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Abstract
Soil carbon and nutrient availability play crucial roles in ecosystem sustainability, and they are
controlled by the interaction of climatic, biotic, and soil physico-chemical variables. Although soil
physico-chemical properties have been recognized as vital variables for predicting soil organic
carbon (SOC) and nutrients, their relative influence across broad geographical scales has yet to be
evaluated when simultaneously considering many other drivers. Using boosted regression tree and
structural equation modelling analyses of observations from topsoil (0–10 cm) and subsoil
(20–30 cm) at 628 sites across Australia, we investigated the effects and relative influence of climate
(mean annual temperature and aridity index), plant productivity, soil biodiversity (bacterial and
fungal richness), and soil physical (clay and silt) and chemical (pH and iron) properties on SOC
content and nutrient availability (i.e. nitrogen, phosphorus, and potassium). Among these
variables, we found that soil physico-chemical properties primarily predicted the continent-scale
SOC storage and nutrient availability. In contrast, climate, plant productivity, and soil biodiversity
played relatively small roles. The importance of physico-chemical properties was evident across soil
depths and ecosystem types (i.e. tropical, temperate, arid, and cropland). Our findings point to the
need to better understand the role of soil physico-chemical properties in soil carbon and nutrient
cycling and including these variables in predictions of SOC and nutrient dynamics at the ecosystem
to continental scale.

1. Introduction

Soils are the main terrestrial reservoir of carbon
and nutrients (Quinton et al 2010, Carvalhais et al
2014), which determine soil fertility, plant growth
and ecosystem sustainability (Doran and Zeiss 2000,
Lal 2004), and thus soils are crucial for human well-
being (Lal 2004). Soil organic carbon (SOC) and
nutrient cycling are strongly interrelated (Quinton et
al 2010, Finzi et al 2011), and their dynamics funda-
mentally determine soil functioning and are closely
related to the changing climate (Delgado-Baquerizo
et al 2013). Thus, understanding themechanisms that
control soil carbon and nutrients is crucial to suc-
cessful ecosystem management and climate change
mitigation (FAO 2015, Viscarra Rossel et al 2019).
Currently, however, large uncertainties remain when
predicting SOC and nutrient dynamics (Karmakar

et al 2016, Rasmussen et al 2018). These uncertain-
ties occur because models often poorly represent the
current global distributions of SOC (Carvalhais et al
2014) or nutrients (Jobbágy and Jackson 2001) and
because they may inadequately incorporate regulat-
ing factors (Tang and Riley 2015, Jeong et al 2017).
The latter indicates shortcomings in parameterizing
the controls, or neglecting some vital drivers, such as
soil physico-chemical properties (Schmidt et al 2011,
Lehmann and Kleber 2015).

Soil physico-chemical properties are associated
with strong chemical bonds or closed environ-
ments protecting SOC from decomposition (Krull
et al 2003). Physical properties such as soil texture
are usually used to indicate the size distribution
of mineral particles, and are considered as crucial
factors affecting the soil organic matter accumula-
tion (Dexter 2004). For instance, silt and clay particles
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can protect soil organic matter against microbial
mineralization by stabilizing them on mineral sur-
face (Six et al 2002a). Chemical properties are usually
associated with chemical bonding of SOC to mineral
particles, reducing the degrading ability of enzymes
and decomposers (Six et al 2002a). For instance, min-
eral availability (e.g. iron) is considered as a key reg-
ulator of soil carbon storage through bonding mech-
anisms (e.g. Yu et al 2017). Soil pH also significantly
regulates SOC, because it influences organic matter
turnover, soil nutrient bioavailability and other soil
processes (Kemmitt et al 2006), as well as microbial
biodiversity (Fierer and Jackson 2006). A growing
body of empirical and modelling research indicates
that physico-chemical properties exert considerable
roles in controlling SOC (e.g. Torn et al 1997, Schmidt
et al 2011, O’Brien and Jastrow 2013, Doetterl et al
2015, Lehmann andKleber 2015, Abramoff et al 2018,
Rasmussen et al 2018, Cotrufo et al 2019, Hemingway
et al 2019). In fact, multiple drivers such as physico-
chemical properties and climate are not separate, but
interact with one another to regulate SOC dynamics,
which was well documented in recent studies from
local to continental scales (e.g. Doetterl et al 2015,
Luo et al 2017, Li et al 2018, Hemingway et al 2019,
Viscarra Rossel et al 2019). For example, based on
machine-learning with 5721 topsoil measurements,
Viscarra Rossel et al (2019) showed that climate, elev-
ation, and soil properties were dominant controls on
SOC fractions and potential vulnerability across Aus-
tralia. However, their relative contribution remains
elusive when considering the concurrent regulatory
effects of climate, physico-chemical properties, and
other recognizably important drivers (such as plant
productivity and soil biodiversity).

