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A B S T R A C T   

Whilst the popular use of herbal medicine globally, it poses challenges in managing potential drug-herb inter-
action. There are two folds of the drug-herb interaction, a beneficial interaction that may improve therapeutic 
outcome and minimise the toxicity of drug desirably; by contrast, negative interaction may evoke unwanted 
clinical consequences, especially with drugs of narrow therapeutic index. 

Scutellaria baicalensis Georgi is one of the most popular medicinal plants used in Asian countries. It has been 
widely used for treating various diseases and conditions such as cancer, diabetes, inflammation, and oxidative 
stress. Studies on its extract and bioactive compounds have shown pharmacodynamic and pharmacokinetic in-
teractions with a wide range of pharmaceutical drugs as evidenced by plenty of in vitro, in vivo and clinical 
studies. Notably, S. baicalensis and its bioactives including baicalein, baicalin and wogonin exhibited synergistic 
interactions with many pharmaceutical drugs to enhance their efficacy, reduce toxicity or overcome drug 
resistance to combat complex diseases such as cancer, diabetes and infectious diseases. On the other hand, 
S. baicalensis and its bioactives also affected the pharmacokinetic profile of many drugs in absorption, distri-
bution, metabolism and elimination via the regulatory actions of the efflux pumps and cytochrome P450 en-
zymes. This review provides comprehensive references of the observed pharmacodynamic and pharmacokinetic 
drug interactions of Scutellaria baicalensis and its bioactives. We have elucidated the interaction with detailed 
mechanistic actions, identified the knowledge gaps for future research and potential clinical implications. Such 
knowledge is important for the practice of both conventional and complementary medicines, and it is essential to 
ensure the safe use of related herbal medicines. The review may be of great interest to practitioners, consumers, 
clinicians who require comprehensive information on the possible drug interactions with S. baicalensis and its 
bioactives.   

1. Introduction 

The practice of herbal medicine has a long history. It remains prev-
alent worldwide as a primary healthcare with an international market 
estimated at approximately US$84.5 billion by 2019 [1,2]. 

Most people consume herbs and hebral products as part of their 
cultural belief and under the impression that herbs are natural and safe. 

In addition, their easier availability makes it more accessible in com-
parison to the conventional medicines which requires a prescription 
from a general practitioner [3]. Herbs are often self-administered in 
combination with therapeutic drugs without the knowledge of health 
practitioners. It was reported that nearly 25% of the U.S. adults 
concurrently taking a prescription medication together with dietary 
supplements including herbal medicines [4]. This use pattern raises 
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concerns of potential drug-herb interactions as there have been 
numerous clinical observations and associated adverse reactions. For 
instance, St. John’s wort preparations are known to have clinically 
important interactions with many conventional drugs (i.e. antidepres-
sants, lipid-lowering drugs, antiepileptics) that caused life-threating 
events in several cases [5]. Salvia miltiorrhiza (Dan Shen) and Ginkgo 
biloba (ginkgo) have demonstrated to affect hemostasis, which increases 
the risk of bleeding when used with warfarin [6]. Panax ginseng 
(ginseng) induced mania if co-administered with phenelzine [3]. On the 
other hand, some of the interactions may be therapeutically beneficial 
via synergism to enhance therapeutic effects or to reduce drug’s side 
effects. A great effort has been made to develop combination therapies 
with synergistic effect to combat complex and challenging diseases such 
as cancer, diabetes and infectious diseases. For instance, cancer patients 
co-administered mushrooms and chemotherapy were less likely to have 
recurrent cancer, reduced side-effects and higher survival rate [7]. Thus, 
herb-drug interaction can be a double-edged sword in the clinical 
practice, which may result in adverse consequences or bring desired 
clinical outcomes. 

