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Public healthcare has a history of cautious adoption for artificial intelligence (AI) systems.

The rapid growth of data collection and linking capabilities combined with the increasing

diversity of the data-driven AI techniques, including machine learning (ML), has brought

both ubiquitous opportunities for data analytics projects and increased demands for

the regulation and accountability of the outcomes of these projects. As a result,

the area of interpretability and explainability of ML is gaining significant research

momentum. While there has been some progress in the development of ML methods,

the methodological side has shown limited progress. This limits the practicality of using

ML in the health domain: the issues with explaining the outcomes of ML algorithms

to medical practitioners and policy makers in public health has been a recognized

obstacle to the broader adoption of data science approaches in this domain. This study

builds on the earlier work which introduced CRISP-ML, a methodology that determines

the interpretability level required by stakeholders for a successful real-world solution

and then helps in achieving it. CRISP-ML was built on the strengths of CRISP-DM,

addressing the gaps in handling interpretability. Its application in the Public Healthcare

sector follows its successful deployment in a number of recent real-world projects across

several industries and fields, including credit risk, insurance, utilities, and sport. This

study elaborates on the CRISP-ML methodology on the determination, measurement,

and achievement of the necessary level of interpretability of ML solutions in the Public

Healthcare sector. It demonstrates how CRISP-ML addressed the problems with data

diversity, the unstructured nature of data, and relatively low linkage between diverse

data sets in the healthcare domain. The characteristics of the case study, used in the

study, are typical for healthcare data, and CRISP-ML managed to deliver on these

issues, ensuring the required level of interpretability of the ML solutions discussed in the

project. The approach used ensured that interpretability requirements were met, taking

into account public healthcare specifics, regulatory requirements, project stakeholders,

project objectives, and data characteristics. The study concludes with the three main

directions for the development of the presented cross-industry standard process.
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1. INTRODUCTION AND BACKGROUND
TO THE PROBLEM

Contemporary data collection and linking capabilities, combined
with the growing diversity of the data-driven artificial intelligence
(AI) techniques, including machine learning (ML) techniques,
and the broader deployment of these techniques in data science
and analytics, have had a profound impact on decision-making
across many areas of human endeavors. In this context, public
healthcare sets priority requirements toward the robustness,
security (Qayyum et al., 2021), and interpretability (Stiglic et al.,
2020) of ML solutions. We use the term solution to denote
the algorithmic decision-making scenarios involving ML and AI
algorithms (Davenport and Kalakota, 2019). While the early AI
solutions for healthcare, like expert systems, possessed limited
explanatory mechanisms (Darlington, 2011), these mechanisms
proved to have an important role in clinical decision-making
and, hence, made healthcare practitioners, clinicians, health
economists, patients, and other stakeholders aware about the
need to have such capabilities.

Healthcare domain imposes a broad spectrum of unique
challenges to contemporary ML solutions, placing much higher
demands with respect to interpretability, comprehensibility,
explainability, fidelity, and performance of ML solutions (Ahmad
et al., 2018). Among these properties of ML solutions,
interpretability is particularly important for human-centric areas
like healthcare, where it is crucial for the end users to not only
have access to an accurate model but also to trust the validity
and accuracy of the model, as well as understand how the model
works, what recommendation has been made by the model, and
why. These aspects have been emphasized by a number of recent
studies, most notably in Caruana et al. (2015) and Holzinger et al.
(2017), and summarized in the study by Ahmad et al. (2018).

Healthcare, similar to government and business digital
services, manufacturing with its industrial internet of things
and creative industries, experienced the much celebrated
manifestations of “big data,” “small data,” “rich data,” and the
increased impact of ML solutions operating with these data.
Consequently, the interpretability of such solutions and the
explainability of the impact of the judgements they assist to make
or have made and, where needed, the rationale of recommended
actions and behavior are becoming essential requirements of
contemporary analytics, especially in society-critical domains of
health, medical analysis, automation, defense, security, finance,
and planning. This shift has been further accentuated by the
growing worldwide commitment of governments, industries, and
individual organizations to address their endeavors toward the
UnitedNations Sustainable Development Goals1 and by the data-
dependent scientific and technological challenges faced by the
rapid response to the COVID-19 pandemic. The later challenges
highlight and reinforce the central role of healthcare, backed by
science, technology, lateral thinking, and innovative solutions in
societal and economic recovery.

Some state-of-the-art overviews, such as Doshi-Velez andKim
(2017) and Gilpin et al. (2019) related to interpretability, as well

1https://www.un.org/sustainabledevelopment/sustainable-development-goals/

and https://sdgs.un.org/goals.

as more method-focused papers, like Lipton (2018) and Molnar
et al. (2019), tend to use interpretability and explainability
interchangeably. They also report that the interpretability of ML
solutions and the underlying models is not well-defined. The
study related to interpretability is scattered throughout a number
of disciplines, such as AI, ML, human-computer interaction
(HCI), visualization, cognition, and social sciences (Miller, 2019),
to name a few of the areas. In addition, the current research
seems to focus on particular categories or techniques instead of
addressing the overall concept of interpretability.

Recent systematic review studies, Gilpin et al. (2018) and
Mittelstadt et al. (2019), have clarified some differences and
relationships between interpretability and explainability in the
context of ML and AI. In these domains, interpretability refers
to the degree of human interpretability of a given model,
including “black box” models (Mittelstadt et al., 2019). Machine
interpretability of the outcomes of ML algorithms is treated
separately. Explanability refers primarily to the number of
ways to communicate an ML solution to others (Hansen and
Rieger, 2019), i.e., the “ways of exchanging information about
a phenomenon, in this case the functionality of a model or the
rationale and criteria for a decision, to different stakeholders.”
Both properties of ML solutions are central to the broader
adoption of such solutions in diverse high-stake healthcare
scenarios, e.g., predicting the risk of complications to the health
condition of a patient or the impact of treatment change.