Besides soil carbon, soil nutrient availability also
plays crucial roles in sustaining soil quality and
plant productivity (Quinton et al 2010). Soil phys-
ical drivers may affect nutrient levels through min-
eral specific surface area (Kome et al 2019); chem-
ical properties such as pH also strongly regulate soil
nutrient bioavailability (Neina 2019). However, the
relative importance of physico-chemical properties in
predicting nutrient availability has received less atten-
tion. Thus, the question now arises as to what degree
physico-chemical properties affect SOC and nutri-
ent (i.e. soil available nitrogen (N), potassium (K),
and phosphorus (P)) availability when considering
interactions of climatic, biotic, and physico-chemical
properties factors across broad ecosystem types at a
large scale.

Here, we hypothesize that soil physico-chemical
properties primarily predict SOC and nutrients at a
continental scale. To test this hypothesis, we used data
of topsoil (0–10 cm) and subsoil (20–30 cm) from
628 sites across the Australian continent (figure 1).
These sites include diverse ecosystem types based on
climate and land use (i.e. tropical, temperate, arid,
and cropland), covering wide ranges of mean annual

temperature (MAT) (5.7 ◦C–28.0 ◦C), mean annual
precipitation (MAP) (170–2191 mm), and altitude
(1–1674 m a.s.l.), making them suitable to disen-
tangle the relative influence-strengths of multiple
drivers of SOC and nutrient availability. The wide
spatial variations in SOC and nutrients are shown in
figure 1, and ranges of some key soil properties among
the 628 sites are shown in table S1 (available online at
stacks.iop.org/ERL/15/094088/mmedia).

In the present study, we included climate (i.e.
MAT and aridity index (A.I., potential evapotran-
spiration/MAP)), plant productivity (indicated by
NDVI, the normalized difference vegetation index),
soil microbial alpha diversity (i.e. bacterial and fungal
richness), physical properties (i.e. silt and clay con-
tent), and chemical properties (i.e. soil pH and
extractable iron (Fe)) as interacting drivers of SOC
and nutrients. We conducted boosted regression tree
(BRT) analyses (Elith et al 2008) to reveal the relat-
ive influence of physico-chemical properties in con-
trolling SOC and nutrients while simultaneously
accounting formultiple other drivers (i.e. climate, soil
biodiversity, and plant productivity), and structural
equation modelling (SEM) to identify indirect and
direct influences of these drivers on SOC and nutri-
ents (see our a priorimodel in figure S1).

2. Materials andmethods

Data used in the present study were obtained from
the Biome of Australian Soil Environments (BASE)
project, a database of soil microbial diversity and
associated sample specific contextual properties (Bis-
sett et al 2016). Sample ID’s used in the present
study are included in table S2. All data were down-
loaded as sample specific contextual data and amp-
licon sequence variant (ASV) abundance matrices.
Data generation methods are described briefly below.