Generally, herb-drug interactions occur through two mechanisms: 
pharmacodynamic (interacting with drug targets) and pharmacokinetic 
(changing the fate of drug in the body). Pharmacodynamic interactions 
can be synergistic (enhanced efficacy and/or reduced toxicity), additive 
(no interaction) or antagonistic effects (reduced efficacy and/or 
increased toxicity) [8,9]. Pharmacokinetic interactions are more 
frequently reported, involving modulation of absorption, distribution, 
metabolism and excretion of drugs, often via affecting drug transporters, 
e.g., P-glycoprotein (P-gp) or biotransformation, cytochrome P450 
(CYP450) enzymes. Herb-drug pharmacokinetic interactions raises more 
concerns and are of clinical significance as changes in drug’s pharma-
cokinetic parameters (i.e. Cmax, Tmax and AUC) may result in unwanted 
or toxic effects, especially when the drug has a narrow therapeutic index 
(e.g., digoxin, warfarin and phenytoin) [10]. 

Scutellariae Radix, the dry root of Scutellaria baicalensis Georgi, is 
one of the most frequently prescribed herbs in traditional medicine [11]. 
It is a perennial herb that is native to Siberia, Mongolia and parts of 
China and Korea. The dried root (known as Huang Qin in Chinese) has a 
long history of medicinal use for the treatment of inflammatory, respi-
ratory and gastrointestinal ailments [12]. Huang Qin was first recorded 
back between 200 and 250 CE in Shennong Bencaojing (The Classic of 
Herbal Medicine) for bitter, cold, lung and liver problems [13]. 
S. baicalensis is currently listed in Chinese Pharmacopoeia (2020), Eu-
ropean Pharmacopoeia (EP 9.0), and British Pharmacopoeia (BP 2018) 
[13,14]. A number of scientific studies have demonstrated a broad range 
of pharmacological actions of S. baicalensis including anti-inflammatory, 
anti-oxidant, anti-microbial, immunomodulatory, anti-cancer and 
anti-convulsant effects [15]. In a clinical setting, S. baicalensis is a 
common component of hundreds of multi-herb formulae [13], including 
popular Xiao Chai Hu Tang (Chinese), Sho-saiko-to (Japanese) and Lung 
Fufang preparations, used for palliative aid of liver viral diseases and 
cancer, particularly where treatment from conventional therapies was 
inadequate [13,16]. 

The pharmacological activities of S. baicalensis are attributed to its 
rich amount of flavonoids, including baicalein, baicalin, and wogonin. 
However, to date, there is no review on possible drug-herb interactions 
of S. baicalensis and its bioactive compounds with pharmaceutical drugs. 
Thus we aim to provide a comprehensive evaluation of drug-herb 
interaction of S. baicalensis and its identified bioactives with most up- 
to-date evidence in English and Chinese literature from the pharmaco-
dynamic and pharmacokinetic perspectives. Extensive search was con-
ducted using PubMed, Google Scholar and CNKI database, with key 
words including S. baicalensis, Huang Qin, and individual compounds 
identified from the herb, “drug interaction”, “synergy” “CYP”, “phar-
macodynamic interaction”, “pharmacokinetic interaction”. 

2. Phytochemistry of S. baicalensis 

So far, over 100 compounds have been identified from S. baicalensis 
using various chemical analysis techniques. S. baicalensis contains a 
myriad of flavones, phenylethanoids, amino acids, sterols and essential 
oils. The main bioactive components in the dried roots are predomi-
nantly flavonoids. The major and representative flavonoids included 
baicalein, wogonoside, wogonin and baicalein which accounted for 
approximately 5.02% of the total weight of root [17]. Although amounts 
varied in crude materials, baicalin was found to be the most abundant 
compound, followed by wogonoside, wogonin, baicalein, wogonin 
7-O-glucuronide [17–19]. High-performance liquid chromatography 
(HPLC) using UV detector methods were initially established and used to 
separate and identify major flavonoids in S. baicalensis including bai-
calin, baicalein, wogonin, wogonoside, oroxylin A, 
wogonin-7-glucuronide and oroxylin A 7-O-glucuronide [18,20,21]. A 
HPLC coupled photodiode array detection and electrospray ionisation 
tandem mass spectrometry (HPLC-DAD-ESI-MS) method was applied for 
the chemical fingerprint analysis of 15 samples of S. baicalensis, and 20 
compounds were separated and their structures were elucidated [22]. 
Qiao et al. (2016) developed a quick and robust ultra-high performance 
liquid chromatography coupled with hybrid quadrupole orbitrap mass 
spectrometry (UHPLC/orbitrap-MS) method, and characterised more 
than 100 compounds in the S. baicalensis extract [23]. Other advanced 
techniques including infrared spectroscopy, nuclear magnetic reso-
nance, high-speed counter-current chromatography, micellar electroki-
netic chromatography and capillary electrophoresis were used for the 
detection of a wider range of compounds. A summary of the separation 
methods and identified compounds in S. baicalensis are listed in Ap-
pendix A. 