While some authors (for instance, Hansen and Rieger, 2019;
Mittelstadt et al., 2019; Samek and Müller, 2019) consider
interpretability as an important component of explainability of
ML solutions in AI, we view interpretability and explainability
as complementary to each other, with interpretability being
fundamental in ensuring trust in the results, transparency of the
approach, confidence in deploying the results, and, where needed,
quality of the maintenance of ML solutions. Further, in this
study, we used the term interpretability in a broader sense, which
subsumes communication and information exchange aspects of
explainability.

We considered two connected aspects of the development of
the overall concept of interpretability in ML solutions:

1. methods, which include the range of interpretable ML
algorithms and interpretability solutions for AI/ML
algorithms;

2. methodologies in data science, which consider explicitly the
achievement of the necessary (for the project) interpretability
of the ML solutions.

There is a wide collection of interpretable ML methods and
methods for the interpretation of ML models. Murdoch et al.
(2019) provide a compact and systematic approach toward
their categorization and evaluation. Methods are categorized
into model-based and post-hoc interpretation methods. They are
evaluated using predictive accuracy, descriptive accuracy, and
relevancy, the PDR framework (Murdoch et al., 2019), where
relevancy is evaluated against human audience. The framework
also provides common terminology for practitioners. Guidotti
et al. (2018) and Carvalho et al. (2019) provide extensive
systematic overviews with elaborate frameworks of the state-
of-the-art of interpretability methods. Mi et al. (2020) provide
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broader taxonomy and comparative experiments, which can help
practitioners in selecting suitable models with complementary
features for addressing interpretability problems inML solutions.

Model interpretability and explainability are crucial for
clinical and healthcare practice, especially, since not only non-
linear models but also inherently more interpretable ones,
like decision trees, if large and complex, become difficult to
comprehend (Ahmad et al., 2018).

On the other hand, working with data in the healthcare
domain is complex at every step, starting from establishing
and finding the relevant, typically numerous, diverse, and
heterogeneous data sources required to address the research
objective; integrating andmapping these data sources; identifying
and resolving data quality issues; pre-processing and feature
engineering without losing information or distorting it; and
finally using the resulting high-dimensional, complex, sometimes
unstructured, data to build a high-performing interpretable
model. This complexity further supports the argument for
the development of ML methodologies which explicitly embed
interpretability through the data science project life cycle and
ensure the achievement of the level of interpretability of ML
solutions that had been agreed for the project. Interpretability of
an ML solution can serve a variety of stakeholders involved in
data science projects in connection with the implementation of
their outcomes.

Interpretability of an ML solution can serve a variety of
stakeholders, involved in data science projects and related
to the implementation of their outcomes in algorithmic
decision making (Berendt and Preibusch, 2017). For instance,
the human-centric visual analytics methodology “Extract-
Explain-Generate” for interrogating biomedical data (Kennedy
et al., 2008) explicitly relates different stakeholders (molecular
biologist, clinician, analysts, and managers) with specific areas
of knowledge extraction and understanding associated with the
management of patients. This study is focused on addressing
the methodological challenges and opportunities of broad
embedding of interpretability (including the selection of methods
of interpretability that are appropriate for a project, given its
objectives and constraints).

2. CHALLENGES AND OPPORTUNITIES IN
CREATING METHODOLOGIES WHICH
CONSISTENTLY EMBED
INTERPRETABILITY

In order to progress with the adoption of ML in healthcare, a
consistent and comprehensive methodology is needed: first, to
minimize the risk of project failures, and second, to establish and
ensure the needed level of interpretability of the ML solution
while addressing the above-discussed diverse requirements to
ML solutions. The rationale supporting these needs is built on
a broader set of arguments about:

– the high proportion of data science project failures, including
those in healthcare;

– the need to support an agreed level of interpretability and
explainability of ML solutions;

– the need for consistent measurement and evaluation of
interpretability of ML solutions; and

– the emerging need for standard methodology, which explicitly
embeds mechanisms to manage the achievement of the level
of interpretability of ML solutions required by stakeholders
through the project.

Further, in this section, we use these arguments as dimensions
around which we elaborate the challenges and opportunities for
the design of cross-industry data science methodology, which is
capable of handling interpretability of ML solutions under the
complexity of the healthcare domain.

2.1. High Proportion of Data Science
Project Failures
Recent reports, which include healthcare-related organizations,
estimate that up to 85% of data science/ML/AI projects do
not achieve their stated goals. The latest NewVantage Partners
Big Data and AI Executive Survey, based on the responses
from C-Executives from 85 blue-chip companies of which 22%
are from Healthcare and Life Sciences, noted that only 39%
of companies are managing data as an asset (NewVantage
Partners LLC, 2021). Fujimaki (2020) emphasized that “the
economic downturn caused by the COVID-19 pandemic has
placed increased pressure on data science and BI teams to
deliver more with less. In this type of environment, AI/ML
project failure is simply not acceptable.” On the other hand,
the NewVantage Partners survey (NewVantage Partners LLC,
2021) emphasized that, over the 10 years of conducting
these surveys, organizations continue to struggle with their
transformation into data-driven organizations, with only 29%
achieving transformational business outcomes. Only 24% have
created a data-driven organization, a decline from 37.8%, and
only 24% have forged a data culture (NewVantage Partners LLC,
2021), a result which, to a certain extent, is counterintuitive to the
overall expectation of the impact of AI technologies to decision-
making and which projected benefits from the adoption of such
technologies.

