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Identification of homogeneous rainfall regions in New
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ABSTRACT
Identifying homogeneous regions based on spatial variables is vital for providing a certain and fixed region’s
spatial and temporal behavior. However, a significant problem of non-separation rises when the geographic
coordinates are utilized for clustering, just because the Euclidean distance is not suitable for clustering when
considering the geographic coordinates. Therefore, this study focuses on employing such methods where the
non-separation is minimum for identifying homogenous regions. The average annual rainfall data of 226
meteorological monitoring stations for 1911–2018 of New South Wales (NSW), Australia, was considered for
the current study. The data is standardized with zero mean and unit variance to remove the effect of
different measurement scales. The geographical coordinates are then converted to rectangular coordinates by
the Lambert projection method. Using the Partition Around Medoid (PAM) algorithm, also known as the k-
medoid algorithm (which minimizes the sum of dissimilarities instead of the sum of squares of Euclidean
distances) on rectangular Lambert projected coordinates, 10 well-separated clusters are obtained. The Mean
Squared Prediction Error (MSPE) is comparatively smaller if the prediction of unobserved locations in
cluster 3 is made. However, this error increases if the prediction is made for a complete monitoring network.
The identified 10 homogeneous regions or clusters provide a good separation when the lambert coordinates
are used instead of geographical coordinates.

Keywords: New South Wales, precipitation, partition around medoid clustering algorithm, Lambert projection
method, geographical coordinates, Lambert coordinates

1. Introduction

Hydrological variables carry a vital and key role in the man-
agement of water resources. Among different hydrological
variables, precipitation is one of the prime and crucial varia-
bles. For example, the scarcity of precipitation affects irriga-
tion and public drinking water supply, while the surplus of
the precipitation in a specific region may cause floods and
soil erosion. Lack of monitoring and spatial and temporal
information on precipitation significantly affects the plan-
ning and water resources management, particularly water
supply reservoirs, irrigation projects, flood control systems,
drought monitoring systems, and urban drainage design.
Thus, it is essential to know the spatial and temporal vari-
ability of precipitation for efficient planning and manage-
ment of water resources.

This study focuses on the precipitation of New South
Wales (NSW) state in Australia. NSW has a diverse

spatial and seasonal climate. The NSW’s rainfall is highly
affected by ocean winds and mountain ranges called the
Great Dividing Range (GDR). Considering such factors,
the climate regions of NSW are further divided into four
categories: the coastal belt, the ranges and tablelands of
the GDR, the western slopes and plains, and the arid
plains (Meteorology, 2020).

The coastal belt receives the most rainfall in NSW
(800–2000mm) per year. Peaks along with the GDR are
usually cooler than the rest of NSW. The GDR belt
receives a moderate to a high volume of rainfall after the
coastal belt, ranging from 600mm to 1,500mm per year.
In winter, snowfall and frosts are not uncommon in this
belt. However, in the summer months, the belt is warmer,
but not as hot as the rest of the state. The western slopes
and plains are the central band of NSW, experience mod-
erate rainfall. On average, the area receives a 300mm to
1000mm rainfall per annum. The arid plains on the very
west side of NSW have a particularly harsh and hot�Corresponding author. e-mail: ijaz@qau.edu.pk
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climate. Rainfall in this part of the state averages from
150mm to 500mm in a year. Hot temperatures in sum-
mer and freezing nights in winters with frequent droughts
and water shortage during dry months are not uncom-
mon in this belt (Bushmans, 2020; Meteorology, 2020).

Identifying the homogeneous regions based on precipi-
tation is a key tool for providing the spatial and temporal
behavior of precipitation. Additionally, the homogeneous
rainfall regions’ determination is one of the significant
and essential steps towards obtaining regional rainfall
patterns. Such homogeneous sub-regions can help esti-
mate the total rainfall, predict the rainfall in the sub-
regions and optimize the number of monitoring sites. The
term homogeneous regions refer to regions with some
hydrological similarity (Patil and Stieglitz, 2011; Wazneh
et al., 2013; Swain et al., 2016).

