the grand mean raw ERP
waveforms to ensure a good fit. P3 components were identified
based on factor loadings, latency, topography, polarity, and
sequence. For each condition, the temporal correspondence
between P3 components in each group was assessed using the
congruence coefficient (rc) (Tucker, 1951), which is a non-
standardized correlation of the unscaled factor loadings; rc
≥.95 indicates component equivalence, and 0.95 > rc ≥ 0.85
indicates component similarity (Lorenzo-Seva and ten Berge,
2006). Topographical similarities were assessed using Pearson’s
correlations across the scalp electrodes.

Statistical Analysis
Demographics, pain severity (calculated as the average pain score
out of 10 for each participant across 28 days of pain diary
entries), and AX-CPT performance (reaction time, omission, and
commission errors) were compared with between-groups t-tests.
Separate mixed-model MANOVAs compared P3 component
amplitudes for the between-subjects factor Group (endometriosis
vs. HC), and within-subjects factor Condition (target vs. non-
target), and the Sagittal [frontal (F3, Fz, F4), central (C3, Cz,
C4), parietal (P3, Pz, P4)] and Coronal [left (P3, C3, P3), midline
(Fz, Cz, Pz), right (F4, C4, P4)] topographic planes. Planned
orthogonal contrasts in the sagittal plane compared frontal vs.
parietal, and mean frontal/parietal vs. central regions; and in the
coronal plane they compared the left vs. right hemispheres, and
left/right hemisphericmean vs. midline region. Correlations were
conducted between maximal P3 component amplitudes (selected
from the 9 analyzed sites) and pain severity across the groups,
and between component amplitude and pain duration (defined
as time since first chronic pain symptom), and endometriosis
staging and pain severity within the endometriosis group.

To detect a large effect size (Cohen’s d = 0.80, eta2 =

0.13) at 80% power, α = 0.05, one-tailed, 20 participants per
group were required. All t-tests had (38) df and F-tests had
(1, 38) df, and all were tested against one-tailed α = 0.05.
Greenhouse-Geisser correction was not applied as tests utilized
single degree of freedom contrasts, and univariate MANOVA
does not require sphericity (O’Brien and Kaiser, 1985; Vasey
and Thayer, 1987). No Bonferroni-type alpha adjustments were
made for the MANOVAs because contrasts were planned, and
the number of contrasts was less than the degrees of freedom
(Tabachnick and Fidell, 1989).

RESULTS

Participant Characteristics
Participant characteristics including age, sex, pain severity and
duration, and self-reported endometriosis stage, comorbidities,

TABLE 1 | Participant characteristics.

Endometriosis HCs t-test

N 20 20

Mean years of age

± SD

(range)

28.5 ± 5.2 (21–41) 28.5 ± 5.2 (21–41) p = 0.956

Mean pain severity

± SD

(range)

4.1 ± 1.5 (1.1–7.2) 0.2 ± 0.2 (0.0–0.7) p < 0.001

Mean years pain

duration ± SD

(range)

11.8 ± 5.4 (2–21) N/A

Mean endometriosis

stage ± SD

(range)

3.1 ± 1.0 (2–4) N/A

Comorbidities (N

participants)

Chronic fatigue

syndrome

6 0

Migraine 8 0

Depression 5 0

Anxiety 1 2

ADHD 1 0

Asperger’s

syndrome

1 0

Medication Use (N

participants)

Oral contraceptive

pill

3 6

Hormonal IUD 6 0

GnRH agonists 1 0

OTC analgesics* 19 9

Benzodiazepines 1 0

Opioids 7 0

Gabapentinoids 3 0

Antidepressants 3 1

Stimulants 1 0

Levothyroxine 0 1

Antifibrinolytics 1 0

Proton Pump

Inhibitors

1 0

Biguanides 1 0

*Over the counter (OTC) analgesics included regular use of paracetamol/acetaminophen

and non-steroidal anti-inflammatories (NSAIDs) as reported in daily pain diaries and

separately to manage pelvic pain.

andmedication use are detailed inTable 1; five participants could
not recall diagnosed endometriosis stage.