3. Pharmacodynamic interactions 

3.1. Anti-cancer drugs 

Synergy is a novel and promising strategy in cancer therapy to 
identify and exploit combination therapy with conventional chemo-
therapies to provide a greater efficacy and sensitivity or minimise the 
adverse side effects and drug resistance [24]. Thus, enormous effort has 
been made to incorporate the concept of synergy into the development 
of combination drug treatment for cancers. However, consequential 
risks are also associated with the concomitant use, particularly for those 
chemotherapeutic agents with narrow therapeutic window or high 
toxicity. As such, understanding the molecular actions of bioactives is 
important in understanding and predicting any potential risks [25]. 

3.1.1. Interaction with cisplatin 
Cisplatin is a platinum compound used as a first line chemotherapy 

drug for ovarian cancer, testicular cancer, bladder cancer, head and neck 
cancer, lung cancer, and brain tumours, etc. It acts by forming DNA- 
platinum adducts, which leads to p53-mediated DNA damage, cell 
cycle arrest and cell death [26,27]. A major drawback in the long term 
use of cisplatin is the drug resistance due to decreased intracellular 
concentration, diminished drug uptake, and increased efflux attributed 
to a variety of cellular self-defence systems [28,29]. Several studies have 
identified that the down-regulation of activated epidermal growth factor 
receptor (EGFR)-dependent protein kinase B (PKB or known as Akt)/-
phosphoinositide 3-kinase (PI3K) and extracellular signal-regulated ki-
nase (ERK)/mitogen-activated protein kinase (MAPK) signalling 
pathways can overcome cisplatin resistance and increase the anti-cancer 
effect [30,31]. Reactive oxygen species (ROS) and calcium mediated 
apoptosis pathways are also essential in the drug sensitivity of cisplatin 
[32]. 

Several studies showed that the concomitant use of S. baicalensis 
extract and cisplatin to treat ovarian cancer enhanced efficacy, sensi-
tivity, and reduced side effects of cisplatin [33–36]. Interestingly, the 
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enhanced activity of S. baicalensis acted through alternate molecular 
targets from that of cisplatin. For example, an ethanol extract of 
S. baicalensis was tested with or without cisplatin in ovarian cancer cell 
line and cisplatin resistant cell line, and the combination strengthened 
the anti-cancer effect of cisplatin in both cell lines, especially the resis-
tant cell line, highlighting the benefits of combinational use against 
chemo-resistance. Moreover, the combination-induced apoptosis was 
induced via autophagy by upregulated expressions of Atg5 and Atg12, 
which was different from the action of cisplatin on apoptosis via the p53 
pathway [33]. S. baicalensis also sensitised the effect of cisplatin via 
targeting hypoxia-inducible factor 1-α (HIF-1α) [34]. Hussain et al. 
(2018) showed that the aqueous extract of S. baicalensis attenuated 
HIF-1α levels in ovarian cancer cells by down-regulating the PI3K/AKt 
and mitogen-activated protein kinases (MEK)/ERK pathways, and thus 
further reduced the cell growth in four cisplatin sensitive and resistant 
ovarian cancer cell lines [36]. The anti-oxidant activity of S. baicalensis 
may help to reduce the toxicity of cisplatin. The co-administration of 
S. baicalensis aqueous extract (1 mg/kg and 3 mg/kg, i.p.) and cisplatin 
showed a significant decrease in cisplatin induced-toxicity compared to 
cisplatin alone in rats via reduced pica and kaolin consumption induced 
by cisplatin. Such anti-emetic effect was associated with the anti-oxidant 
activity of S. baicalensis [35]. 