A number of sources (e.g., vander Meulen and Thomas, 2018;
Kaggle, 2020; NewVantage Partners LLC, 2021) established that a
key reason for these failures is linked to the lack of proper process
and methodology in areas, such as requirement gathering,
realistic project timeline establishment, task coordination,
communication, and designing a suitable project management
framework (see also Goodwin, 2011; Stieglitz, 2012; Espinosa
and Armour, 2016). Earlier works have suggested (see, e.g., Saltz,
2015) that improved methodologies are needed as the existing
ones do not cover many important aspects and tasks, including
those related to interpretability (Mariscal et al., 2010). Further,
studies have shown that the biased focus on the tools and
systems has limited the ability to gain value from the effort of
organizational analytics effort (Ransbotham et al., 2015) and that
data science projects need to increase their focus on process and
task coordination (Grady et al., 2014; Gao et al., 2015; Espinosa
and Armour, 2016). A recent Gartner Consulting report also
emphasizes the role of processes and methodology (Chandler
and Oestreich, 2015) and practitioners agree with this view (for
examples and analyses from diverse practical perspectives see
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Goodson, 2016; Arcidiacono, 2017; Roberts, 2017; Violino, 2017;
Jain, 2019).

2.2. Support for the Required Level of
Interpretability and Explainability of ML
Solutions
In parallel with the above-discussed tendencies, there is pressure
on the creation of frameworks/methodologies, which can ensure
the necessary interpretability for sufficient explainability of the
output of the ML solutions. While it has been suggested, in
recent years, that it is only a matter of time before ML will
be universally used in healthcare, building ML solutions in the
health domain proves to be challenging (Ahmad et al., 2018). On
the one hand, the demands for explainability, model fidelity, and
performance in general in healthcare are much higher than in
most other domains (Ahmad et al., 2018). In order to build the
trust in ML solutions and incorporate them in routine clinical
and healthcare practice, medical professionals need to clearly
understand how and why an ML solution-driven decision has
been made (Holzinger et al., 2017; Vellido, 2020).

This is further affected by the fact that the ML algorithms
that achieve a high level of predictive performance, e.g., boosted
trees (Chen and Guestrin, 2016) or deep neural networks
(Goodfellow et al., 2016), are quite complex and usually difficult
to interpret. In fact, some researchers argue that performance
and interpretability of an algorithm are in reverse dependence
(Ahmad et al., 2018; Molnar et al., 2019). Additionally, while
there are a number of techniques aiming to explain the
output of the models that are not directly interpretable, as
many authors note (e.g., Holzinger et al., 2017; Gilpin et al.,
2019; Rudin, 2019; Gosiewska et al., 2020), current explanatory
approaches, while promising, do not seem to be sufficiently
mature. Molnar et al. (2019) found that the reliability of some
of these methods deteriorates if the number of features is
large or if the level of feature interactions is high, which is
often the case in health data. Further, Gosiewska and Biecek
(2020) showed that current popular methods for explaining the
output of ML models, like SHAP (Lundberg and Lee, 2017)
and LIME (Ribeiro et al., 2016), produce inconsistent results,
while Alvarez-Melis and Jaakkola (2018) found that the currently
popular interpretability frameworks, particularly model-agnostic
perturbation-based methods, are often not robust to small
changes of the input, which clearly is not acceptable in the health
domain.

There is a firm recognition of the impact of ML solutions in
economics, including health economics, especially in addressing
“predictive policy” problems (Athey, 2019). Many authors (e.g.,
Holzinger et al., 2017; Dawson et al., 2019; Rudin, 2019) note that
in the high-stake areas (e.g., medical field, healthcare) solutions,
in which the inner workings are not transparent (Weller, 2019),
can be unfair, unreliable, inaccurate, and even harmful. Such
views are reflected in the legislation on data-driven algorithmic
decision-making, which affects citizens across the world. The
European Union’s General Data Protection Regulation (GDPR)
(EU, 2016), which entered into force in May 2018, is an
example of such early legislation. In the context of the emerging

algorithmic economy, there are also warnings to policymakers to
be aware of the potential impact of legislations like GDPR on the
development of new AI and ML solutions (Wallace and Castro,
2018).

These developments increased the pressure on creation of
frameworks and methodologies, which can ensure sufficient
interpretability of ML solutions. In healthcare, such pressure is
amplified by the nature of the interactive processes, wherein
neither humans nor the algorithms operate with unbiased data
(Sun et al., 2020).

Major technology developers, including Google, IBM, and
Microsoft, recommend responsible interpretability practices (see,
e.g., Google, 2019), including the development of common
design principles for human-interpretable machine learning
solutions (Lage et al., 2019).

2.3. Consistent Measurement and
Evaluation of Interpretability of ML
Solutions
While there are a number of suggested approaches to measuring
interpretability (Molnar et al., 2019), a consensus on the ways
of measuring or evaluating the level of interpretability has not
been reached. For example, Gilpin et al. (2019) found that
the best type of explanation metrics is not clear. Murdoch
et al. (2019) mentioned that, currently, there is confusion about
the interpretability notion and a lack of clarity about how
the proposed interpretation approaches can be evaluated and
compared against each other and how to choose a suitable
interpretation method for a given issue and audience. The PDR
framework (Murdoch et al., 2019), mentioned earlier, is a step
in the direction of developing consistent evaluations. Murdoch
et al. (2019) further note that there is limited guidance on how
interpretability can actually be used in data science life cycles.