Behavioral Outcomes
Table 2 shows the percentage of accepted target and non-target
trials, omission and commission errors, mean reaction times and
their standard deviations; these did not differ between groups.

PCA Outcomes
Grand mean ERPs to target stimuli at midline sites for
the endometriosis and HC groups are shown in the top
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panel of Figure 1. For all target components meeting the
1.5% variance cut-off, Table 3 lists their latency and variance
explained (in variance order) for the endometriosis and HC

TABLE 2 | Mean behavioral results ± SD and statistical difference.

Endometriosis HCs t-test

Accepted target trials % 91.6 ± 4.1 91.4 ± 7.0 p = 0.406

Accepted non-target trials % 81.2 ± 16.8 82.0 ± 12.1 p = 0.296

Omission errors % 1.5 ± 2.1 0.9 ± 1.4 p = 0.125

Commission errors % 18.8 ± 16.8 13.8 ± 9.5 p = 0.127

Reaction time ms 348.9 ± 64.1 325.8 ± 51.9 p = 0.094

groups; the corresponding factor loading plots are shown in
the middle and lower panels of Figure 1. A good fit was
found between the raw and reconstituted data at the midline
sites across groups, r(248) ≥ 0.97, p < 0.001. The first two
factors of each target PCA were identified as P3b (TF02)
and SW (TF01). The other factors were outside the scope
of this investigation and will not be discussed further. The
component time courses were equivalent for P3b (rc = 0.97)
and SW (rc = 0.96) between the endometriosis and HC groups,
as were their topographies: P3b r(58) = 0.86, p < 0.001;
SW r(58)= 0.88, p < 0.001.

Non-target grand mean ERPs are shown in the top panel
of Figure 2, and the PCA factor loadings for the endometriosis
and HC groups are shown in the middle and lower panels,

FIGURE 1 | (Top) Grand mean ERPs (with negative plotted upwards) to target stimuli for the endometriosis (red) and HC (gray) groups across three midline sites (Fz,

Cz, Pz). (Middle) Factor loadings for the 7 PCA components for the endometriosis group, the identified P3b (TF02) and SW (TF01) components are marked.

(Bottom) Factor loadings for the 8 PCA components for the HC group; again P3b (TF02) and SW (TF01) are labeled.
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TABLE 3 | Target PCA outcomes for the endometriosis and HC groups.

Endometriosis group

P3 Component SW P3b

Factor TF01 TF02 TF03 TF04 TF05 TF06 TF07 Total factors = 7

σ
2 % 33.9 25.8 14.6 11.8 3.1 2.6 1.5 Total σ2 = 93.3

Latency ms 572 356 212 864 120 144 484

HC Group

P3 Component SW P3b

Factor TF01 TF02 TF03 TF04 TF05 TF06 TF07 TF08 Total factors = 8

σ
2 % 42.9 23.6 12.3 4.1 3.2 3.1 2.3 1.8 Total σ2 = 93.3

Latency ms 616 360 212 128 864 172 474 96

FIGURE 2 | (Top) Grand mean ERPs (with negative plotted upwards) to non-target stimuli for the endometriosis (red) and HC (gray) groups at three midline sites (Fz,

Cz, Pz). (Middle) Factor loadings for the 6 PCA components for the endometriosis group, with the identified eP3a (TF02), lP3a (TF03), and SW (TF01) components

labeled. (Bottom) Factor loadings for the 7 PCA components for the HC group, with the P3a (TF02) and SW (TF01) components marked.
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respectively. Latency and variance explained are shown inTable 4
for each PCA to non-target stimuli; across groups, the raw and
reconstituted PCA non-target data were a good fit at midline
sites, r(248) ≥ 0.98, p < 0.001. The first three factors of the
non-target PCA for the endometriosis group were identifiable
as early P3a (eP3a; TF02), late P3a (lP3a; TF03), and SW
(TF01) components, and the first two factors for the HC group
as P3a (TF02) and SW (TF01); see Figure 2. Again, all other
factors were excluded as they were not part of the P3 late
positive complex. When the single P3a component for HCs,
was compared with the eP3a and lP3a in the endometriosis
group, their time courses approached similarity (eP3a: rc =