Several studies have been carried out to recognize
homogenous regional rainfall, like the study carried by
Hussain et al. (2011), which identified homogeneous cli-
mate regions in Pakistan using the Partition Around
Medoid (PAM) algorithm. Similarly, the study developed
by Dikbas et al. (2012), compared the Fuzzy c-means and
k-means clustering method and noted that the Fuzzy c-
means method gives promising results for homogeneous

regions formation. Both the Fuzzy c-means and k-means
clustering methods were also compared by Goyal and
Gupta (2014) for precipitation in Northeast India, and
they concluded that the Fuzzy c-means provide better
results in the formation of homogenous regions. Sadri
and Burn (2011) consider the L-moments and Fuzzy c-
means method for identifying homogenous regions of
rainfall in the Canadian province of Alberta,
Saskatchewan, and Manitoba. Using Fuzzy c-means
Satyanarayana and Srinivas (2011) regionalized and rec-
ognized twenty-four homogeneous precipitation regions
throughout the Chinese territory. For medoids-based
clustering, Estivill-Castro and Murray (1997) developed a
genetic heuristic algorithm based on genetic recombin-
ation upon random assorting recombination. Using hier-
archical and divisive cluster analysis Soltani and
Modarres (2006) were able to categorize twenty-eight
rainfall monitoring stations into eight homogeneous
regions in Iran. They considered only average rainfall at
the sites and did not consider spatial coordinates.
However, while clustering the spatial data, ignoring the
spatial coordinates and time replications may lead to false
and misleading results. To overcome such a problem,
Kerby et al. (2007) developed a spatial clustering method

Fig. 1. Map of New South Wales (NSW), Australia, surrounded by Queensland, Victoria, South Australia, Coral, and Tasman seas.
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considering the likelihoods. This novel method considers
spatial coordinates by means of assessing the variance-
covariance matrix between observations. However, such a
method fails and does not perform well for data with
time replication and data with many sites. Identifying
homogeneous regions in data having outliers, noisy data,
and having auto-correlation in spatial data, a robust
weighted kernel k-means algorithm was developed by Sap
and Awan (2005). This novel algorithm can handle noisy
data, outliers, and auto-correlation in data, more effi-
ciently and effectively than any other algorithm.

In the current study, using the simple clustering
approach, a separable and homogeneous region of precip-
itations was identified within NSW. Mainly most of the
clustering methods consider Euclidian distance between
samples. Since it is obvious that the geographic coordi-
nates are spherical, Euclidean distance with spherical
coordinates is inappropriate to be used. So, a Lambert
projection method was adopted to transform the geo-
graphical to rectangular coordinates. After transforming
the coordinates, PAM was applied to the transformed

data for identifying homogenous regions. Additionally,
OK was implemented on a single cluster (cluster 3) to
validate clustering performance measures.

2. Materials and methods

2.1. Study area

The considered region (NSW state in Australia) for the
study lies at latitude 32� and longitude 147�. The region
is surrounded by Queensland, Victoria, South Australia,
Coral, and Tasman seas, as shown in Fig. 1. The state
has a total area of 810,000 km2, making it one of the
country’s smallest states. However, by population, NSW
is the only state in Australia having 8 million popula-
tions. The average rainfall in NSW is 554.5mm per
annum (Bushmans, 2020). However, with much diversity
in the state varying from seashores and peak mountains
to dry and arid plains, the state climate is diverse. Due to
this, the state is further divided into four sub-categories,
as shown in Fig. 2.

Fig. 2. Four distinct climate zones: the coastal belt, the ranges and tablelands of the Great Dividing Range, the Western slopes and
plains, and the arid plains of New South Wales, Australia.
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2.2. Data description

Rainfall data of 226 rainfall gauging stations were
obtained from the Bureau of Meteorology, Australia
(BOM, 2020). All the 226 locations of the gauging sta-
tions are shown in Fig. 3. Average annual rainfall data
were considered for all the stations. For spatial clustering,
along with the average annual rainfall variable, both the
geographic coordinates (Latitude, Longitude) and trans-
formed Lambert coordinates (transformed Lambert
Latitude, transformed Lambert Longitude) of the moni-
toring stations are considered. To remove the effect of
different measurement scales, the average annual rainfall

data along with the coordinates are standardized to zero
mean and unit variance. Lastly, as the geographic coordi-
nates play a crucial role in spatial data, therefore a 50%
weight is assigned to the geographic coordinates, and the
remaining 50% weight is assigned to the average annual
rainfall variable.