2.1. Study sites and soil sampling
A subset sample from 628 sites across Australia (fig-
ure 1) were used in this study. These sites span
an Australian continental scale, covering diverse cli-
mate conditions, above-ground productivities, and
soil properties. In order to test whether the import-
ance of physico-chemical properties on SOC and
nutrients were maintained under different environ-
mental and soil conditions, we classified ecosystems
into tropical, temperate, and arid ecosystem types
(Köppen classification). We also created a fourth
category, cropland, due to the intense management
where farming may change physico-chemical proper-
ties (e.g. through breaking up aggregates) (Six et al
2002b). Cropland sites were distributed across trop-
ical, temperate, and arid climates but treating them
as a single category was justified based on charac-
teristics of SOC and available nutrients. Grassland
and shrublandwere dominant in tropical (~32%) and
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Figure 1. Spatial maps of (a) soil organic carbon (SOC, Z-score) and (b) nutrients (Z-score) in the topsoil (0–10 cm) among 628
sites across Australia. Nutrients are indicators of available nitrogen, phosphorus, and potassium. The number in brackets
indicates the sample size of each ecosystem type classified by climate or cropland (because of how divergent soil characteristics
were in the latter category; figure 2).
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Figure 2. Box plots of soil organic carbon (SOC) and log-transformed available nutrient concentrations among different
ecosystems based on climate and land use across Australia. Available nitrogen is the total of nitrate and ammonium. The lower
and upper ends of the boxes are the 25th and 75th percentiles; the line across the middle of the box is the median value; and circles
are outliers. The same letters at topsoil (0–10 cm) or subsoil (20–30 cm) indicate no significant difference among ecosystems
using one-way ANOVA at P = 0.05. Asterisks indicate difference between the topsoil and subsoil using paired sample t-test with
∗P < 0.05 and ∗∗∗P < 0.001. n= 59, 410, 95, and 64 in tropical, temperate, arid, and cropland, respectively.

arid (~51%) sites, while temperate sites were domin-
ated by forest and woodland (~54%).

Soil sampling followed the standardized meth-
ods (Bissett et al 2016). In brief, nine soil samples

at two depths (0–10 and 20–30 cm) were col-
lected from a 25 × 25 m plot at each site. The
nine soil samples were then thoroughly homogen-
ized by depth and site. Thus, 1256 soil samples (two
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depths × 628 sites) were included in the present
study.

2.2. Climate and plant productivity
Climatic data including MAT and A.I. were obtained
from the Worldclim database (Hijmans et al 2005)
using ESRI ARCMAP (Version 10.3). We used NDVI
to indicate plant productivity (Pettorelli et al 2005,
Delgado-Baquerizo et al 2016, Delgado-Baquerizo et
al 2017), and this proxy of productivity index was
derived from the MODIS Terra satellites. The mean
value of NDVI with 0.1◦ resolution was calculated
for the periods of 2011–2014 because all soil samples
were collected during these periods.

2.3. Soil property analyses
Soil properties of each site were measured using the
unified protocols described by Bissett et al (2016).
Briefly, soil texture was measured by using a stand-
ardized particle sedimentation method (Indorante et
al 1990). SOC concentration was measured using
theWalkley-Black method (Walkley and Black 1934).
Nitrate and ammonium levels were measured color-
imetrically, following the extraction with potassium
chloride of 1 M (Searle 1984). Available K and P
were determined using the Colwell method (Rayment
and Higginson 1992). Extractable Fe was extracted
with diethylene triamine penta-acid (DTPA) for 2 h
and then measured by atomic absorption spectro-
scopy (Rayment andHigginson 1992). Previous stud-
ies have shown that DTPA-extractable Fe was highly
correlated to ammonium oxalate extractable Fe, rep-
resentative of short-range order minerals such as fer-
rihydrite (Geiger and Loeppert 1986), which are asso-
ciated with SOC stabilization (Rasmussen et al 2018).
Therefore, extractable Fe might also an important
factor predicting SOC. Soil pH was determined using
a 1:5 soil:water ratio. Soil biodiversity levels were
determined from ASV abundance matrices obtained
by sequencing a portion of the Internal Transcribed
Spacer region 1 (ITS1) (fungi) or the 16 S rRNA gene
(bacteria) using Illumina MiSeq (Bissett et al 2016)
and calculating the bias-corrected Chao index of
expected richness given incomplete sampling (Chiu
et al 2014).

2.4. Statistical analyses
Before doing all analyses, the following steps were
conducted for each soil depth (i.e. topsoil and
subsoil). Firstly, we normalized (log-transformed if
needed) and standardized each variable using the Z-
score transformation (e.g. Delgado-Baquerizo et al
2016, Li et al 2020c). Secondly, correlation analysis
was conducted to evaluate the relationship between
any two variables at the two soil depths for the whole
database (figure S2) or within each ecosystem type
(i.e. tropical, temperate, arid, and cropland) (fig-
ures S3–S6). Correlation matrices showed that soil

nutrient indicators (i.e. available N, P, and K) were
correlated, as were soil biodiversity indicators (i.e.
Chao1 indexes of bacteria and fungi), physical prop-
erties (i.e. silt and clay), and chemical properties (i.e.
extractable Fe and soil pH).