0.82; lP3a: rc = 0.83), and their topographies corresponded
well: eP3a r(58) = 0.63, p < 0.001; lP3a r(58) = 0.95, p <

0.001. Temporal (rc = 0.99) and topographic (r(58) = 0.79, p <

0.001) equivalence was found between groups for the identified
SW components.

Group Differences in ERP Components
Figure 3 shows the grand mean headmaps in each group for
target P3b and SW, non-target P3a (HC only), eP3a and
lP3a (endometriosis only), and SW; between group differences
(endometriosis relative to HC) are shown in the bottom row.
Table 5 displays the corresponding statistics with the direction
of effects denoted with the qualifiers “<” and “>” signaling less
than and greater than, respectively, and interactions between
the contrasts as “×.” Target P3b had virtually identical latencies
for endometriosis (356ms) and HC (360ms) groups; this is
one datapoint difference as data were downsampled to 250Hz.
Across groups P3b was larger centrally than fronto-parietally,
in the left than right hemisphere, and parietally in the left
hemisphere and midline. As shown in Figure 3 and Table 5, P3b
was smaller in the endometriosis than HC group, particularly
centrally. Target SW peaked earlier in the endometriosis (572ms)
than HC group (616ms). Target SW had a fronto-central and

TABLE 4 | Non-target PCA outcomes for the endometriosis and HC groups.

Endometriosis group

P3 Component SW eP3a lP3a

Factor TF01 TF02 TF03 TF04 TF05 TF06 Total factors = 6

σ
2 % 46.4 18.3 12.3 5.0 3.5 1.8 Total σ2 = 87.3

Latency ms 512 332 416 208 140 832

HC Group

P3 Component SW P3a

Factor TF01 TF02 TF03 TF04 TF05 TF06 TF07 Total factors = 7

σ
2 % 42.5 29.5 4.5 3.0 2.8 2.8 2.5 Total σ2 = 87.6

Latency ms 508 352 236 128 180 292 484

FIGURE 3 | Topographic headmaps for the endometriosis (Top) and HC (Middle) groups, and their difference (Bottom; endometriosis minus HC) for each of the

assessed P3 components.
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TABLE 5 | Statistical outcomes for target and non-target P3 component amplitudes.

Component Effect F p η
2
p

TARGETS

P3b Central > Frontal/Parietal 38.42 <0.001 0.50

Left > Right 8.45 0.006 0.18

Frontal < Parietal × Left > Right 10.57 0.002 0.22

Frontal < Parietal × Midline > Left/Right 7.31 0.010 0.16

Endometriosis < Healthy Controls 4.83 0.034 0.11

Endometriosis < Healthy Controls × Central > Frontal/Parietal 5.52 0.024 0.13

SW Frontal > Parietal 21.02 <0.001 0.36

Central > Frontal/Parietal 110.67 <0.001 0.74

Central > Frontal/Parietal × Left < Right 46.59 <0.001 0.55

Endometriosis < Healthy Controls × Central > Frontal/Parietal 6.23 0.017 0.14

Endometriosis < Healthy Controls × Central > Frontal/Parietal × Left < Right 4.52 0.040 0.11

NON-TARGETS

eP3a Central > Frontal/Parietal 13.37 <0.001 0.26

Midline > Left/Right 33.58 <0.001 0.47

Frontal > Parietal × Midline > Left/Right 10.34 0.003 0.21

Central > Frontal/Parietal × Midline > Left/Right 12.36 0.001 0.25

Endometriosis < Healthy Controls 15.79 <0.001 0.29

Endometriosis < Healthy Controls × Frontal > Parietal 12.11 0.001 0.24

Endometriosis < Healthy Controls × Midline > Left/Right 12.71 0.001 0.25

Endometriosis < Healthy Controls × Frontal > Parietal × Midline > Left/Right 11.19 0.002 0.23