2.3. The partition around medoids clustering (PAM)

Spatial clustering algorithms can be classified into four
basic categories: partition-based, hierarchal-based, dens-
ity-based, and grid-based (Mandal et al., 2007; Hamad-

Fig. 3. (a) Location of 226 rainfall stations in New South Wales, Australia. (b) A close look at the location of 223 stations, excluding
two stations from Lord Howe Island and one from Norfolk Island, Australia.
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Ameen, 2008). Our main objective is to identify and dis-
cover the homogenous locations hidden in the data, so
among all the clustering partitioning-based algorithm was
found to be the most suitable method for our study. The
partitioning-based clustering algorithms are further cate-
gorized into two major categories, the k-mean, and k-
medoid methods. The k-mean and k-medoid methods are
based on randomly partitioning the database into k sub-
sets and rectifying the cluster centers to reduce the cost
function. The spatial domain’s considered cost function is
just the sum of each data point’s squared distances to its
assigned centers. All the remaining data points are
assigned to the nearest centers. The k-means algorithms
being one of the initial clustering algorithms are known
for their quick termination. It is easy to implement and
understand. The cluster centers in the k-means method
are considered the gravity center of all the data points in
the same cluster.

Additionally, in regular planar space, the gravity center
of the cluster assures the minimum sum of the distance
between the cluster members and itself. However, in obs-
tacle planner space, the gravity center does not behave
the same (Nanopoulos et al., 2001). The k-medoid algo-
rithm overcomes such a problem. An actual object in the

cluster is chosen as a cluster representative (medoid),
instead of some gravity centers in such algorithms. Use of
the actual nominee in k-medoids results to decrease the
sensitivity of outliers. Furthermore, this technique also
assures the accessibility of the center by all data objects
within the cluster.

The PAM algorithm, also known as the k-medoid
algorithm, is one of the most accurate and used algo-
rithms in partitioning-based clustering. The PAM was
first developed by Kaufman and Rousseeuw in 1990
(Kaufman and Rousseeuw, 2009). As from PAM’s name,
it is obvious that this algorithm represents a cluster by a
medoid (Dunham, 2003). Unlike the k-means algorithm,
the k-medoid minimizes the sum of dissimilarities instead
of the sum of squares of Euclidean distances and is more
robust in nature.

The very first step in performing PAM clustering is to
select the medoids. Once the medoids have been selected,
each non-selected object ðOiÞ is grouped with the most
similar and selected medoids ðOjÞ: More broadly, Oi

belongs to a cluster represented by Oj if and only if
dðOj, OiÞ ¼ min Oe dðOi, OeÞ, where min Oe is min-
imum overall medoid Oe and dðO1, O2Þ is the dissimilar-
ity or distance between O1 and O2: All the dissimilar
values are used as inputs for PAM. Finding k-medoids,
the PAM initializes with an arbitrary and random k
object. Then at every step, a swap between the selected
object Oj and a non-selected object Oi is made till the
swap result in an improvement of the quality of
the clustering.

2.3.1. Algorithm of partitioning around medoid. The
PAM being the most common realization of the k-
medoids clustering works as follows.
1. Initialize by randomly choosing k representative of n

data points as medoids.
2. Join up each non-selected object (non-medoid data

point) Oi to the closest and selected object (selected
medoid) Oj:

3. For all pairs of Oi and Oj, compute the total cost
change TCji:

4. Select the pair Oj, Oi which corresponds to
minTCjiðOj,OiÞ: However, if the minimum TCji is
negative, replace Oj with Oi, and go back to step 3.

5. Otherwise, for each Oi, find the most similar
representative object.

6. Repeat steps 2 to 3 until there is no change in the
medoid. Halt.

The experimental results prove that the PAM only per-
forms better for small data sets (e.g. 200 datasets in 5
clusters). The algorithm fails to show promising results in
larger data sets. While applying PAM for clustering in
step 3 and 4, a total of kðn� kÞ pairs of Oj, Oi is formed.