We conducted individual BRT analyses for SOC
and nutrients to reveal the relative influence of a pre-
dictor variable compared with other considered vari-
ables (Elith et al 2008). BRT could improve model
accuracy through repeatedly fitting many decision
trees like Random Forest. Importantly, BRT ana-
lysis is applicable to nonlinear relationships, removes
highly correlated variables, and can analyze interact-
ive effects of different types of variables (Luo et al
2017). Before doing BRT analyses, we reduced the
observed variables of N, P, and K to a single vari-
able ‘nutrients’ using principal component analysis
(PCA), to remove potential multicollinearity (Li et
al 2020a). Finally, all observed, individual predictor
variables (i.e. MAT, A.I., NDVI, bacteria, fungi, clay,
silt, Fe and pH) were used in BRTs, and the relat-
ive influence of each latent predictor (i.e. climate, soil
biodiversity, physical properties, and chemical prop-
erties) on SOC or nutrients was the sum of relative
influences of observed predictor variables (Luo et al
2017, Li et al 2020b). For instance, the relative influ-
ence of physical properties on SOC was the sum of
relative influences of clay and silt on SOC. BRTs were
conducted for the Australian continent and for each
ecosystem type.

We used SEM, widely applied in ecological sci-
ences (Shipley 2001, Grace 2006), to obtain a mech-
anistic understanding of the spatial variation in SOC
and nutrients at this continental scale. To do this, we
first built an a priori model (figure S1), examining
the indirect and direct influences of physical prop-
erties, chemical properties, climate, plant productiv-
ity, and soil biodiversity on SOC and nutrients. Cli-
mate, soil biodiversity, physical properties, chemical
properties, and nutrients were latent variables reflec-
ted by observed variables (indicators). The latent vari-
able ‘nutrients’ included indicators of available N,
P, and K; ‘climate’ included indicators of MAT and
A.I.; ‘soil biodiversity’ included indicators of Chao1
indexes of bacteria and fungi; ‘physical properties’
included indicators of silt and clay; ‘chemical prop-
erties’ included indicators of extractable Fe and soil
pH. The final model was selected on the basis of over-
all goodness-of-fit test (Schermelleh-Engel et al 2003,
Eldridge et al 2018). We repeated SEMs for each soil
depth and ecosystem type. Notably, although there
were some differences in factors affecting SOC and
nutrients (for example plant productivity is the main
source of SOC, but this is not the case for nutri-
ents), we combined SOC and nutrients in the final
SEM.

It is important to recognize that this study was
mainly focused on large-scale statistical analysis. We
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Figure 3. The relative contributions (%) of predictor variables for the boosted regression tree model of soil organic carbon (SOC,
left panel) and nutrients (right panel) across Australia (n= 628). Green and gray numbers in each group indicate the summed
relative contribution of each predictor in topsoil and subsoil, respectively. Nutrients, indicators of available nitrogen, phosphorus,
and potassium; MAT, mean annual temperature; A.I., aridity index; NDVI, normalized difference vegetation index; Fe, extractable
iron.

highlight that the BRT analyses show the distinct
responses of SOC and nutrients to the drivers under
investigation, whereas the SEM analyses demonstrate
the integrated influence of those properties on the
interacting SOC and nutrient contents across the
study area. Thus, we used BRT to identify the relat-
ive importance of factors controlling SOC and nutri-
ent availability when simultaneously considering all
factors, and SEM to analyze their direct and indir-
ect effects. These two approaches provided comple-
mentary insights into the factors controlling SOC
and nutrients at a continental scale or within differ-
ent ecosystem types. For example, results from BRTs
were not affected by our prior knowledge because
BRT does not depend on an a priori model of hypo-
theses. Because SEM relies on a priori hypotheses, it
allows us to explore the direct, indirect, and interact-
ive effects of variables affecting SOC and nutrients;
importantly, our structural equationmodels acknow-
ledge that SOC and nutrients are significantly cor-
related with each other as well. Moreover, SEM is
an especially useful approach for large-scale studies

(Grace 2006).
Spatial map, correlation matrices, PCA, and

BRT analyses were conducted using R (R 3.4.2)
and the packages ‘ggbiplot2’, ‘PerformanceAnalytics’,
‘devtools’, ‘ggbiplot’, and ‘dismo’. SEM analyses were

conducted with IBM SPSS Amos (Version 22.0).