Endometriosis < Healthy Controls × Central > Frontal/Parietal × Midline > Left/Right 5.57 0.023 0.13

lP3a Frontal > Parietal 14.59 <0.001 0.28

Central > Frontal/Parietal 6.73 0.013 0.15

Midline > Left/Right 47.53 <0.001 0.56

Frontal > Parietal × Left < Right 7.75 0.008 0.17

Frontal > Parietal × Midline > Left/Right 8.42 0.006 0.18

Endometriosis < Healthy Controls 5.80 0.021 0.13

Endometriosis < Healthy Controls × Central > Frontal/Parietal 8.48 0.006 0.18

Endometriosis < Healthy Controls × Frontal > Parietal × Midline > Left/Right 4.80 0.035 0.11

Endometriosis < Healthy Controls × Central > Frontal/Parietal × Midline > Left/Right 5.81 0.021 0.13

SW Frontal > Parietal 6.80 0.013 0.15

Central > Frontal/Parietal 111.99 <0.001 0.75

Central > Frontal/Parietal × Left < Right 5.55 0.024 0.13

Direction of effects is denoted with the qualifiers “<” and “>,” and interactions between contrasts as “×.” Frontal/Parietal = fronto-parietal mean; Left/Right = hemispheric mean.

central-right topography across the groups. SW’s central-right
topography was smaller for the endometriosis group compared
to HCs.

Non-target P3a for HCs peaked at 352ms and the equivalent
components for the endometriosis group peaked before and after
at 332ms (eP3a) and 415ms (lP3a). As shown in Table 5, across
groups the P3a (HC) and eP3a (endometriosis) components had
a central, midline, and fronto-central midline distribution. Non-
target eP3a (endometriosis) was smaller than P3a (HC) globally,
and regionally in the fronto-midline, and fronto-parietally in

the midline; see Figure 3 and Table 5. The P3a (HC) and lP3a
(endometriosis) had a fronto-central and midline distribution,
with relatively larger amplitudes in the frontal-midline and
frontal-right regions. The lP3a (endometriosis) was globally
smaller than P3a (HC), particularly in the frontal-midline and at
the vertex. Non-target SW had virtually identical peak latencies
across the groups (endometriosis = 512ms; HC = 508ms),
differing by one data-point only. This component demonstrated
a fronto-central and central-right topography; there was no
statistically significant difference between groups.
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P3 Components and Pain
The maximal site from the nine electrodes analyzed was selected
for each component to enter into correlations. For the targets,
these were Pz and Cz, respectively, for the endometriosis and HC
P3b components; and Fz for the target SW in both groups. For
the non-targets, Cz and Fz were selected for the endometriosis
eP3a and lP3a components, respectively, and Fz was selected for
the HC P3a; Fz was selected for the endometriosis group, and Cz
for the HC group when assessing the non-target SW.

There were no relationships between the target P3b or
SW and pain severity (all p ≥ 0.050). As shown in Figure 4,
greater non-target eP3a (r(38) = −0.51, p < 0.001), lP3a
(r(38) = −0.35, p = 0.013), and SW (r(38) = −0.33, p =

0.019) amplitudes were each associated with lower pain severity
across the groups. According to Cohen (1988, 1992), r-values
around 0.1 are considered small, 0.3 are medium, and 0.5 are
large, thus pain severity and eP3a had a large effect size, and
pain severity and both lP3a and SW had medium effect sizes.
There were no significant correlations between ERP component
amplitudes and pain duration in the endometriosis group; nor
was there a relationship between endometriosis stage and pain
severity (all p ≥ 0.100).