Fig. 4. A flow chart of iterative steps of the Partition Around
Medoid (PAM) algorithm.
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So, for each pair, computing TCji requires the inspection
of ðn� kÞ non-selected objects. Combining Steps 2 and 3
a Oðkðn� kÞ2Þ complexity is required for only one iter-
ation. So, for a larger value of n and k, it is obvious that
the PAM becomes too costly. Thus, an alternative
method for such larger data sets, a Clustering LARge
Applications (CLARA), was developed. The iterative
steps of the PAM algorithm can also be shown in Fig. 4.

2.4. The lambert projection method

As the earth has a spherical shape, so the geographical
coordinates are spherical, too. Using the Lambert con-
formal conic projection, the spherical coordinates can be
transformed into a rectangular form (Snyder, 1987). The
geographical coordinates can be transformed into rect-
angular coordinates by the following steps.

Step 1: Conversion of geographical coordinates to radians

k0 ¼ Origin of latitude� p
180

,

k1 ¼ Latitude� p
180

,

k2 ¼ Longitude� p
180

,

where,

Origin of latitude ¼ maximum latitude�minimum laltitude
2

,

p ¼ 3:1416,

U1 ¼ ðOrigin of latitude� 0:3� Range of latitudeÞ � p
180

,

U2 ¼ ðOrigin of latitudeþ 0:3� Range of latitudeÞ � p
180

,

h ¼ nðk1 � k2Þ:

Step 2: Since the earth’s surface has an elliptical shape,
then determining the meridian distance, which is the dis-
tance from the equator to a point at a latitude on the
ellipsoid, will be

D ¼ ð1� e2Þ
1� e2 sin U2Þ32,

�

where, e ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ða2�b2Þ

a2

q
, is the eccentricity, a ¼ 6378137, is

called the length of the significant radius or semi-major axis,
and b ¼ 6356752, is the length of the minor radius or semi-
minor axis. a will always be greater than b that is a > b:
Step 3: The coordinates can be converted to D-plane
coordinates by

x ¼ q sin hð Þ,
y ¼ q0 � q cos hð Þ,

where x is the D-plane longitude and y is the D-plane
latitude and

q ¼ D� F cotn
p
4
þ k1

2

� �
,

q0 ¼ D� F cotn
p
4
þ k0

2

� �
,

where,

F ¼
cos U1 tann p

4 þ U1
2

� �
n

,

n ¼
ln cos U1secU2ð Þ cos U1 tann p

4 þ U1
2

� �

ln tan p
4 þ U2

2

� �
cot p

4 þ U1
2

� �� � ,

Step 4: For appropriate scaling, the D-plane coordinate
equation can be multiplied with some constant. However,
such multiplication will not affect the results, it will only
visualize the D-plane coordinate a better way. Though it
is an optional step, one can multiply the D-plane results
by 0.001 for better visualization

x ¼ 0:001� q sin hð Þ,
y ¼ 0:001� q0 � q cos hð Þ:

2.5. Ordinary kriging

Kriging is the estimation or prediction of unknown
values at of a random variable, Z, at one or less unsampled
points from less or more sparse sample data, say
Zðs1Þ, Zðs2Þ, Zðs3Þ, :::, ZðsnÞ, at point s1, s2, s3, :::, sn:
More precisely, kriging is used to interpolate random fields
Z at unobserved locations (Matheron, 1963). In 1951, a
South African engineer, D.G. Krige, laid the foundations
for kriging and was named kriging after his name.
However, in 1960, nine years after the foundation of krig-
ing, kriging’s main developments came from G. Matheron.
So far, several spatial interpolation methods or types of
kriging are discovered like Ordinary Kriging (OK),
Universal Kriging (UK), Simple Kriging (SK), Lognormal
Kriging (LK), Regression Kriging (RK), Indicator Kriging
(IK), Disjunctive Kriging (DK), Co-Kriging (CK), and
Multiple Indicator Kriging (MIK). All these kriging types
have their advantages and disadvantages and can be used in
different conditions related to the problem’s sort and nature.
OK, one of the most common types of kriging is based on
the assumption of an unknown constant mean. The kriging
prediction of Z at a point s0 by Ẑ s0ð Þ is given by

Ẑ s0ð Þ ¼
Xn
i¼1

kiZ sið Þ,

where, Ẑ s0ð Þ is the estimated value at a point s0,Z sið Þ are
the observed values at points si, n is the sample size, and
ki are weights chosen for si to satisfy the following two
statistical conditions.

