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Abstract: Pavement markings constitute an effective way of conveying regulations and guidance to
drivers. They constitute the most fundamental way to communicate with road users, thus, greatly
contributing to ensuring safety and order on roads. However, due to the increasingly extensive
traffic demand, pavement markings are subject to a series of deterioration issues (e.g., wear and tear).
Markings in poor condition typically manifest as being blurred or even missing in certain places.
The need for proper maintenance strategies on roadway markings, such as repainting, can only be
determined based on a comprehensive understanding of their as-is worn condition. Given the fact
that an efficient, automated and accurate approach to collect such condition information is lacking
in practice, this study proposes a vision-based framework for pavement marking detection and
condition assessment. A hybrid feature detector and a threshold-based method were used for line
marking identification and classification. For each identified line marking, its worn/blurred severity
level was then quantified in terms of worn percentage at a pixel level. The damage estimation
results were compared to manual measurements for evaluation, indicating that the proposed method
is capable of providing indicative knowledge about the as-is condition of pavement markings.
This paper demonstrates the promising potential of computer vision in the infrastructure sector,
in terms of implementing a wider range of managerial operations for roadway management.

Keywords: pavement management; line marking detection; audible marking; condition assessment;
computer vision

1. Introduction

Pavement markings, together with signs, constitute the most fundamental way to
communicate with road users and they are, in most cases, the most effective way to regulate,
warn and guide traffic [1]. Such efficient communication on roads can greatly contribute to
a safe and ordered traffic environment. With the aim to deliver unambiguous instructions
to road users, and thereby, expect immediate responses from them, four major categories of
pavement markings, namely, longitudinal lines, transverse lines, other markings and raised
pavement markers, are used universally all over the world. In addition, these markings
have been designed to be highly standardized, in terms of their color and appearance. Col-
ors used for road markings are limited to white and yellow in most cases. Their appearance
and detail dimensions, e.g., the width of linear markings, angles in arrow markings and
size of other sign markings might differ across countries, yet they always strictly conform
to the specifications in the national and/or local standards.
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Roadway pavements are subject to a wide range of types of deterioration, such as
vehicular friction, since they directly carry traffic loads. Additionally, recent years have
witnessed increased traffic demands due to social development, which further imposes
challenges on pavement maintenance. Common forms of distress range from cracking,
rutting, and potholes to graffiti. Among them, deterioration of pavement markings is one of
the most critical issues that road managers are concerned about. All types of markings are
faced with wear and tear problems even though long-life materials have been introduced.
Worn markings typically manifest as being blurred and in worst case scenarios, missing.
Figure 1 presents a few examples of pavement markings that have suffered from wear and
tear issues. As a result, pavement markings in poor condition might fail to convey useful
information to drivers, imposing potential dangers to traffic.

Figure 1. Examples of pavement markings in poor condition. (a) Edge line (left side) is worn down and even missing;
(b) turning arrows and continuity line (right side) are blurred.

To maintain road safety and efficiency for citizen’s daily commutes, road agencies and
traffic organizers have been dedicated to making sure that pavement markings remain in
a satisfactory condition and keep regulating the traffic. They are responsible for regular
inspections of the entire road assets and accordingly, proper maintenance decision-makings,
e.g., repainting for pavement markings. Other factors, such as environmental costs and
benefits, will also be considered during the decision-making process [2]. However, current
approaches require (trained) inspectors to tour on site, manually identify roadway mark-
ings in poor condition and document such condition data, which involves considerable
amount of human effort. Additionally, due to the lack of human resources, some local
authorities and/or governments fail to fulfil adequate inspection practices.

An alternative method to manual inspections is to deploy unmanned aerial vehi-
cles (UAVs) and computer vision (CV) technology. In particular, computer vision has
gained heated attention from both academia and industry in recent years due to its ca-
pability to replace tedious manual work, automate image processing, and obtain reliable
information out of visual data. Among the numerous disciplines it has been applied to,
its deployment in the architecture, engineering and construction (AEC) community covers
the entire lifecycle of civil assets. On construction sites, computer vision-based systems,
accompanied by other sensor-based systems, such as Radio Frequency Identification (RFID)
technology [3], are capable of monitoring progress, quality control, and ensuring safety [4].
In particular, the deployment of digital twins can further improve workforce safety on
sites [5]. During the operation and maintenance phases of infrastructure assets, CV, as an ef-
ficient and accurate detector, could help engineers to identify defects in existing structures.
Such computer vision systems typically contain either a combination of image processing
techniques and machine learning algorithms, or deep learning with additional support
(e.g., parallel computing).