2.4. The Emerging Need for Standard
Methodology for Handling Interpretability
Having a good methodology is important for the success of
a data science project. To our knowledge, there is no formal
standard for methodology in the data science projects (see
Saltz and Shamshurin, 2016). Through the years, the CRISP-
DM methodology (Shearer, 2000) created in the late 1990s
has become a de-facto standard, as evidenced from a range of
works (see, e.g., Huang et al., 2014; Niño et al., 2015; Fahmy
et al., 2017; Pradeep and Kallimani, 2017; Abasova et al., 2018;
Ahmed et al., 2018). An important factor of its success is the
fact that it is industry, tool, and application agnostic (Mariscal
et al., 2010). However, the research community has emphasized
that, since its creation, CRISP-DM had not been updated to
reflect the evolution of the data science process needs (Mariscal
et al., 2010; Ahmed et al., 2018). While various extensions and
refined versions of the methodology, including IBM’s Analytics
Solutions Unified Method for Data Mining (ASUM-DM) and
Microsoft’s Team Data Science Process (TDSP), were proposed
to compensate the weaknesses of CRISP-DM, at this stage, none
of them has become the standard. In the more recent years,
variations of CRISP-DM tailored for the healthcare (Catley et al.,
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2009) and medical domain, such as CRISP-MED-DM (Niaksu,
2015), have been suggested. The majority of organisations that
apply a data analysis methodology prefers extensions of CRISP-
DM (Schäfer et al., 2018). Such extensions are fragmented
and either propose additional elements into the data analysis
process, or focus on organisational aspects without the necessary
integration of domain-related factors (Plotnikova, 2018). These
might be the reasons for the observed decline of its usage
as reported in studies by Piatetsky-Shapiro (2014), Bhardwaj
et al. (2015), and Saltz and Shamshurin (2016). Finally, while
methodologies from related fields, like the agile approach used
in software development, are being considered for use in data
science projects, there is no clear clarity on whether they are
fully suitable for the purpose, as indicated by Larson and Chang
(2016); therefore, we did not include them in the current scope.

This overall lack of consensus has provided an opportunity
to reflect on the philosophy of the CRISP-DM methodology
and create a comprehensive data science methodology, through
which interpretability is embedded consistently into an ML
solution. Such methodology faces a list of requirements:

– It has to take into account the different perspectives and
aspects of interpretability, including model and process
explainability and interpretability;

– It has to consider the desiderata of explainable AI (fidelity,
understandability, sufficiency, low construction overhead, and
efficiency) as summarized in Hansen and Rieger (2019);

– It needs to support consistent interaction of local and global
interpretability of ML solutions with other established key
factors in data science projects, including predictive accuracy,
bias, noise, sensitivity, faithfulness, and domain specifics;

In addition, healthcare researchers have indicated that the choice
of interpretable models depends on the use case (Ahmad et al.,
2018).

In order to standardize the expectations for interpretability,
some of these requirements have been addressed in the
recently proposed CRISP-ML methodology (Kolyshkina and
Simoff, 2019). In section 3, we will briefly discuss the major
concepts differentiating CRISP-ML methodology. The CRISP-
ML approach includes the concepts of necessary level of
interpretability (NLI) and interpretability matrix (IM), described
in detail by Kolyshkina and Simoff (2019), and therefore aligns
well with the view of health researchers that the choice of
interpretable models depends upon the application and use case
for which explanations are required (Ahmad et al., 2018). To
illustrate that, in section 4, we present a use case in the public
health field that illustrates the typical challenges met and the ways
CRISP-ML helped to address and resolve them.

3. CRISP-ML METHODOLOGY—TOWARD
INTERPRETABILITY-CENTRIC CREATION
OF ML SOLUTIONS

The CRISP-ML methodology (Kolyshkina and Simoff, 2019) of
building interpretability of an ML solution is based on revision
and update of CRISP-DM to address the opportunities discussed

in section 2. It follows the CRISP-DM approach in terms
of being industry-, tool-, and application-neutral. CRISP-ML
accommodates the necessary elements to work with diverse ML
techniques and create the right level of interpretability through
the whole ML solution creation process. Its seven stages are
described in Figure 1), which is an updated version of the CRISP-
ML methodology diagram in the study by Kolyshkina and Simoff
(2019).

Central to CRISP-ML is the concept of necessary level of
interpretability of an ML solution. From this view point, CRISP-
ML can be differentiated as a methodology of establishing and
building the necessary level of interpretability of a business ML
solution. In line with Google’s guidelines on the responsible
AI practices in the interpretability area (Google, 2019) and
expanding on the approach proposed by Gleicher (2016),
we have specified the concept of minimal necessary level of
interpretability of a business ML solution as the combination of
the degree of accuracy of the underlying algorithm and the extent
of understanding the inputs, inner workings, the outputs, the user
interface, and the deployment aspects of the solution, which is
required to achieve the project goals. If this level is not achieved,
the solution will be inadequate for the purpose. This level needs
to be established and documented at the initiation stage of the
project as part of requirement collection (see Stage 1 in Figure 1).

We then describe an ML solution as sufficiently interpretable
or not based on whether or not it achieved the required level of
interpretability. Obviously, this level will differ from one project
to another depending on the business goals. If individuals are
directly and strongly affected by the solution-driven decision,
e.g., in medical diagnostics or legal settings, then both the ability
to understand and trust the internal logic of the model, as well
as the ability of the solution to explain individual predictions,
are of highest priority. In other cases, when an ML solution
is used in order to inform business decisions about policy,
strategy, or interventions aimed to improve the business outcome
of interest, then it is necessary to understand and trust the
internal logic of the model that is of most value, while individual
predictions are not the focus of the stakeholders. For example, in
one of our projects, an Australian state organization wished to
establish what factors influenced the proportion of children with
developmental issues and what interventions can be undertaken
in specific areas of the state in order to reduce that proportion.
The historical, socioeconomic, and geographic data provided
for the project was aggregated at a geographic level of high
granularity.