6 S. KHAN ET AL.



2.5.1. Unbiasedness. Ensuring the unbiasedness of the
estimate, the sum of weights is made equal to 1

Xn
i¼1

ki ¼ 1,

and the expected error is

E Ẑ s0ð Þ � Z s0ð Þ
h i

¼ 0:

2.5.2. Minimum variance.

var Ẑ s0ð Þ � Z s0ð Þ
h i

¼ minimum:

The optimum weights ki can be obtained by solving the
following equations simultaneously

C11 C21 ::: CN1 1

C12 C22 ::: CN2 1

::: ::: ::: ::: :::

C1N C2N ::: CNN 1

1 1 ::: 1 0

2
6666664

3
7777775

k1
k2
:::

kN
l

2
6666664

3
7777775
¼

C1s0

C2s0

:::

CNs0

1

2
6666664

3
7777775
0

which assures that the OK predicator is a minimum vari-
ance unbiased predictor.
where, Cij, i, j ¼ 1, 2, 3, :::,N are the covariates
between the data, Cis0 i ¼ 1, 2, 3, :::,N are the covariates

Fig. 5. (a) Map of allocations of 226 rainfall stations to 10 clusters by Partition Around Medoid (PAM) using G-plane coordinates,
the different colors represent the memberships of stations to a specific cluster. (b) A close look into the allocations of 223 rainfall
stations to 10 clusters by Partition Around Medoid (PAM) using G-plane coordinates.
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between the datum to be predicated and the observed
data, and l is the Lagrange multiplier accounting for
unbiasedness. Lastly, for predication of unobserved loca-
tions, the variance can be determined by

r2 s0ð Þ ¼ r2ðs0Þ � ktCs0 � l0,

where, r2ðs0Þ is the variance of Zðs0Þ, k ¼ ðk1, k2,

k3, :::, kNÞt, and Cs0 ¼ ðC1s0 , C2s0 , C3s0 , :::, CNs0Þt:

3. Results and discussion

3.1. Clustering by PAM using geographic coordinates

For identifying homogeneous clusters in NSW, Australia,
several clustering methods like the Fuzzy c-means cluster-
ing method, the k-means technique, PAM, and CALRA
were applied to the selected data. However, PAM giving
the most promising results was considered for both geo-
graphic and rectangular coordinates. The results and
comparison of PAM using geographic and rectangular
coordinates are discussed here.

Considering the geographic coordinates, the PAM clus-
tering method was applied to the average annual rainfall
data. The different sites show membership to more than
one cluster. Using the geographic coordinates, the alloca-
tion of rainfall stations to concern clusters is indicated by
numerical numbers in Fig. 5. All 226 rainfall sites were
classified into ten clusters as suggested by silhouette com-
parison. All the variables affecting climate, being space-
time fields (measured only concerning time and space),
should be spatially dependent. Hence all the sites of dif-
ferent clusters should be spatially separable. However, as
we are using G-plane coordinates, the sites are mixed up
with each other, showing no separation. Figure 5 shows
that all the rainfall sites being classified into ten clusters
have minimum separation.

3.2. Clustering by PAM using rectangular
coordinates

After a failed attempt to separate clusters from geo-
graphic coordinates, all the geographic coordinates were
transformed to rectangular coordinates using Lambert’s
conformable conic projection method. Besides the coor-
dinates’ transformation, the transformed rectangular
coordinates and average annual rainfall were standar-
dized to zero mean and unit variance. Once the data was
standardized, the PAM clustering technique was applied
for identifying the homogeneous sites.