Given the importance of pavement markings in traffic regulation and guidance,
and the challenges facing the industry in terms of real-life inspection projects, an effi-
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cient inspection and management scheme is needed. Inspired by the potential of emerging
computer vision technology, this study aims to develop an automated inspection method
for pavement markings by making full use of the pavement video data readily archived
in most road agencies/authorities. Specifically, a vision-based framework is proposed to
(1) identify different types of line markings in pavement images by adopting a hybrid de-
scriptor, and (2) estimate the worn condition of identified markings using a threshold-based
method. The contributions of this study are two-fold. For one, a vision-based detection
method for both line markings and audible markings is proposed. Unlike other work in
the literature which has integrated line marking detection into autonomous vehicles [6,7],
this work targets a practically meaningful aim for road authorities, i.e., inventory purposes.
Furthermore, condition assessment of line markings is completed in a quantitative way,
on top of the detection of blurred markings [8,9]. Additionally, compared with previous
work which has employed 3D laser scanners [10], this work is cost-efficient, and thus,
naturally feasible in practice. The rest of the paper is structured as follows: Section 2
summarizes the related work about computer vision in roadway pavement scenarios;
Section 3 illustrates the proposed framework for pavement marking detection and con-
dition assessment; Section 4 presents a case study, covering topics ranging from data
collection to discussion of the results; Section 5 indicates limitations and potential future
work of the framework; finally, Section 6 concludes.

2. Related Work

The majority of previous studies have used computer vision to detect line markings
that delineate traffic lanes. Together with other modules such as obstacle detection [11],
such studies have aimed to support advanced driver assistance systems (ADAS) and the
autonomous driving industry. On the basis of extracted lane line markings on road pave-
ments, various models have been developed to fit the geometric shape of lanes, including,
but not limited to, linear models, parabolic models, hyperbolic models, the Clothoid model
and the spline model. The distinctive features for the detection of line markings vary.
For example, Son et al. [12] utilized color information in the YCbCr color space, i.e., yellow
and white, to identify line markings and achieved an average detection rate of 93%, regard-
less of various illumination conditions. While Parajuli et al. [13] relied on vertical gradients
of images to identify line markings and achieved a 95.54% detection rate. Specifically,
the Lspectra variable, the characteristic spectrum of line markings, was first obtained and
used to match line marking points. Alternatively, deep learning algorithms have been em-
ployed to replace feature extraction steps, as developed in [14], where Zang et al. adopted a
fully convolutional neural network (CNN) to achieve the pixel-wise detection of lane lines.
The detection accuracy of the best model reached 82.24% on the test dataset, where there
were high reflection cases. To further assist autonomous driving, Chen et al. [15] proposed
a general framework for an intelligent transportation system by employing Binarized
Normed Gradient (BING) features and a principal component analysis (PCA) network to
classify a wide range of road markings including arrows, speed signs, “RAIL” signs, etc.
For all of the above-mentioned studies, although they achieved pavement marking detec-
tion with satisfactory accuracy/precision, they did not classify them to fulfill management
requirements such as inventory data collection.

Another group of research falls into the digital asset management study area. Such stud-
ies have aimed to obtain condition information of road assets, by using a combination of
image processing techniques and machine learning algorithms. They managed to identify
various defects on roadway pavements, classify them and evaluate their severity. Defects
targeted in previous studies include cracking, rutting, potholes and patches. As regards
the first task (i.e., defect detection), Hoang et al. [16] and Chun et al. [17] achieved the
automatic detection of cracking on asphalt pavement, using a combination of a multi-class
Support Vector Machine (SVM) classifier and an artificial bee colony optimizer, and a naïve
Bayes-based machine learning algorithm, respectively. The detection accuracy reached
more than 0.96 in [16]. A few studies targeted potholes for detection [18,19], where Azhar,
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Murtaza [18] further localized them explicitly using graph-cut segmentation and achieved
a precision of 90%. Tedeschi and Benedetto [20] developed a real-time mobile-based system
to recognize several types of damage, i.e., pothole, longitudinal–transverse cracking and
fatigue cracking. The precision, recall, accuracy and F-measure were satisfactory (more
than 0.7), as regards the mobile platforms the system operated on. To cope with a major lim-
itation of the aforementioned studies—that only one particular type of distress can be dealt
with at one time—Zalama et al. [21] proposed to classify longitudinal and transverse cracks
using Gabor filters and an AdaBoost algorithm. Karaköse et al. [22] developed an approach
to further categorize pavement cracks into superficial, crocodile, linear and transverse.