In other cases, e.g., in the case of an online purchase
recommender solution, the overall outcome, such as increase in
sales volume, may be of higher importance than interpretability
of the model. Similar requirements of solution interpretability
were in a project where an organization owned assets that
were located in remote areas and were often damaged by
birds or animals nests. The organization wished to lower their
maintenance cost and planning by identifying as soon as possible
the assets where such nests were present instead of doing
expensive examination of each asset. This was achieved by
building a ML solution that classified Google Earth images of the
assets into those with and without nests. In this project, it was
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FIGURE 1 | Conceptual framework of CRISP-ML methodology.

important to identify a proportion of assets that were as high as
possible with nests on them, while misclassifying an individual
asset image was not of great concern.

The recently published CRISP-ML(Q) (Studer et al., 2020)
proposes an incremental extension of CRISP-DM with the
monitoring and maintenance phases. While the study mentions
“model explainability” referring to the technical aspects of the
underlying model, it does not consider interpretability and
explainability in a systematic way as CRISP-ML (Kolyshkina
and Simoff, 2019). Interpretability is now one of the most
important and quickly developing universal requirements, not
only a “best practice” requirement in some industries. It is also
a legal requirement. CRISP-ML (Kolyshkina and Simoff, 2019)
ensures that the necessary interpretability level is identified at the
requirement collection stage. The methodology then ensures that
participants establish the activities for each stakeholder group
at each process stage that are required to achieve this level.
CRISP-ML (Kolyshkina and Simoff, 2019) includes stages 3 and
4 (data predictive potential assessment and data enrichment in
Figure 1), which are not present in CRISP-ML(Q) (Studer et al.,
2020). As indicated in Kolyshkina and Simoff (2019), skipping
these important phases can result in potential scope creep and
even business project failure.

In Kolyshkina and Simoff (2019), the individual stages of the
CRISP-MLmethodology were presented in detail. Each stage was
illustrated with examples from cases from a diverse range of
domains. There, the emphasis was on the versatility of CRISP-
ML as a industry-neutral methodology, including its approach
to interpretability. In this study, we focus on a single case study
from health-related domain in order to present a comprehensive

coverage of each stage and the connections between the
stages, and provide examples of how the required level of
interpretability of the solution is achieved through carefully
crafted involvement of the stakeholders as well as decisions
made at each stage. This study does not provide comparative
evaluation of CRISP-ML methodology in comparison to CRISP-
DM (Shearer, 2000), ASUM-DM (IBM Analytics, 2015), TDSP
(Microsoft, 2020), and other methodologies discussed by
Kolyshkina and Simoff (2019). The purpose of the study is
to demonstrate, in a robust way, the mechanics of explicit
management of interpretability in ML through the project
structure and life cycle of a data science methodology. Broader
comparative evaluation of the methodology is the subject of a
separate study.

The structure of the CRISP-ML process methodology has
embedded flexibility in it, indicated by the cycles, which link
the model-centric stages back to the early data-centric stages,
as shown in Figure 1. Changes inevitably occur in any project
over the course of the project life cycle, and CRISP-ML reflects
that. Themost typical changes, related to data availability, quality,
and analysis findings, occur mostly at stages 2–4, as shown in
Figure 1. This is illustrated in our case study and was discussed
in detail in the study by Kolyshkina and Simoff (2019). Less
often changes occur at stages 5–7 in Figure 1. From experiential
observations, such changes are more likely to occur in longer
projects with a volume of work requiring more than 6–8 months
for completion. They are usually driven by amendments in
project scope and requirements including the necessary level of
interpretability (NLI), that are caused by factors external to the
analytical part of the project. These factors can be global, such

Frontiers in Big Data | www.frontiersin.org 6 May 2021 | Volume 4 | Article 660206

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Kolyshkina and Simoff Interpretability of Machine Learning in Public Healthcare

as environmental, political, or legislative factors; organization-
specific (e.g., updates in the organizational IT structure, the way
of data storage or changes in the stakeholder team), or they
could be related to the progress in ML and ML-related technical
areas (e.g., the advent of a new, better performing predictive
algorithm).

In this study, we present the stages of CRISP-ML in a
rigid manner, around the backbone of the CRISP-ML process,
represented by the solid black triangle arrows in Figure 1

to maintain the emphasis on the mechanisms for handling
interpretability in each of these steps, rather than exploring
the iterative nature of the approach. For consistency of the
demonstration, we draw all detailed examples through the study
from the specific public health case study. As a result, we are
able to illustrate in more depth how we sustain the level of
interpretability through the process structure of the project. The
study complements the study by Kolyshkina and Simoff (2019),
where, through the examples drawn from a variety of cases, we
demonstrated the versatility of CRISP-ML. The methodological
treatment of interpretability in evolving scenarios and options is
beyond the scope of this study.

4. CASE STUDY ILLUSTRATING THE
ACHIEVEMENT OF THE NLI OF MACHINE
LEARNING SOLUTION

In this study, we will describe a detailed real-world case study
in which, by going through each project stage, we illustrate
how CRISP-ML facilitates data science project stakeholders in
establishing and achieving the necessary level of interpretability
of ML solution.

We would like to emphasize that the specific analytic
techniques and tools mentioned in the respective stages of the
case study are relevant specifically to this particular study. They
illustrate the approach and the content of the interpretability
mechanisms of CRISP-ML. However, there are many other
available methods andmethod combinations that can achieve the
objectives of this and other projects.

We place a particular focus on the aspects and stages of
CRISP-ML from the perspective of demonstrating the flow and
impact of interpretability requirements and on how they have
been translated into the necessary level of interpretability of the
finalML solution. Further, the structure of this section follows the
stages of CRISP-ML process structure in Figure 1. All sensitive
data and information have been masked and altered to protect
privacy and confidentiality, without loss of the sensible aspects
relevant to this presentation.