The optimal number of clusters K is selected based on
silhouette criterion, presented in Fig. 6. Using rectangular
coordinates, the average silhouette for K¼ 10 is compara-
tively higher than K¼ 9, 8, 7, … , 1, and so a total of ten
clusters were selected to be optimal for our study.

While using PAM with rectangular coordinates, all 226
monitoring sites were allocated to ten clusters. It can be
clearly shown in Fig. 7. Using rectangular coordinates
shows more separable homogeneous clusters as compare
to geographic coordinates.

The center location or the medoid of the clusters can
be shown in Table 1. Cluster 1 contains 34 rainfall sta-
tions located in the southernmost part of NSW, border-
ing Victoria. Cluster 1 receives moderate average rainfall
of 797mm annually. Cluster 2, which lies towards the
east in GDR, consists of 36 rainfall stations and receives
a bit higher average rainfall (839mm) annually.

Cluster 8 is the collection of rainfall stations of the
westernmost part of NSW. All the sites of cluster 8 lie in
the arid plains, so this cluster receives the lowest average
rainfall (381mm) annually. Twenty-nine rainfall stations
adjacent to cluster 8 on the eastside constitute cluster 3.
As cluster 3 is far away from sea and GDR, this cluster
receives the second-lowest average rainfall in NSW
(590mm) annually.

Cluster 9 consists of seven rainfall stations situating on
the lower side of GDR and receives the maximum aver-
age rainfall (1628mm). Seventeen stations on the north-
ernmost side of NSW and thirty-one stations from the
same part of NSW adjacent to the coastal belt constitute
cluster 4 and cluster 7, respectively. These clusters receive
an average rainfall of 1686mm and 1192mm, receptively.
Cluster 6 consists of sixteen stations, lies on the northern-
most side of the GDR of NSW. Because of GDR and
approximately high elevation, this cluster also receives a
little higher average annual rainfall (1060mm). Two sta-
tions form the Lord Howe Island, and one station of
Norfolk Island constitute cluster 10. All the three sites
of cluster 10 lie in small islands, situated on the East side
of NSW, between the Coral and Tasman seas. Due to the
effect of both seas, this cluster receives the third most

Fig. 6. Average silhouette width comparison for selecting the
optimal number of clusters.
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Fig. 7. (a) Map of allocations of 226 rainfall stations to 10 clusters by Partition Around Medoid (PAM) using rectangular
coordinates; the different colors represent the memberships of sites to a specific cluster. (b) A close look into allocations of 223 rainfall
stations to 10 clusters by Partition Around Medoid (PAM) using rectangular coordinates.

Table 1. Summary information of all ten cluster’s medoids using Partition Around Medoid.

Cluster no.
Medoid
cluster Station name G-Lat G-Lon D-Lat D-Lon

Average
annual rainfall

Cluster 1 201 Uriarra Forest �35.2994 148.9222 523.0008 �292.438 814.2
Cluster 2 216 Wollombi (Blair) �32.9667 151.1333 331.8256 �25.2381 825.2
Cluster 3 65 Dunedoo Post office �32.0165 149.3956 498.4693 73.11653 612.4
Cluster 4 85 Green Pigeon (Morning View) �28.4738 153.0861 158.0061 477.3265 1632.2
Cluster 5 200 Uralla (Lana) �30.6417 151.3002 324.6122 232.7578 773.3
Cluster 6 196 Upper Mongogarie (Kimberley) �28.9667 152.8167 183.3333 422.1592 1075.9
Cluster 7 176 Sydney (Observatory Hill) �33.8607 151.205 321.889 124.0043 1215.7
Cluster 8 87 Griffith Airport Aws �34.2487 146.0695 790.0565 �193.941 397.6
Cluster 9 35 Cabramurra Smhea �35.9383 148.3842 567.3771 �365.959 1681.5
Cluster 10 116 Lord Howe Island Aero �31.5421 159.0786 �412.978 129.6496 1478.6

IDENTIFICATION OF HOMOGENEOUS RAINFALL REGIONS 9



average annual rainfall (1468mm). The detailed explora-
tory analysis of all the clusters can be seen in Table 2.
The coefficient of variation of all the clusters is smaller
than the coefficient of variation for the complete data set,
suggesting that the heterogeneity in the data is reduced
by clustering. The coefficient of variation for the com-
plete data set is 39.33%, while the highest coefficient of
variation in the cluster is that of cluster 8, which
is 28.28%.