Studies into the interactions between the bioactive compounds in 
S. baicalensis and cisplatin for anti-apoptotic activity revealed diverse 
molecular actions to strengthen the apoptotic action of cisplatin and 
overcome its drug resistance. In particular, apigenin and chrysin were 
found to amplify the signal of cisplatin on the same p53 pathway 

attributed to the activation of ERK1/2 and MAPK, resulting in a signifi-
cant cleavage of caspase-3 and caspase-9 and eventually cell death [37, 
38]. As a major bioactive compound, baicalin (8 μg/mL) attenuated 
cisplatin (4 μg/mL) resistance in lung cancer cells (A549 and A459 
cisplatin-resistant cell lines) with a significantly higher inhibitory rate of 
cell invasion and proliferation. The elevated expression of microtubule 
affinity-regulating kinase 2 (MARK2) and p-Akt in A450 
cisplatin-resistant cells was markedly lower after the co-treatment of 
baicalin, highlighting that the decreased cisplatin resistance was associ-
ated with the down-regulation of PI3K/Akt pathway. This was consistent 
with studies that linked the inhibition of PI3K/Akt activation and phos-
phorylation to reduced cisplatin resistance of cancer cells [39,40]. The 
enhanced apoptotic activity of the baicalin and cisplatin combination was 
verified on HepG2.0 liver cancer cells, whereby synergistic interaction 
was detected with 1–4 mg/mL baicalin plus 0.5–4.0 μg/mL cisplatin [41]. 
Another major flavonoid in S. baicalensis, baicalein, reduced the drug 
resistance of cisplatin on A549 lung cancer cells by down-regulating 
PI3K/Akt/nuclear factor kappa-light-chain-enhancer of activated B cells 
(NF-κB) pathway [42]. Baicalein also increased the early and late 
apoptosis rate on cisplatin treated MCF-7 breast cancer cells [43]. Scu-
tellarin was found to sensitise the anti-cancer effect of cisplatin on ovarian 
cancer cells. Although the signalling pathway was not fully investigated, 
the complex of scutellarin and cisplatin exhibited significant conforma-
tional change to the DNA, resulting in higher expressions of p53 and 
caspase-3 [27]. Wogonin sensitised cisplatin-induced apoptosis in both 
A549 cells and HeLa cells by promoted expression of intracellular ROS 
which contributed substantially to the enhanced apoptosis [44]. 

Fig. 1. Interactions of cisplatin with S. baicalensis and its bioactives including apigenin, chrysin, baicalein, baicalein, scutellarin and wogonin at the molecular level, 
which led to enhanced cell death, autophagy and reduced drug resistance. Green arrow represents the molecular actions of S. baicalensis and its bioactives, red arrow 
represents the molecular actions of cisplatin. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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Therefore, cisplatin combined with S. baicalensis and its various active 
compounds may be a potential therapeutic approach in overcoming drug 
resistance and reducing the undesirable side effects. However, clinical 
studies are warranted to confirm the possible beneficial therapeutic 
outcome of the combined therapy. Fig. 1 summarises the drug-herb in-
teractions between S. baicalensis and its bioactives with cisplatin. 

3.1.2. Interaction with fluorouracil 
5-Fluorouracil (5-FU) is an anti-metabolite chemotherapy drug that 

is extensively used for various cancers. However, the drug resistance and 
cytotoxicity from its metabolites remain a major challenge for its clinical 
use [45]. After enter the cell, the metabolites of 5-FU are formed and 
attached to thymidylate synthase which leads to DNA damage via the 
activation of p53 pathway [45]. It also provokes intracellular oxidative 
stress characterised by the elevated levels of ROS that is known to cause 
major side effects such as cardiotoxicity [46]. 

Bioactives from S. baicalensis were reported to potentiate the anti- 
cancer activity and increase the sensitivity of 5-FU via strengthening 
the apoptotic related pathways or elevating mitochondrial ROS activity. 
Notably, the overall effect of S. baicalensis extracts with 5-FU remains 
lacking, and whether or not the increased oxidative stress would exac-
erbate the cardiotoxicity of 5-Fu is yet to be determined. 