4.1. Background. High-Level Project
Objectives and Data Description
An Australian State Workers Compensation organization sought
to predict, at an early stage of a claim, the likelihood of the claim
becoming long-term, i.e., a worker staying on income support for
1 year ormore from the date of lodgement. A further requirement
was that the prediction model should be easily interpretable by
the business.

The data that the analysis was to be based upon were identified
by the organizational experts, based on the outcomes for about
20,000 claims incurred in the recent years, and included the
following information:

– injured worker attributes, e.g., date of birth, gender,
occupation, average weekly earnings, residential address;

– injury attributes, e.g., injury date, the information on the
nature, location, mechanism, and agency of injury coded
according to the National Type of Occurrence Classification
System2;

– employer attributes (size, industry classification);
– details of all worker’s income support or similar payments.

4.2. Building the Project Interpretability
Matrix: An Overall Approach
Interpretability matrix is usually built at Stage 1 of the project
as part of the requirement collection process. Data science
practitioners recognize Stage 1 as crucial for the overall project
success (see, e.g., PMI, 2017), as well as from the solution
interpretability building perspective (Kolyshkina and Simoff,
2019).

The IM as a structure for capturing and translating
interpretability requirements into specific actions and activities
is generalized. However, the specific content of its cells depends
on the project. Kolyshkina and Simoff (2019) demonstrated the
CRISP-ML stages consistently applied to different projects across
a number of industries, data sets, and data types.

It covers the activities needed to start up the data
science project: (a) the identification of key stakeholders;
(b) documenting project objectives and scope; (c) collecting
requirements; (d) agreeing upon initial data; (e) preparing a
detailed scope statement; and (f) developing project schedule
and plan. The deliverable of this stage was a project charter
documenting the above activities.

4.2.1. Interpretability-Related Aspects of the Project

Charter: Business Objectives, Main Stakeholders,

and Interpretability Level
We will describe in more detail the aspects of the project
charter that were directly related to this study, specifically
the established business objectives, main stakeholders, and the
established necessary interpretability requirements.

4.2.1.1. Business objectives and main stakeholders.
The established objectives included:

1. Build an ML system that will explain what factors and to what
extent influence the outcome, i.e., claim duration;

2. Allow the organization to derive business insights that will
help make data-driven accurate decisions regarding what
changes can be done to improve the outcome, i.e., reduce the
likelihood of a long claim by a specified percentage;

2Type of Occurrence Classification System (3rd Edition, Revision 1), Australian

Government—Australian Safety and Compensation Council, Canberra, 2008,

https://www.safeworkaustralia.gov.au/doc/type-occurrence-classification-

system-toocs-3rd-edition-may-2008).
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3. Be accurate, robust, and work with real-world organizational
data;

4. Have easy-to-understand outputs that would make sense to
the executive team and end users (case managers) and that the
end users could trust;

5. Present the output as business rules that are easy to
understand for end users and to deploy, monitor, and update
in organizational data.

6. Ensure that the overall ML solution is easy to understand and
implement by the Information Technology (IT) team of the
organization and to monitor/update the Business Intelligence
(BI) team of the organization.

The main stakeholders were identified as follows: Executive team
(E); End Users/Domain Experts, i.e., Case management team
(DE); Information Technology team who would implement the
solution in the organizational data (IT); Business Intelligence
team who would monitor the solution performance and update
the underlying model (BI); and Modeling team (M). These
abbreviations are used further in the descriptions of the stages
of the IM.

4.2.1.2. The established necessary interpretability level.
The necessary interpretability level (Kolyshkina and Simoff,
2019) was established as follows.

– The E, IT, and DE teams needed to have a clear understanding
of all internal and external data inputs to be used: their
reliability, quality, and whether the internal inputs were
representative of the organizational data that the solution
would be deployed on.

– The E and DE teams needed to have a clear understanding of
the high-level data processing approach (e.g., missing values
treatment, aggregation level), as well as high-level modeling
approach and its proven validity.

– The outputs needed to be provided in the form of easily
understandable business rules. The E and DE teams needed to
gain a clear understanding of the rules and to be able to assess
their business validity and usefulness from the business point
of view.

– The BI team, who would monitor the solution performance
and update it as required, need to have a clear understanding
of:

– the data processing stage, as well as the modeling algorithm,
its validity, and suitability from the ML point of view;

– how to assess the solution performance and how the
solution needs to be audited, monitored, and updated, as
well as how often this should occur.

– The IT team, who would deploy the solution needed to have a
clear understanding of the format of the output and confirm
that it can be deployed in the organizational data within
the existing constraints (e.g., resources, cost) and without
disrupting the existing IT systems.

4.2.2. Creating the Project IM: An Overall Approach
The next step is to create and fill out the IM, whose rows show
CRISP-ML stages, and columns represent key stakeholders. In

each cell of the matrix, we showed what needs to be done by
each stakeholder at each project stage to ensure that the required
level of solution interpretability is achieved. Matrix cells can be
grouped horizontally when there are common requirements for
a group of stakeholders. Matrix cells can be grouped vertically
when there are common requirements for a specific stakeholder
across a number of stages in CRISP-ML. This matrix, once
completed, becomes part of the business requirements document.
The activities it outlines are integrated into the project plan and
are reviewed and updated along with the project plan.

4.2.2.1.Definition of stakeholder involvement extent.
We define the extent of involvement of a stakeholder group
needed to achieve the necessary interpretability level in a
particular project stage as follows:

– high extent of involvement—the stakeholder group needs to
be directly and actively involved in the solution development
process to ensure that the NLI is achieved at the stage;

– medium extent of involvement—the stakeholder group needs
to receive detailed regular updates on the progress of the stage
and get directly involved in the work from time to time to
ensure that the NLI is achieved at the stage. For example,
this can refer to DE and IT providing information helping to
better understand data sources and business processes of the
organization.