3.3. Ordinary kriging

Once the 226 rainfall stations of NSW, Australia, are
split into 10 homogeneous clusters, the prediction maps
of the average annual rainfall of cluster 3 and the overall
monitoring stations are estimated by OK. Different vario-
gram models like Spherical, Gaussian variogram,
Exponential, and Linear bounded are applied. However,
the Gaussian variogram fit best for cluster 3 stations.
Figure 8 shows the fitted variogram from the D-plane for
all the stations of cluster 3. A total of 841 grid points
within cluster 3 are created, and then OK is applied to
predict the average annual rainfall, using the variogram

model of cluster 3. The prediction map and the prediction
variance of cluster 3 are shown in Fig. 9. The results of

Table 2. Summary statistics of all ten clusters by Partition Around Medoid using rectangular coordinates.

Cluster no. Sample size Average Standard deviation CV (%) Minimum Maximum

Cluster 1 34 797.76 140.14 17.57 566.50 1058.60
Cluster 2 36 839.81 123.91 14.75 585.80 1035.50
Cluster 3 29 590.95 79.49 13.45 411.80 785.30
Cluster 4 17 1686.14 165.20 9.80 1421.30 2015.30
Cluster 5 37 785.77 128.79 16.39 538.80 1080.70
Cluster 6 16 1060.93 122.11 11.51 856.10 1262.30
Cluster 7 31 1192.03 106.95 8.97 1002.20 1424.70
Cluster 8 16 381.38 107.87 28.28 225.80 577.50
Cluster 9 7 1628.63 173.74 10.67 1288.70 1808.90
Cluster 10 3 1468.90 175.05 11.92 1289.20 1638.90
Complete Data 226 921.20 362.34 39.33 225.80 2015.30

Fig. 8. Fitted Gaussian variogram for Cluster 3 using
rectangular coordinates.

Fig. 9. (a) Prediction (b) Variance map of precipitation for
Cluster 3 using ordinary kriging.
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OK reveal that most of the parts in cluster 3 are pre-
dicted to receive precipitation between 400 and 650mm.

A cross-validation method is applied to compare pre-
diction accuracy between cluster 3 and the overall moni-
toring stations. The results show that the Mean Squared
Prediction Error (MSPE) for the overall domain is 3859,
whereas, for cluster 3, this error is 1733, which indicates
that the MSPE of the overall monitoring network is
approximately reduced by 45% when compared with clus-
ter 3. This reduction in MSPE indicates that the desirable
homogenization of precipitation regions is achieved.

4. Conclusion

Hydrological variables carry a key role in the manage-
ment of water resources. These variables are measured
concerning time and space, and therefore, they should be
considered spatially dependent and space-time random
fields. Among different hydrological variables, precipita-
tion is one of the prime and crucial variables which
affects the climate. Identifying homogeneous regions
based on precipitation is a key tool for providing precip-
itation’s spatial and temporal behavior. Therefore, the
homogeneous regions should be identified so that the spa-
tially closed stations should belong to similar clusters.

The non-separation issue happened when the geo-
graphic coordinates are utilized for clustering, just
because the Euclidean distance is not suitable for cluster-
ing when geographic coordinates are considered. Hence,
the coordinates are converted to rectangular coordinates
by the Lambert projection method, and rectangular
Lambert measures distance projected coordinates for
obtaining more separated clusters. Using the PAM algo-
rithm, also known as the k-medoid algorithm (which min-
imizes the sum of dissimilarities instead of the sum of
squares of Euclidean distances) on rectangular Lambert
projected coordinates, well-separated clusters are
obtained. The MSPE is comparatively smaller if the pre-
diction of unobserved locations in cluster 3 is made.
However, this error increases if the prediction is made for
a complete monitoring network.
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