Oroxylin A and scutellarin were shown to promote the apoptotic 
effect of 5-FU by strengthening the action of 5-FU on the p53 pathway. 
Oroxylin A combined with 5-FU presented a synergistic effect (combi-
nation index<1) in inducing cell death of HepG2 cells when the inhib-
itory rate was higher than 7.5%. When combined, oroxylin A enhanced 
the signalling transduction on p53 by 5-Fu, with decreased expressions 

of apoptotic-inhibitory proteins cyclooxygenase-2 (COX-2), B-cell lym-
phoma 2 (Bcl-2), and procaspase 3 [47]. Chan et al. (2009) showed that 
scutellarin potentiated the effect of 5-FU by inducing apoptosis in 
(p53++) HCT116 human colon cancer cells through the upregulation of 
p53 pathway and caspase-6 expression [48]. 

Apigenin enhanced the apoptotic action of 5-FU by inducing oxida-
tive stress. An in vivo study found that coadministration for 5 consecu-
tive days of apigenin (20 mg/kg) intensified the anti-tumour effect of 5- 
FU (20 mg/kg) by inhibiting the growth of hepatocellular carcinoma 
xenograft tumours [49]. The mechanistic study on human breast cancer 
MDA-MB-453 cells revealed that apigenin augmented the action of 5-FU 
on ROS which led to a decreased activity of the mitochondrial mem-
brane potential (DΨm) [49]. Another in vivo study reported that apige-
nin and 5-FU achieved a greater effect in reducing tumour size than 
individual treatment in Swiss albino mice transplanted with Ehrlich 
ascites carcinoma cells, which was associated with an increased intra-
cellular ROS level and decreased level of glutathione [50]. 

The synergistic effect of bioactives of S. baicalensis with 5-FU may 
also involve the regulation of Akt pathway. For instance, apigenin and 5- 
FU at concentrations > 10 μM exerted an enhanced pro-apoptotic effect 
via the inhibition of Akt expression on breast cancer cells [51,52]. 
Wogonin was found to decrease the cell survival rate when used with 
5-FU on SMMC-7721 hepatocellular carcinoma (HCC) cells with high 
COX-2 expression, and this was associated with the down-regulation of 
the PI3K/Akt signalling pathway [53]. Additionally, over-expression 
and high DNA binding activity of the transcription factor NF-κB had 
been identified in 5-FU resistant cell lines. Thus, blocking the NF-κB 
pathway was shown to sensitise cancer cells to 5-FU. Wogonin was 

Fig. 2. Interactions of 5-FU with S. baicalensis bioactives including apigenin, oroxylin A and wogonin at the molecular level which led to enhanced cell death and 
reduced drug resistance. Green arrow represents the molecular actions of S. baicalensis bioactives, green arrow represents the molecular actions of 5-FU. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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found to down-regulate the phosphorylation of I-κB and suppressed 
NF-κB translocation to the nucleus before modulating the transcription 
of downstream genes, and thus the combined use of wogonin and 5-FU 
enhanced apoptosis of gastric cancer cells [54]. Fig. 2 summarises the 
drug-herb interactions between S. baicalensis and its bioactives with 
5-FU. 

3.1.3. Interaction with paclitaxel 
Pal et al. (2017) showed that combined nanotised apigenin (GO-NA) 

with paclitaxel enhanced the anti-proliferative effect of paclitaxel in 
ovarian cancer cells, which was associated with promoted ROS accu-
mulation and mitochondrial depolarisation evoked cell apoptosis [55]. 
A similar synergistic effect of apigenin and paclitaxel was reported in 
HeLa cells on apoptosis via an over-expression of ROS [56]. These 
findings suggested that apigenin may synergistically interact with 
paclitaxel leading to an enhanced anti-cancer activity of paclitaxel. 

3.1.4. Other chemotherapy drugs 
A number of studies investigated the interactions of S. baicalensis and 

its bioactive compounds with other chemotherapy drugs as summarised 
in Table 1. In general, S. baicalensis aqueous extract and its bioactives 
exhibited beneficial synergistic interactions with chemotherapy drugs 
by enhancing the efficacy and sensitivity. The mechanistic actions were 
mainly associated with strengthening the p53-induced DNA damage, 
inducing autophagy and downregulation of PI3K/Akt, MAPK and NFκB 
signalling pathways. However, further study is needed to elucidate how 
individual components contribute to the overall effect of S. baicalensis. 
Besides, most of the findings were pre-clinical studies, and their clinical 
implications have yet to be investigated. 