In recent years, deep learning approaches have been increasingly deployed in a wide
range of industrial applications [23–26]. Neural networks (NN), through proper training,
can accomplish tasks such as structural damage detection [27], water quality monitor-
ing [28], quality control for shuttlecock production [29] and the adaptive tracking control of
nonlinear systems [30,31]. As for road asset management, several studies have successfully
employed deep neural networks to identify distress on roadway pavements. For example,
Zhang et al. [32] proposed CrackNet, which essentially employed a modified CNN, to iden-
tify cracking on 3D asphalt surfaces. It can achieve pixel-level detection and outperforms
conventional machine learning and imaging methods with a precision of 90.13% and an
F-measure of 88.86%. Fan et al. [33] modelled pavement crack detection as a multi-label
problem and solved it based on structured prediction with CNN. Zhang et al. [34] devel-
oped a transfer learning-based framework to classify sealed and unsealed cracks and at the
same time extract them at the pixel level. Maeda et al. [35] developed a mobile application
to determine the damage status of roads, in terms of “no damage”, “minimal damage” and
“damage needing repair”.

However, few studies have focused on pavement markings and their condition as-
sessment, except in [8], where Kawano et al. adopted end-to-end deep neural networks
(i.e, Yolo) to identify blurry road markings. The mAP of detection reached 30% and the
precision for blurred white lines was more than 65%. Another example is in the form
of the study by Maeda and Sekimoto [9], who included blur detection of two types of
markings, i.e., white line and crosswalk, into the proposed multi-classifier for road damage.
The levels of precision and recall, using two different neural networks, were both greater
than 0.77 and 0.71, respectively. To date, previous studies have neither focused on the
inventory of pavement markings nor realized the quantification of their blurring condition.
An efficient framework to identify pavement markings in images/videos and evaluate
their condition with numeric indicators is still lacking in the literature. For this reason,
this research proposes a vision-based framework for pavement marking detection and
condition assessment, so as to automate the collection of relevant inventory data and
facilitate maintenance decision-makings for road assets.

3. Vision-Based Line Marking Detection and Condition Assessment

The proposed vision-based framework for line marking detection and condition
assessment can be best understood as a flowchart. Figure 2 maps the overall structure of
this scheme, and four modules will be illustrated in detail.
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Figure 2. Flowchart of vision-based lane line detection.

3.1. Image Preprocessing

The first module is to pre-process the visual data and prepare them for the following
procedures. Our targeted visual data were videotapes collected by an in-vehicle camera.
The camera was mounted in the front to capture the front-view of the road pavement as
the vehicle forwards. Image frames were first extracted in sequence and cropped to the
preferred dimensions. Automatic image quality assessment has been proven to be useful
for various image processing applications, especially for singly and multiply distorted
stereoscopic images [36]. In this case, smoothing algorithms are applied to obtain the
image in a format that is ready for feature extraction in the following steps. Examples
include the Gaussian blur median filter, which has been proven to be efficient in eliminating
“salt-and-pepper” noise in images. Another vital step in this module is image rectification,
which involves removing the perspective effects through inverse perspective transform.
Camera calibration is a prevalent method, that involves obtaining the camera’s intrinsic
parameters (i.e., the optical center and focal length of the camera) and extrinsic parameters
(i.e., the position of the camera in the 3D scene) beforehand. Chessboard is typically
utilized in most commercial applications [37]. Alternatively, feature points, which are
supposed to be located on two parallel straight lines in the bird’s eye view, can be used to
calculate the transform matrix. The reason why it is important to generate plane images
of road pavement is that line markings are parallel with each other after transformation,
and therefore, this makes segmentation of each instance easier to achieve.