3. Results

3.1. Soil carbon and nutrient levels
Ranges of some key soil properties among the 628
sites are shown in table S1. SOC and available nutrient
concentrations showed wide variations across the
Australian continent (figure 1). SOC and avail-
able nutrients differed significantly among ecosys-
tem types (figure 2). For instance, topsoil SOC con-
tents were significantly higher in temperate followed
by tropical, cropland, and arid ecosystems (figure 2).
Moreover, in most ecosystems, topsoil had signi-
ficantly higher SOC and nutrient availability than
subsoil (figure 2). These differences among ecosys-
tems and soil depths enabled us to test whether the
effects of soil physico-chemical properties on SOC
and nutrients were maintained under different envir-
onmental or soil conditions.

3.2. Soil physico-chemical properties played the
most important role
Results from BRTs showed that physico-chemical
properties were more important than other drivers
of SOC and nutrients in both soil depths (figure 3).
For topsoil SOC content, chemical properties had
the highest relative importance followed by physical
properties, climate, soil biodiversity, and productiv-
ity; for nutrients in both depths, physical properties
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Figure 4. Structural equation models (SEMs) evaluating the direct and indirect effects on soil organic carbon (SOC) and
nutrients across Australia (n= 628). SEMs for SOC and nutrients in the topsoil (a) and subsoil (b); Standardized total effects
(direct plus indirect effects) derived from the SEMs for SOC (c) and nutrients (d). Black and red lines indicate positive and
negative relationships, respectively; grey lines indicate the relationships are not significant at P = 0.05. Line thickness represents
the magnitude of the path coefficient, and numbers adjacent to arrows are standardized path coefficients. Nutrients (indicators of
available nitrogen, phosphorus, and potassium), climate (indicators of mean annual temperature and aridity index), soil
biodiversity (indicators of bacteria and fungi), physical property (indicators of clay and silt), and chemical property (indicators of
extractable iron and soil pH) are latent variables. The loading scores of indicators of each latent variable are shown in figure S7.
NDVI, normalized difference vegetation index. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

were the most important factor followed by chemical
properties, soil biodiversity, climate, and productiv-
ity.

Results from SEMs showed strong connections
among all the factors in both soil depths (figure 4; see
the loading scores of each latent variable in figure S7).
Our SEMs explained 59% (topsoil) and 60% (subsoil)
of the spatial variation in SOC; and 49% (topsoil) and
54% (subsoil) of the variance in nutrient availabil-
ity at the continental scale (figures 4(a) and (b)). In

both soil depths, we found strong direct and indir-

ect effects (e.g. through regulating soil biodiversity)

of physico-chemical properties on SOC and nutri-
ents (figures 4(a) and (b)). Consistent with results of
BRTs, physico-chemical properties also fulfilled the

most important role as indicated by the standardized

total effects (figures 4(c) and (d)).

Further support for the importance of physico-
chemical properties on SOC and nutrients was
derived from BRTs and SEMs within different eco-
system types. The importance of the role of physico-
chemical properties was evident in each ecosystem
type (figures 5 and S8). In addition, consistent
with the overall pattern at the continental scale
(figures 4(a) and (b)), strong connections among
these tested factors were found in each ecosystem type
(figures S9–S12).

4. Discussion

4.1. Soil physico-chemical properties primarily
controlled SOC and nutrients
In the present study, results showed that
physico-chemical properties primarily predicted
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carbon storage and nutrient availability across Aus-
tralia (figure 3). The role of climate, plant productiv-
ity, and soil biodiversity as drivers of SOC and nutri-
ents has been well documented (Carvalhais et al 2014,
Wagg et al 2014, Karmakar et al 2016), but they
played a less important role compared to physico-
chemical properties, even after accounting for inter-
active effects among variables (figure 4). In addi-
tion, the importance of physico-chemical properties
was evident across soil depths and ecosystem types.
However, there were some differences in the inter-
relationships among factors across ecosystem types,
which were consistent with a recent study demon-
strating the region-specific controls that impact SOC
distribution across Australia (Viscarra Rossel et al
2019). For instance, strong relationships between
climate and soil biodiversity were observed in crop-
land ecosystems; no significant relationship between
plant productivity (as determined from NDVI) and
nutrients was detected in arid ecosystems (figures
S9–S12). Moreover, the relative influence of physical
and chemical properties differed between the topsoil
and subsoil in intensely human-managed croplands
(figure 5), and this might be associated with farm-
ing practices (e.g. tillage and fertilizer inputs) (Six
et al 2002b). Altogether, these results clearly indic-
ate that physico-chemical properties, regardless of
the soil depth and ecosystem type, have predomin-
ant impacts on SOC and nutrient availability across
Australia, and strongly supports efforts to incorpor-
ate these mechanisms in carbon and nutrient cycling
models (Abramoff et al 2018).