DISCUSSION

This study investigated the neuronal correlates of cognitive
control in women with endometriosis and CPP, compared to
HCs, using P3 ERP components elicited in an AX-CPT. Using
PCA, we delineated two P3 components to target stimuli for both
groups (P3b and SW), three P3 components to non-targets for the
endometriosis group (eP3a, lP3a, and SW), and two non-target
components for the HC group (P3a and SW). As hypothesized,
target P3b and SW amplitudes were smaller in the endometriosis
than HC group, and non-target eP3a and lP3a component
amplitudes in the endometriosis group were smaller than that in
the single P3a component in the HC group; non-target SW and
task performance did not differ significantly between the groups.
Component latencies were nearly identical across the groups for
target P3b and non-target SW as predicted, however, the target
SW was earlier for the endometriosis than HC group, and the
non-target eP3a and lP3a peaks in the endometriosis group fell
either side of HC group’s P3a. As expected, non-target eP3a, lP3a,
and SW amplitudes were each inversely associated with lower
pain severity scores across the groups; target P3b and SW were
not related to pain severity, and no P3 component was associated
with pain duration for the endometriosis group.

The behavioral performance (RTs, commission, and omission
errors) on the AX-CPT did not differ between women
with endometriosis and HCs. These results contradict the
majority of previous studies reporting reduced cognitive
control in individuals with chronic pain from a variety of
conditions (MacDonald et al., 2000; Suhr, 2003; Moriarty
et al., 2011; Berryman et al., 2014). Nevertheless, Glass
et al. (2011) documented no behavioral differences between
people with fibromyalgia and HCs whilst observing clear
functional brain differences via fMRI. Findings may be

FIGURE 4 | Nontarget eP3a, lP3a, and SW were inversely correlated with pain

severity across the endometriosis (red) and HC (gray) groups.

due to compensatory neuroplasticity, preserving behavioral
performance, whilst activating multiple overlapping neural
networks associated with cognition (largely attention and
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inhibition) and pain processing (Buffington et al., 2005; Glass
et al., 2011; Martinsen et al., 2014). Given that this was the
first study to explore cognitive control deficits in endometriosis
in the AX-CPT, further research and replication by others is
required to determine whether our findings can be generalized
to the endometriosis population more broadly, or whether they
are unique to our sample.

As hypothesized, target P3b and SW amplitudes were reduced
in the endometriosis compared to the HC group (Ozgocmen
et al., 2003; Yoldas et al., 2003; Alanoğlu et al., 2005; Hamed et al.,
2012; Tomasevic-Todorovic et al., 2015; Samartin-Veiga et al.,
2019). P3b has several functional interpretations, particularly in
the oddball and Go/NoGo task context [e.g., context-updating
(Donchin and Coles, 1988; Brydges and Barceló, 2018), stimulus-
response pattern activation and updating (Steiner et al., 2013b;
Verleger et al., 2016), response monitoring (Verleger et al., 2005;
Fogarty et al., 2020)], yet is under-explored in cued CPT tasks
such as the AX-CPT. This is the same for SW, which has been
linked to response evaluation and preparation ofmotor responses
for upcoming trials (Rohrbaugh et al., 1978; Desmedt and
Debecker, 1979; Friedman, 1984; García-Larrea and Cézanne-
Bert, 1998; Fogarty et al., 2019, 2020). Taken together, findings
suggest that women with endometriosis and CPP have reduced
activation of neuronal networks associated with stimulus-
response processing, including response execution, monitoring,
and evaluation. This is most likely due to neuroplastic changes
in the pathways that overlap between pain and cognitive
control as a result of ongoing processing of chronic pain and
cortical sensitization resulting in this altered stimulus-response
processing (Glass et al., 2011; Martinsen et al., 2014).