3.2. Feature Extraction

This module aims to extract features of pavement markings using a hybrid detector.
Both color information and gradient features [38] are used for detection, so as to cope
with a range of environmental factors that can adversely affect the performance of feature
extraction. Previous studies have also used color and shape features and achieved image
retrieval tasks with improved efficiency [39]. Such factors include considerable variations
in image illuminations, noises on the pavement, and occlusions caused by other vehicles.
Pavement distress, repairs and shadows of road-side facilities and plants should all be
excluded after this module. For this reason, color values in the HSL color space (i.e., Hue,
Saturation, and Lightness) are extracted and pre-defined thresholds are applied to filter
yellow and white pixels in the image. The Sobel operation [40] is used to compute both
gradient magnitude and orientation. This hybrid detector has been tested on a succession
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of pavement images, and Figure 3 shows a few of the results. The road segment for
preliminary tests is located in a metro area and the results indicate that shadows and
rutting on pavement can be successfully eliminated.

Figure 3. Test of the feature extraction method on pavement images. (a) Original images; (b) results of inverse perspective
transform; (c) results of feature extraction.

3.3. Segmentation

Based on the extracted features, this module applies segmentation on the planar im-
ages. Segmentation, also known as grouping or fitting [41], aims to generate distinctive and
informative summary representations of pixel groups, which are individual line markings
in this case. Single markings are selected and exported as separate image files. To locate
pavement marking instances, Canny [42] is used for edge detection, whose outcomes
are later fed into a Hough line Transform algorithm. Hough Transform [43] has been
intensively used for line detection, which tests links between any random point pairs and
select ones with higher votes than the user-defined threshold. To further eliminate outliers,
lines with unreasonably large slopes are removed, and those belonging to non-marking
areas are also filtered out according to their spatial positions. A grouping method is then
applied to determine individual line marking areas. The proposed segmentation method
was also tested on the same set of sample images. Figure 4 presents the results.

Figure 4. Test of the segmentation method on pavement images. (a) Planar images; (b) results of Canny edge detection;
(c) results of Hough line transform and grouping.
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3.4. Classification and Condition Assessment

Table 1 lists the common categories of longitudinal line markings, as specified in the
Australian Standards [44]. A few categories, i.e., edge line, single barrier line, lane line
and transition line, convey different instructing messages to road users, yet have a similar
pattern, i.e., a continuous single line. Markings with different functional semantics require
additional inferences and reasoning to distinguish them. Therefore, such marking are
allocated to a single code for classification. In addition, a special category, i.e., audio-tactile
marking, is also targeted for detection. These markings are designed to provide warnings
to drivers who might drift from the traffic lane and prevent potential hazardous situations.
They are normally associated with edge lines and center lines, thus, their presence is
separately identified for individual line markings.

Table 1. Common categories of longitudinal line markings (Adapted from the Australia Standards [44]).

Code Type Standard Pattern Dimensions

1 Dividing line Broken single line Length of painted stripes = 3 m;
Length of the gap between = 9 m

2 Barrier line (Double two-way) Two parallel lines, both continuous N/A

3 Barrier line (Double one-way) Two parallel lines, one continuous
and the other broken See Dividing line

4 Continuity line Broken single line Length of painted stripes = 1 m;
Length of the gap between = 3 m

5

Single barrier line

Continuous line Width = 80/100/150 mm
Edge line
Lane line

Transition line

N/A Audio-tactile marking A line of small projections, i.e., ribs Rib length = Line width

Numeric features of individual line markings, i.e., width along the way, were obtained
for classification and condition measurement. A width list is generated by counting the
number of pixels at each position on the longitudinal direction. By analyzing the width lists
statistically and determining their spatial distributions, a threshold-based method can be
developed for line marking classification. The detection and classification of line marking
types can be further supported by information on both the color and position. To illustrate,
yellow line markings at the center of road pavement are mostly barrier lines, while those
located near the boundaries are likely to be edge lines. An alternative option for efficient
and accurate categorization is to use deep learning algorithms. An image dataset, including
either pavement images with markings labelled correspondingly or individual marking
images structured as in Figure 5, should be created. A separate category for classification is
the curb, which in some cases co-exist with—or even replace—edge lines, and thus, should
be identified separately.