SOC and nutrients are regulated by both chem-
ical and physical processes, and thus distinguishing
between these processes can be arbitrary (Han et al
2016, Kramer and Chadwick 2018). However, our
analysis provides insight into the relative influence of
physical properties mediated by factors such as sur-
face area, compared to chemical properties mediated
via factors such as changes in chemical state of the
soil system. Physical properties such as clay and silt
particles are especially sensitive to flocculating influ-
ences, and the small size of clay and silt particles
imbues themwith a high specific surface area for SOC
and nutrient sorption. Higher clay and silt contents
are also generally associated with greater aggregate
stability (Dagesse 2013). We also found that phys-
ical properties were particularly important for driv-
ing both SOC and nutrients in tropical and temperate
ecosystems (figure 5).

Soil pH and extractable Fe, an essential micronu-
trient for organisms (Moreno-Jiménez et al 2019),
were used to represent chemical properties. Soil pH
indicates the overall chemical state of the soil sys-
tem and dictates a number of geochemical gradients
(Deng and Dixon 2007). DTPA-extractable Fe was
correlated to ammonium oxalate extractable Fe (Gei-
ger and Loeppert 1986); these forms of available Fe

appear to be representative of short-range order min-
erals, which were correlated to SOC (Kramer and
Chadwick 2018, Rasmussen et al 2018). Among all the
drivers examined (including climate and biota), soil
extractable Fe was found to exert the greatest effect
on SOC at the continental scale (r= 0.59 and 0.52 in
topsoil and subsoil, respectively; figure S2). Recently,
Rasmussen et al (2018) also reported that some chem-
ical factors (e.g. exchangeable calcium, and iron- and
aluminum-oxyhydroxides) were stronger predictors
of SOC storage than physical property of clay content.

4.2. Why are other factors less important?
Although physico-chemical properties primarily pre-
dicted SOC and nutrient availability across Aus-
tralia, other factors should also be considered at an
ecosystem-level. Climate, usually considered as one of
the primary drivers (Karmakar et al 2016), had sig-
nificant direct and indirect effects (figures 4(a) and
(b)). However, compared to physico-chemical prop-
erties, climate had a less important role in predict-
ing SOC or nutrients (figures 3–5). This suggests that
climate usually has indirect effects through physico-
chemical properties as shown in figure 4, such as
the clear, strong relationship between A.I. and soil
pH (Slessarev et al 2016) (figures S2–S6); clearly, the
soil matrix ultimately controls the fate of SOC and
nutrients (Doetterl et al 2015). In addition, the biotic
factor of plant productivity is highly correlated to
climate (figures 4(a) and (b)). Plant productivity is
the main source of carbon input, and it has been
well parameterized in models to predict SOC stor-
age (Friedlingstein et al 2006). Our results showed
that, in comparison with physico-chemical proper-
ties, plant productivity played a less important role.
Therefore, our study refutes the paradigm that cli-
mate is the predominant factor predicting SOC and
nutrients (Carvalhais et al 2014) at least across the
Australian continent.

Soil biodiversity is also an indicator of soil qual-
ity in terms of its relationship to key functions
such as soil structure maintenance and nutrients
cycling. Thus, soil biodiversity is essential for eco-
system multifunctionality and sustainability (Wagg
et al 2014, Delgado-Baquerizo et al 2016), and it has
recently been incorporated into some carbon and
nutrient cycling models (Louis et al 2016). How-
ever, soil biodiversity had a lower power to predict
the spatial variation in SOC and nutrients compared
to physico-chemical properties (figures 3–5). This
could be partly related to the distinctive microbial
diversity inAustralian soils compared to the rest of the
world because Australian soils are highly weathered
(Eldridge et al 2018). The mechanisms linking to the
low correlation between SOC or nutrients and soil
biodiversity across the Australian continent need to
be addressed in future studies.
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Figure 5. Standardized total effects (direct plus indirect effects) derived from structural equation models (SEMs) for soil organic
carbon (SOC, left panel) and nutrients (right panel) in different ecosystem types. SEMs for each ecosystem are shown in
supplementary figures S9–S12. The number in brackets indicates the sample size of each ecosystem type.