– low extent of involvement—the stakeholder group is kept
informed on the general progress of the stage.

In Figure 2, green color background indicates high extent
of involvement of a stakeholder group, yellow color shows
medium extent of involvement, and the cells with no color in
the background show low level of involvement. Depending on
the project, the coloring of the cells of the IM will vary. For
example, if it had not been necessary to provide knowledge
transfer (“Ongoing knowledge and skill development”) to the BI
team, then their involvement in Stage 2–5 would have been low
and the respective cells would have been left with no color in the
background.

4.2.2.2.High-level IM diagram.
Figure 2 shows a high-level interpretability matrix for the
project.

4.3. Entries to the Project Interpretability
Matrix at Each Stage of CRISP-ML
Further, we discuss entries to the project IM at each stage of
CRISP-ML.

4.3.1. Stage 1
The content of the interpretability matrix related to the
project initiation and planning stage (i.e., the first row of the
matrix) has been discussed in detail above and is summarized
in Figure 3.

4.3.2. Stages 2–4
Stages 2–4 in Figure 1 are mainly data-related and form the
data comprehension, cleansing, and enhancement mega-stage.
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FIGURE 2 | High-level interpretability matrix for the project.

Further, we consider the content of the interpretability matrix for
each of these stages, they are represented by the second, third,
and fourth rows of interpretability matrix.

4.3.2.1. Stage 2.
Data audit, exploration, and cleansing played a key role in
achieving the interpretability level needed for the project.
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Figure 4 demonstrates the content of the interpretability matrix
at this stage.

This stage established that the data contained characteristics
that significantly complicated the modeling, such as a large
degree of random variation, multicollinearity, and a highly
categorical nature of many potentially important predictors.
These findings helped guide the selection of the modeling and
data pre-processing approach.

Random variation. During workshops with E, DE, and other
industry experts, it became clear that there were certain “truths”

that pervaded the industry, and we used these to engage with
subject matter experts (SME) and promote the value of our
modeling project. One such “truth” was that claim duration
was influenced principally by nature and location of injury,
but in combination with the age of the injured worker, and
specifically, older workers tended to have longer duration claims.
Our analysis demonstrated the enormous amount of random
variation that existed in the data. For example, age, body location,
and injury type only explained 3–7% of variation in claim
duration. There was agreement among the experts that the

FIGURE 3 | Interpretability matrix content for Stage 1.

FIGURE 4 | Interpretability matrix content for Stage 2.
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industry “truths” were insufficient to accurately triage claims and
that different approaches were needed.

Our exploratory analysis revealed strong random variation
in the data, confirming the prevalent view among the workers’
compensation experts that it is the intangible factors, like the
injured worker’s mindset and relationship with the employer, that
play the key role in the speed of recovery and returning to work.
The challenge for the modeling, therefore, was to uncover the
predictors that represent these intangibles.

Sparseness. Most of the available variables were categorical
with large numbers of categories. For example, the variable
“Injury Nature” has 143 categories and “Body Location of Injury”
has 76 categories. Further, some categories had relatively few
observations which made any analysis involving them potentially
unreliable and not statistically valid. Such sparseness presented
another data challenge.

Multicollinearity. There was a high degree of multicollinearity
between numerical variables in the data.

Data pre-processing. First, we reduced the sparseness among
categories by combining some categorical levels in consultation
with SMEs to ensure that the changes made business sense.
Second, we used a combination of correlation analysis, as
well as advanced clustering and feature selection approaches,
e.g., Random Forests (see, e.g., Shi and Horvath, 2006) and
PCAMIX method using iterative relocation algorithm and
ascendant hierarchical clustering (Chavent et al., 2012) to reduce
multicollinearity and exclude any redundant variables.

4.3.2.2. Stage 3.
Figure 5 shows the content of the interpretability matrix related
to the evaluation of the predictive potential of the data (i.e., the
third row of the matrix). This stage is often either omitted or not
stated explicitly in other processes/frameworks (Kolyshkina and
Simoff, 2019); however, it is crucial for the project success because
it establishes whether the information in the data is sufficient for
achieving the project goals.

To efficiently evaluate what accuracy could be achieved
with the initially supplied data, we employed the following
different data science methods that have proven their excellence
at extracting maximum predictive power from the data: Deep
Neural Nets, Random Forests, XGBoost, and Elastic Net. The
results were consistent for all the methods used and showed that
only a small proportion of the variability of claim duration was
explained by the information available in the data. Therefore,
the predictive potential of the initially supplied data, containing
claim and worker’s data history, indicated that the data set
is insufficient for the project objectives. Data enrichment was
required.

These findings were discussed with DE who then were invited
to share their business knowledge about sources that could enrich
the initial data predictive power.

4.3.2.3. Stage 4.
Data enrichment. Figure 6 shows the content of the
interpretability matrix related to the data enrichment stage.
Based on the DE feedback and results of external research, we
enriched the data with additional variables, including:

– lag between injury occurrence and claim lodgement (claim
reporting lag);

– information on the treatment received (e.g., type of providers
visited, number of visits, provider specialty);

– information on the use of medications and, specifically, on
whether a potent opioid was used.

We assessed the predictive value of the enriched data in the
same way as before (see section 4.3.2.2), and found that there was
a significant increase in the proportion of variability explained by
the model. Of particular relevance was the incorporation of the
prior claim history of claimants, including previous claim count,
type and nature of injury, and any similarity with the current
injury.