Figure 5. Hierarchical structure for training dataset.
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On top of the detection, the condition of identified markings can be assessed in terms
of the worn percentage. Based on the pixel-wise extraction of line markings and their
width lists, the length of worn marking segments is calculated. A threshold for width
is pre-defined in order to determine whether the marking at certain position is worn or
not. Then, the worn percentage of an individual line marking in the image space can be
estimated according to Formula (1). The formula is expressed as follows:

Worn percentage =
∑N

i=1 li
∑N

i=1 Li
× 100% (1)

where N represents the total number of strips that the targeted line marking contains in the
region of interest; li represents the length of marking within the ith strip that is determined
as worn (i.e., this segment has a smaller width than the pre-defined threshold); Li is the
total length of each marking strip. For continuous line markings, such as edge lines and
barrier lines, Formula (1) can be further simplified, as expressed in Formula (2).

Worn percentage =
l
L
× 100% (2)

where L is the total length of the targeted marking in the region of interest and l is the
length of worn segment.

To finalize the regional worn condition measurement, the worn percentage estimated in
single image frame is averaged over a road section and can be used for managerial operations.

4. Case Study Results

To evaluate the applicability of the proposed framework for vision-based pavement
marking detection and condition assessment, a case study on a real-life roadway pavement
was designed and carried out. Main Roads Western Australia (MRWA)—the road agency
of the Government of Western Australia—archives pavement video data of their roads.
Such videos were originally recorded by a vehicle traveling at a uniform speed in both
directions of traffic movement. This data collection method ensures that each frame
in the video covers approximately a 20 m long road segment, and therefore, far field
regions of the pavement can be eliminated for the current frame and analyzed in the
next frame. Additionally, the two-direction filming method is especially necessary for
roads in metro areas since they are normally too wide to fit into the camera’s field of
view. A videotape recording a total of 28 km highway pavement in Western Australia
was retrieved. Preliminary tests were run beforehand to evaluate the performance of the
candidate methods for each module. Next, a case study was conducted to further validate
its effectiveness. The case study can be understood as a flowchart, as shown in Figure 6.

Figure 6. Flowchart of case study.
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4.1. Image Processing

Image frames were first retrieved out of the videotape. Image cropping was applied
to exclude miscellaneous regions, such as the sky, which assembles the color feature of
pavement markings due to high levels of illumination (Figure 7a). All original image
frames were sorted in sequence and numbered accordingly. To remove perspective effects,
two feature pairs, which are assumed to be located on two parallel lane lines in the bird’s
eye view images, were manually selected. For curved roads, since only a 20 m segment
in the near field was targeted, this assumption still holds true. The transform matrix was
computed in a way that the resulting images roughly cover the pavement at the widest
location along the route and a length of 20 m. Road-side facilities and plants can, to a large
extent, be eliminated.

Figure 7. Illustrations of image processing steps, including: (a) original image; (b) bird’s eye view image; (c) output of
hybrid descriptor; (d) output of Canny detector; (e) result of Hough transform; (f) result of segmentation.

Based on road-plane images, features were then extracted. The hybrid feature extrac-
tion method tested in Section 3.2 was modified, by customizing the color feature detector
for different line markings. A three-channel filter was used in the HSL color space for
yellow markings and a one-dimensional filter was used in the gray-scaled image for white
markings. Thresholds were determined to cope with intra-color variations and successfully
distinguish inter-color differences. Based on the information for both color and shape
(extracted using Sobel operation), a feature map of the pavement markings can be obtained
for analysis. The result is shown in Figure 7c.

To further isolate individual line marking for classification and analysis, a combination
of Canny edge detection and Hough line transform was utilized, as detailed in Section 3.3.
Key parameters in this approach, i.e., the minimum length of lines and the maximum gap
between two feature points that belong to the same line, were pre-defined so as to leave
out noise from the surroundings. Outlier lines were further removed with regard to their
slopes and spatial placement. Figure 7a–f illustrates each step of the image processing
method. It shows that a binary feature map of line markings can be obtained and the region
of interest (i.e., individual markings) can be successfully segmented.
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4.2. Line Marking Detection and Classification

The video data in this case study included five types of longitudinal line markings,
namely, edge line, continuity line, transition line, lane line and dividing line. They were
assigned to four classes, as indicated in Table 2. An additional category for classification was
introduced to represent non-marking objects, such as road-side railings, curbs and other
vehicles that appear in the region-of-interest. A threshold-based method was utilized based
on distinctive shape features, where dividing lines (code “01”) and continuity lines (code
“04”) are both broken markings with different length of strips and gaps, while marking
types in code “02” all appear to be single continuous lines. The ground truth of line
marking distributions along the test road was collected from the authority. A comparison
between the classification results and the ground truth was conducted to evaluate the
performance of the proposed methods. Accuracy, as the ratio of successfully classified
samples to all samples, was used for evaluation.