4.3. Uncertainties and outlook
Although our assessment was based on a large, con-
tinental database, the primary importance of soil
physico-chemical properties in controlling SOC and
nutrients might not extend to the global scale. Soils
tend to be acidic, deeply weathered (Eldridge et al

2018), and depleted in nutrients and SOC (Lambers
et al 2008) due to the lack of glacial disturbance on
the ancient Australian landscape. This might also in
part explain the particular importance of soil tex-
ture in predicting SOC in subsoil across the Aus-
tralian continent, in contrast to its relatively low
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Physical properties

Climate

Less important More important

Relative influence in predicting soil
carbon and nutrients

Chemical properties

Soil biodiversity

Plant productivity

Figure 6. The relative importance of climate, plant productivity, soil biodiversity, physical properties and chemical properties in
predicting soil organic carbon and nutrient availability.

explanatory power for soil carbon content in a larger
study including younger soils in glaciated terrain
(Rasmussen et al 2018). Thus, the global application
of soil physico-chemical mechanisms in mediating
SOC and nutrient availability is still an open question.
More comprehensive data from other regions are
deserved to gain further understanding on this issue.
Secondly, some other important geochemical pre-
dictors (e.g. soil aggregates and mineralogy) of SOC
and nutrients were not considered due to the limita-
tion of this database. Although clay and silt particles
are commonly associated with soil aggregation, dir-
ect linkages between soil aggregates and organic car-
bon will advance our understanding of soil physical
properties regulating SOC in the future. Moreover,
interestingly, significant relationships between SOC
or nutrients and some other plant-available nutrient
elements (e.g. calcium, aluminum, manganese, and
zinc) were found. Because the mechanisms behind
these relationships were unknown, they were not
included in this continental-scale analysis. Finally,
soil nutrients and biodiversity are highly variable over
time. However, the data of soil nutrients and biod-
iversity at a typical site came fromone singlemeasure-
ment, leading to uncertainties in evaluating the relat-
ive importance of soil biodiversity in controlling SOC
and nutrient availability.

While all ecosystems demonstrated consistent
importance of physico-chemical properties, some
ecosystems were underrepresented. Most of the sites
were distributed in temperate regions (~65%), dom-
inated by forest and woodland, because there are

many native forests in temperate regions, and they are
considered important carbon sinks in Australia (Aus-
tralia’s State of the Forests Report 2018). Thus, these
results suggest that physico-chemical properties are
important for forest sustainability. Compared to tem-
perate ecosystems, other ecosystems were relatively
underrepresented (e.g. tropical ecosystem), leading
to some uncertainties in these regions of the study
area. Moreover, only ~2% of the total sampling sites
were wetlands, leading to a knowledge gap for future
research. Nevertheless, these findings throw new light
on the leading role of soil physico-chemical properties
at least from the 628 studied sites across theAustralian
continent, regardless of the soil depth and ecosystem
type, and strengthens our knowledge of the mechan-
isms mediating soil carbon and nutrient availability.

5. Conclusions

Collectively, our results provide strong empirical
evidence that soil physico-chemical properties play
the most important role in predicting SOC and
nutrient availability across Australia (figure 6). Our
findings highlight that models predicting distribu-
tions and future trends of SOC and nutrients should
combine principles of soil physico-chemical effects
with soil biological processes (e.g. carbon dynam-
ics and nutrient cycling) to rectify the inadequate
representation of soil geochemistry in current global
assessments (Tang and Riley 2015), at least in those
deeply weathered areas where SOC and nutrients are
relatively low like the Australian continent. Future
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work is needed to obtain the required global-scale
data on soil geochemistry, and incorporate direct
process-related controls in models of SOC and nutri-
ent cycling. Although physico-chemical properties
primarily predicted SOC and nutrient availability
when accounting simultaneously for other drivers
(climate, productivity, and soil biodiversity), how to
effectively incorporate these physico-chemical factors
into global biogeochemical models is still an open
question.
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