3.2. Anti-diabetic drugs 

It is well recognised that the management of type II diabetes and 
related complications requires a long-term treatment to achieve multi-
ple goals. Metformin has long been used as a first line drug for the 
treatment of type II diabetes for its powerful anti-hyperglycaemic 
properties and other related bioactivities including alleviation of 
endothelial dysfunction, reducing oxidative stress, insulin resistance and 
lipid profiles, and promoting fat redistribution [75]. Rosiglitazone is a 
third line anti-diabetic drug used as an insulin sensitiser. However, it is 
associated with risks including increased cardiac complications and 
stroke which limit its efficacy [76]. 

3.2.1. Interactions with metformin 
Several studies showed that S. baicalensis and its bioactive com-

pounds enhanced the anti-diabetic activities of metformin mainly 
through the anti-oxidant activity. An in vivo study suggested that the co- 
administration of metformin (500 mg/kg) and S. baicalensis ethanol 
extract (400 mg/kg) resulted in significant elevation of plasma and 
pancreatic insulin levels and reduction of plasma, hepatic triglycerides 
and cholesterol levels in streptozotocin-induced diabetic rats. The effect 
was associated with a reduced level of oxidative stress attributed to 
elevated activities of anti-oxidant enzymes including superoxide dis-
mutase, catalase and glutathione peroxidase [77]. The same team later 
showed that baicalin (120 mg/kg) contributed mostly to the 
anti-oxidant activity of S. baicalensis which mitigated oxidative stress 
and enhanced the anti-diabetic effect of metformin (500 mg/kg) in 
streptozotocin-induced diabetic rats [78]. Furthermore, baicalin and 
metformin showed a positive interaction in treating 
dehydroepiandrosterone-induced polycystic ovarian syndrome in rats. 
After 14 days’ injection of metformin (270 mg/kg) with baicalin 
(50 mg/kg), the combined treatment restored the sex hormone levels 
including luteinising hormone, follicle stimulating hormone and 
testosterone, and inhibited apoptosis of ovarian granulosa cells [79]. In 
addition, an aqueous extract of S. baicalensis enhanced the effect of 
metformin in reducing the cholesterol level via the excretion of bile acid 

through faeces in Otsuka Long Evans Tokushima Fatty rats. The mech-
anism was associated with farnesoid X receptor signalling pathway 
which increased glycogen synthesis, decreased glycolysis and protected 
beta cell function [80]. Interestingly, the positive interaction of met-
formin and S. baicalensis involves both pharmacodynamic and phar-
macokinetic mechanism, of which the pharmacokinetic interaction will 
be discussed in Section 4.1. 

3.2.2. Interactions with rosiglitazone 
Two in vivo studies showed that baicalin combined with rosiglitazone 

significantly reduced the blood glucose level in alloxan-induced diabetic 
mice. The activity of superoxide dismutase was enhanced and the level 
of malondialdehyde was reduced, indicating that baicalin may assist 
rosiglitazone in preventing and treating peripheral neuropathy in dia-
betic mice by lowering intracellular oxidative stress [81,82]. 

3.3. Anti-microbial drugs 

The wide use of antibiotics against bacterial infections has led to the 
emergence of multi-drug resistant pathogens such as tuberculosis and 
methicillin-resistant Staphylococcus aureus (MRSA). The main challenge 
in combating the evolution of drug resistance is to develop new thera-
pies or improve current therapies. The screening and identification of 
novel anti-microbial agents from natural compounds are of a significant 
research interest. Presently, it is debatable whether or not the adoption 
of synergistic combination therapy with an increased selectivity and 
efficacy would overcome multi-drug resistance [83]. There have been 
numerous studies, most preclinical, on the anti-microbial activity of 
S. baicalensis and its bioactives, although the clinical efficacy of these 
bioactives is still to be determined. Nevertheless, the knowledge 
regarding the mechanistic actions of these bioactives against microor-
ganisms can help predicate potential interactions when they are used in 
combination with conventional anti-microbial drugs [84]. 