Table 2. Line marking classification results.

Code 01 02 03 04 Overall

Type(s) Dividing line
Edge line;

Continuity line OthersTransition line;
Lane line

Accuracy 0.92 0.87 0.85 0.92 0.89
Accuracy is the ratio of successfully classified samples to all samples.

Table 2 shows the performance of the threshold-based method for line marking classi-
fication. As for the detection of audible markings on top of line markings, the accuracy is
0.82 for the near-field instances. This research was then compared to an existing piece of
research [10], which used laser-scanning 3D profile data to detect and measure road mark-
ings and achieved a 90.8% level of accuracy for detection. It is worth noting that 3D profile
data possess the ability to overcome the impacts of shadows, varying illuminations and
occlusions, and provide additional information, such as elevation. Using 2D optical images,
this research achieves an average accuracy of 89% and presents a satisfactory performance.

A range of environmental factors account for the detection failures. The road seg-
ment in Figure 8 has an extensively polished pavement surface and patches, generating
a misleading feature map (shown in the right image). As a result, both the left edge line
and the dividing line were mistakenly identified as “Other”. Another notable disturbance
hindering accurate classification is vehicles on adjacent lanes, which causes severe occlu-
sion. Such situation typically occurs when overtaking is occurring, and thus, it lasts no
more than five frames. Temporary loss of line marking detection in some image frames
can be supplemented by referring to their context in the time sequence. Curbs and railings
alongside the road, as shown in Figure 9b,c, can also lead to detection errors.

Figure 8. Example of polished pavement.
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Figure 9. Other noises affecting classification, including: (a) occlusion from other vehicles; (b) curb; (c) road-side railings.

4.3. Worn Condition Assessment

To validate the proposed approach for condition assessment, a roughly 2 km long road
segment was further retrieved randomly. To generate a benchmark for their worn condition,
images were first superimposed onto a grid and the worn percentage of line marking
instances in each image frame were manually measured by the author. The minimum
spacing of the underlying grid is five pixels, and therefore, the manual measurement could
possibly reach an accuracy of one pixel. Comparisons between the manual measurement
and the results of the proposed method are plotted on line charts. Figure 10 presents
the result comparison charts for LINE_1, the nearest line marking to the camera to the
left, and LINE_3, the farther boundary of the adjacent lane, as illustrated in Figure 7a.
The horizontal axis represents the corresponding SLK (Straight Linear Kilometer) number
of each frame, as recorded in MRWA’s management system, while the vertical axis is the
estimated worn condition in terms of percentage.

Figure 10. Cont.
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Figure 10. Comparison of worn condition assessment results. (a) Result comparison for Line 1; (b) result comparison for
Line 2; (c) result comparison for Line 3.

In Figure 8, the worn condition evaluated by the proposed method fits the worn
condition assessed through manual measurement, though the former tends to present
a higher worn percentage than humans do. For example, it is noted that in Figure 10a,
between SLK 27.55 and SLK 27.65, there exists a peak indicating extensive wear of line
marking. By referring to the original video data, we found considerable tracing ruts
on the marking, as shown in Figure 11a. Similar deteriorations of line marking can be
found at SLK 28.23~28.33 (for LINE_1), SLK 28.41~28.47 (for LINE_2 and 3, as shown in
Figure 10b, etc. However, there are false warnings for poor marking conditions in both
charts (e.g., SLK 27.89~27.99 for LINE_1 and SLK 28.34~28.39 for LINE_3). Such errors
are mainly attributed to the color-based feature extractor, which is subject to the changing
illuminations and shadows of road-side objects. Figure 12 shows image frame at SLK 27.93,
where yellow continuity lines are reduced to only its edges and thereby, received incorrect
worn condition results.

Figure 11. Example frames of worn line marking. They are located at (a) SLK 27.59; (b) SLK 28.45, separately.