Non-target P3a amplitudes (eP3a and lP3a) in the
endometriosis group were attenuated compared to HCs, a
finding in line with previous studies (Ozgocmen et al., 2003;
Yoldas et al., 2003; Alanoğlu et al., 2005; Hamed et al., 2012;
Tomasevic-Todorovic et al., 2015; Samartin-Veiga et al., 2019).
Non-target/NoGo P3a typically peaks 250–400ms in oddball
and Go/NoGo tasks and is topographically defined by a fronto-
central distribution of positive activity, as shown in the HC
group, peaking at 352ms. As with the other P3 components, P3a
has not been widely explored in CPTs, however, Karamacoska
et al. (2015, 2019) showed distinct non-target fronto-central P3as
peaking between 250 and 350ms in a visual cued CPT (Gordon
variant). Interestingly, the P3a component appeared to “split”
in the endometriosis group, with dual peaks at 332 and 416ms
for eP3a and lP3a, respectively. This separation has not been
reported previously, most likely due to the majority of chronic
pain studies using peak amplitude quantification techniques that
do not permit the separation of temporal variance as well as
PCA. Chronic pain research from other modalities has reported
dysfunctional “smearing” of transcranial magnetic stimulation-
induced sensorimotor cortex activity reflecting increased firing
of non-specific neural populations in response to chronic pain
(Furman et al., 2019). As part of the maladaptive neuroplastic
response to pain in endometriosis, P3a findings here may reflect
similar recruitment of additional neural resources, particularly
in relation to stimulus evaluation, attentional processing, and/or
perhaps most of all, inhibitory demands (Bruin andWijers, 2002;

Donkers and Van Boxtel, 2004; Ramautar et al., 2004; Polich,
2007; Smith et al., 2008). Although there was no difference in
task performance between groups that would reflect behavioral
inhibition difficulties (e.g., commission errors), as with other
studies (Glass et al., 2011; Veldhuijzen et al., 2012; Berryman
et al., 2014; Masiliünas et al., 2017), P3a findings indicate that a
wide range of neuronal substrates of inhibitory control are less
active overall in women with endometriosis and CPP compared
to HCs. No differences were noted for the non-target SW.

Reduced non-target eP3a (large effect size), lP3a and SW
(each medium effect sizes) amplitudes were each associated
with greater pain severity across groups, with non-target P3a
showing the strongest relationship. These findings are in line
with previous studies (Tomasevic-Todorovic et al., 2015), and
point to non-target P3 component amplitudes as a potential
objective biomarker of the subjective pain experience of women
with endometriosis associated CPP. The inverse relationship
between pain severity and the non-target (but not target) P3
components is most likely due to chronic pain processing
taking up “bandwidth” in cognitive control networks, decreasing
the availability of neuronal resources for cognitive demands
associated with attention, evaluation, and inhibition of a motor
response. There were no correlations between target P3b, SW and
pain severity, and none of the target or non-target P3 amplitudes
correlated with pain duration, the latter of which is similar to past
studies (Alanoğlu et al., 2005).

Strengths and Limitations
This study was the first to investigate the neuronal correlates
of cognitive control in women with endometriosis associated
CPP and provides an important contribution to the limited
literature on the use of ERPs to assess cognitive control in
chronic pain. This study was original in its use of the AX-
CPT paradigm to assess cognitive control and the application
of PCA to quantify ERP component amplitudes, which resulted
in the disentangling of two temporally distinct and substantial
non-target P3a components in the endometriosis group. Our
study was adequately powered and the sample size was similar
to other studies (Tandon and Kumar, 1993; Larbig et al., 1996;
De Mirci and Savas, 2002; Ozgocmen et al., 2003; Yoldas et al.,
2003; Karl et al., 2004; Alanoğlu et al., 2005; Hamed et al., 2012;
Tomasevic-Todorovic et al., 2015). The findings have clinical
relevance as they demonstrate that endometriosis has broader
impact on pathophysiology, extending to the central nervous
system (Brawn et al., 2014). In our particular sample, it seems that
women with endometriosis are able to neuronally compensate
for chronic-pain related changes in the brain, as demonstrated
by unimpaired behavioral responses to the AX-CPT. However,
the threshold for these neuroplastic adaptations are not yet
known, nor is their relationship with staging of endometriosis
pathology, the interaction with the peripheral nervous system,
and any potential relationship with quality of life and the broader
impacts of endometriosis (e.g., mental health, social and work
life, finances etc.); further investigation is required to determine
clinical applications (Zondervan et al., 2018).