Further, the data enrichment was a key step in building further
trust of the DE team. The fact that the model showed that the

FIGURE 5 | Interpretability matrix content for Stage 3.
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cost of a claim can be significantly dependent on the providers
a worker visited built further trust in the solution, because it
confirmed the hunch of domain experts that they previously had
not had enough evidence to prove.

4.3.3. Stage 5
Figure 7 shows the content of the interpretability matrix for
the model building and evaluation stage. To achieve the right
interpretability level, it is crucial that modelers choose the right
technique that will balance the required outcome interpretability
with the required level of accuracy of the model, which is
often a challenge (see, e.g., Freitas, 2014), as well as with other
requirements/constraints (e.g., the needed functional form of the
algorithm). In our case, it was required that the model explained
at least 70% of variability.

At this stage, the ML techniques to be used for modeling
are selected, taking into account the predictive power of the
model, its suitability for the domain and the task, and the
NLI. The data is pre-processed, and modeled, and the model
performance is evaluated. The solution output was required to be
produced in the form of business rules, and therefore, the feature
engineering methods and modeling algorithms used included
rule-based techniques, e.g., decision trees, and association rules-
based methods.

4.3.4. Stage 6
Figure 8 shows how the interpretability matrix reflects the role of
interpretability in the formulation of business insights necessary
to achieve the project goals and in helping the E and DE to
understand the derived business insights and to develop trust in

FIGURE 6 | Interpretability matrix content for Stage 4.

FIGURE 7 | Interpretability matrix content for Stage 5.
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them. Modelers, BI and DEs, prepared a detailed presentation for
the E, explaining not only the learnings from the solution but also
the high-level model structure and its accuracy.

4.3.5. Stage 7
The final model provided the mechanism for the organization to
allocate claims to risk segments based on the information known
at early stages. From the technical point of view, the business
rules were confirmed by the E, DE, and IT to be easy to deploy
as they are readily expressed as SQL code. Based on this success,
a modified version of claims triage was deployed into production.

Figure 9 shows the shift of responsibilities for ensuring the
achieved interpretability level is maintained during the future
use of the solution. At this stage, the deployment was being
scheduled, and the monitoring/updating process and schedule
was prepared, based on the technical report provided by the

M team that included project code, the solution manual, and
updating and monitoring recommendations.

5. CONCLUSIONS

This study contributes toward addressing the problem for
providing organizations with capabilities to ensure that the
ML solutions they develop to improve decision-making are
transparent and easy to understand and interpret. If needed, the
logic behind the decisions can be explained to any external party.
Such capability is essential in many areas, especially in health-
related fields. It allows the end users to confidently interpret the
ML output use to make successful evidence-based decisions.

In an earlier study (Kolyshkina and Simoff, 2019), we
introduced CRISP-ML, a methodology of determining

FIGURE 8 | Interpretability matrix content for Stage 6.

FIGURE 9 | Interpretability matrix content for Stage 7 includes activities ensuring the achieved interpretability level is maintained during the future utilization of the

solution.
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the interpretability level required for the successful real-
world solution and then achieving it via integration of the
interpretability aspects into its overall framework instead of just
the algorithm creation stage. CRISP-ML combines practical,
common-sense approach with statistical rigor and enables
organizations to establish shared understanding across all key
stakeholders about the solution and its use and build trust in the
solution outputs across all relevant parts of the organization.
In this study, we illustrated CRISP-ML with a detailed case
study of building an ML solution in the Public Health sector.
An Australian state workplace insurer sought to use their
data to establish clear business rules that would identify, at an
earlier stage of a claim, those with high probability of becoming
serious/long-term. We showed how the necessary level of
solution interpretability was determined and achieved. First,
we showed how it was established by working with the key
stakeholders (Executive team, end users, IT team, etc.). Then, we
described how the activities that were required to be included at
each stage of building the ML solution to ensure that this level
is achieved was determined. Finally, we described how these
activities were integrated into each stage.

The study demonstrated how CRISP-ML addressed the
problemswith data diversity, unstructured nature of the data, and
relatively low linkage between diverse data sets in the healthcare
domain (Catley et al., 2009; Niaksu, 2015). The characteristics
of the case study which we used are typical for healthcare data,
and CRISP-ML managed to deliver on these issues, ensuring the
required interpretability of the ML solutions in the project.

While we have not completed formal evaluation of CRISP-
ML, there are two aspects which indicate that the use of
this methodology improves the chances of success of data
science projects. On the one hand, CRISP-ML is built on
the strengths of CRISP-DM, which made it the preferred and
effective methodology (Piatetsky-Shapiro, 2014; Saltz et al.,
2017), addressing its identified limitations in previous works
(e.g., Mariscal et al., 2010). On the other hand, CRISP-ML has
been successfully deployed in a number of recent real-world

projects across several industries and fields, including credit
risk, insurance, utilities, and sport. It ensured on meeting the
interpretability requirements of the organizations, regardless of
industry specifics, regulatory requirements, types of stakeholders
involved, project objectives, and data characteristics, such as type
(structured as well as unstructured), size, or complexity level.

CRISP-ML is a living organism and, as such, it responds
to the rapid progress in the development of ML algorithms
and the evolution of the legislation for their adoption.
Consequently, CRISP-ML development includes three directions:
(i) the development of a richer set of quantitative measures
of interpretability features for human interpretable machine
learning, (ii) the development of the methodology and respective
protocols for machine interpretation, and (iii) the development
of formal process support. The first one is being extended in
a way to provide input to the development and evaluation of
common design principles for human interpretable ML solutions
in line with that described in the study by Lage et al. (2019). This
strategic development adds the necessary agility for the relevance
of the presented cross-industry standard process.
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