In terms of efficiency of the assessment, the manual approach took 3 h per 100 image
frames, while the proposed method took less than one minute. Since there is no bench-
mark readily available in terms of the wear issues of line marking, the proposed method
represents a potential option for industrial applications due to its capability to provide
instructive information on the condition of pavement markings (e.g., distribution of worn
segment), while taking considerably less time.
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Figure 12. Example frame of false worn condition. (a) Planar image; (b) binary feature map of the yellow line marking.

5. Discussion and Limitations

With regard to the case study results presented in the previous section, this section
discusses the limitations of the proposed framework and potential future agendas. Insights
into improving the applicability of the proposed scheme are raised based on frequent
exploration with our industrial partners as regards practical applications.

In the case study, the removal of perspective effects in original video frames relied
on the manual selection of feature points. However, human intervention with the aim
of obtaining a satisfactory overhead view of road pavement is not a one-off, since the
shooting direction of the camera shifts while the vehicle is moving forward. Figure 13
shows two adjacent frames, where there is a sudden change in camera’s shooting angle.
In addition, incremental deviations from the initial camera settings regarding the lane also
have adverse impacts on the performance of pre-processing. As a result, re-calibration
of the camera is required so as to successfully remove perspective effects in the captured
images. A pre-calibrated camera and its stability throughout recording will greatly facilitate
the automation.

Figure 13. Example of camera shift during recording. (a) Previous frame; (b) next frame.

To apply the proposed condition assessment framework to other pavement markings,
such as turning arrows, speed, stop and rail signs, an efficient method to determine their
intact contours is essential. Unlike linear markings that have a uniform rectangle shape,
other pavement markings tend to present irregular silhouettes due to image distortion and
blurring. Noda et al. [45] introduced a generation model to robustly recognize such road
markings with changing appearances in a vehicle-mounted camera’s view. Alternatively,
deep learning algorithms trained on relevant image datasets can replace image processing
techniques and automate the identification, yet their expected contours are still required in
order to quantify their worn percentage. For this reason, camera calibration with higher
precision levels and stability of the camera throughout the data collection stage could pave
the way to generating a baseline for the measurement of worn areas with satisfactory levels
of precision.

This research study focused on pavement marking deterioration caused by traffic wear,
which typically manifests as blurring. However, the conditions of pavement markings
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are multi-fold. Another vital property of pavement markings is their reflectorization [1].
Reflectorization is the capability of road markings to be seen under dark driving conditions.
Currently, road agencies (e.g., Main Roads Western Australia) employ professional con-
sultants to test the level of reflectivity of pavement markings for their roads. Such events
require temporary lane closure, special inspection tools and intensive human effort. Future
work should aim to develop an automated approach for the quantification of their reflective
properties and potentially investigate the relationship between the appearance of road
markings in RGB images and their level of reflectorization, thereby expanding the power
of vision systems. When it comes to audio-tactile line markings, their functional integrity is
to provide sufficient warning to drivers who start to run off their lane. Both their inventory
data and condition should be informed by our industrial partners. As inventory data,
road agencies are keen to keep distribution information on pavements in their records.
For maintenance decision-making, road owners care about the level wear roads have
received. Zhang and Xu [10] assessed their conditions by measuring the elevation of ribs in
3D laser-scanning profile data. The lack of depth information in 2D visual data, therefore,
calls for a dimension-independent indicator for assessment of audible marking conditions
in images. This will further facilitate the development of an automated, effective, yet cost
efficient road management system.

6. Conclusions

Aiming for low-cost, time-efficient and reliable road asset management, this research
proposes a vision-based framework to automatically collect the as-is inventory data of road
pavements, i.e., line markings, and assess their level of wear. A hybrid detector, integrating
color and spatial features, was employed and a threshold-based method was used for line
marking identification and classification. Alternative algorithms and classifiers trained
by exhausted datasets can be utilized to further improve the performance of this module.
Then, the worn condition of identified pavement markings was quantified at the pixel level.
By comparing our data with manual measurement results, we have demonstrated that our
data show that the proposed method generates instructive information on the distribution
of different levels of wear and tear of road markings.

For expanded applicability, the proposed framework should be adapted to other
pavement markings (e.g., messages on the pavement) and additional condition indicators.
Future studies will also consider including audio-tactile markings into this inspection and
management scheme, based on planar visual data.
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