There are a few important limitations to consider that may
impact the generalisability of results. For ethical reasons, the

Frontiers in Systems Neuroscience | www.frontiersin.org 10 December 2020 | Volume 14 | Article 593581

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Steiner et al. Cognitive Control in Endometriosis

participants with endometriosis undertook treatment as usual,
which meant that pharmacological management of symptoms
(e.g., analgesics) and comorbidities together with their medical
management were not controlled (see Table 1), and may have
contributed unwanted variability to the results; for example,
one participant was taking methylphenidate for the treatment
of ADHD, which is known to modulate ERPs (Klorman et al.,
1979, 1983; Coons et al., 1981; Chapman et al., 1982; Lawrence
et al., 2005). It should be noted that the high prevalence of
co-morbidities in endometriosis is common/typical and difficult
to control suggesting that our sample is representative of the
population (Sinaii et al., 2002; Tietjen et al., 2007; Sepulcri
and do Amaral, 2009), and the majority of other chronic pain
research has not controlled for such comorbidities (Tandon and
Kumar, 1993; Larbig et al., 1996; De Mirci and Savas, 2002;
Ozgocmen et al., 2003; Yoldas et al., 2003; Karl et al., 2004;
Alanoğlu et al., 2005; Hamed et al., 2012; Tomasevic-Todorovic
et al., 2015). We also did not collect data on years of education,
which may affect cognitive ability, and should be controlled
for in future studies. Time of testing throughout the day was
not controlled as flexibility was required to fit in with the
busy schedules of the participants who were working, studying,
had caring commitments etc. Further, the two-group cross-
sectional design of the current study meant that it is impossible
to disentangle whether the results are specifically associated
with endometriosis pathology and/or CPP. However, the P3
component differences observed do not appear to be condition-
dependent, as our results replicate studies investigating a broad
range of chronic pain conditions (Dick et al., 2002; Weiner et al.,
2006; Walteros et al., 2011; Berryman et al., 2014). Future studies
should consider comparing a third group with differing chronic
pain etiology and/or a sample of women with endometriosis who
are not currently experiencing CPP to determine the driver of
the current results. On this point, replication in a longitudinal
study is essential given the limitations of cross-sectional research
and the inability to draw conclusions regarding causality. In
addition, acute pain (during testing) was not controlled for
or monitored in this study, yet this is known to attenuate P3
amplitudes (Rosenfeld and Kim, 1991; Lorenz and Bromm, 1997;
Houlihan et al., 2004). For example, past research has shown
that participants with chronic pain who were not experiencing
acute pain during testing (De Mirci and Savas, 2002) showed no
reduction in P3 amplitudes. Future chronic pain studies could
control for acute pain during testing with a simple visual analog
scale to avoid this potential confound.

Conclusion
This study was the first to explore the relationship between
CPP and the neuronal correlates of cognitive control in
women with endometriosis. It was found that whilst behavioral
performance did not differ between the groups, target (P3b,
SW) and non-target (eP3a and lP3a) P3 component amplitudes
were significantly reduced in the endometriosis group relative
to the HC group, and non-target eP3a, lP3a, and SW each
correlated inversely with pain severity scores across groups.

These findings are indicative of alterations in stimulus-response
processing and inhibitory control at a neuronal level in women
with endometriosis and CPP, although not necessarily at a
behavioral level, most likely due to compensatory neuroplastic
changes in overlapping cognitive and pain networks. Due
to the detrimental impact of chronic pain on women with
endometriosis, it is crucial to better understand its etiology,
precipitating factors, and neurobiological implications. This
study makes an important contribution to the scant literature
on endometriosis and CPP, moving the field closer to a better
understanding of how chronic pain affects cognitive control in
women with endometriosis.
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