3.3.1. Interactions with antibiotics 
Studies have found that S. baicalensis and its bioactives positively 

interacted with a variety of antibiotics by enhancing the overall anti- 
bacterial effects and reducing drug resistance. The main contributing 
bioactive compounds were baicalein and baicalin. 

A biofilm is a thick layer of prokaryotic organisms that helps build 
the resistance against antibiotics and immune system [85]. Although an 
aqueous extract of S. baicalensis alone did not exhibit any anti-bacterial 
effect, its combination with levofloxacin significantly reduced bacterial 
survival in the biofilm of Pseudomonas aeruginosa compared with levo-
floxacin alone [86]. Thus, S. baicalensis extract could be potentially 
useful in improving the efficacy of antibiotics to prevent drug resistance 
and chronic bacterial infection. 

Numerous studies have identified baicalein and baicalin as the key 
compounds that contribute mostly to the anti-bacterial effect of 
S. baicalensis. Qiu et al. (2016) investigated five flavones from 
S. baicalensis including baicalein, baicalin, wogonin, wogonoside and 
oroxylin A in combination with cefazolin against methicillin-resistant S. 
aureus, and found that baicalein and baicalin significantly increased the 
anti-bacterial effect of cefazolin compared to other flavones, with 
baicalein-cefazolin having the lowest minimum inhibitory concentra-
tion (MIC), followed by baicalin-cefazolin [87]. 

The beneficial synergistic effects of baicalein have been studied with 
many other antibiotics against oral bacteria, (methicillin-resistant) S. 
aureus (MRSA) strains and vancomycin-resistant Enterococcus. For 
instance, baicalein synergistically enhanced the antibacterial effect of 
ampicillin, gentamicin [88], ciprofloxacin [89], penicillins [90] and 
gentamicin [91] as determined by MIC and fractional inhibitory con-
centration (FIC) values. The mechanisms behind the synergy against 
various bacterial appear to be versatile. In particular, S. aureus 
SA-1199B developed resistance to ciprofloxacin by overexpressing the 
NorA efflux pump. Baicalein restored the antibacterial action of 
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Table 1 
Interaction of S. baicalensis bioactives with other chemotherapy drugs and its associated molecular mechanisms.  

Bioactive 
compounds 

Chemotherapy 
drugs 

Study 
type 

Cancer type Key results Molecular mechanisms References 

S. baicalensis 
aqueous 
extract 

Cyclophosphamide In vivo Lewis lung 
carcinoma 

The combined therapy showed a 
significant suppressing effect against 
cancer starting from course treatment of 
day 22. 

NA [57] 

Apigenin Cetuximab In vitro 
and in 
vivo 

Glioblastoma The combination produced a greater 
pro-apoptosis effect. 

Enhanced the capacity of cetuximab to 
inactivate EGFR signalling pathway 

[58] 

Apigenin Gemcitabine In vitro 
and in 
vivo 

Pancreatic 
cancer 

Apigenin enhanced anti-tumour efficacy 
of gemcitabine. 

Down-regulated NF-κB activity with the 
suppression of Akt activation 

[59] 

Apigenin Gefitinib In vitro Non-small cell 
lung cancer 

The combination inhibited mutation, 
induced G0/G1 cell cycle arrest, 
metastasis and apoptosis. 

Damaged glucose utilisation and thus 
suppressed cell growth and malignant 
behaviour; inhibited AMPK pathway and 
autophagy flux, leading to augmented 
H1975 apoptotic cell death 

[60] 

Apigenin Gemcitabine In vitro Human 
pancreatic 
cancer cells 

Pre-treatment for 24 h with low 
concentration of apigenin (15 µM) 
followed by the addition of gemcitabine 
(10 µM) for 36 h exhibited higher 
inhibitory effects on cell proliferation. 

NA [61] 

Apigenin Vemurafenib 
(PLX4032) 

In vitro Thyroid 
carcinoma 

PLX4032 augmented apigenin-induced 
cytotoxicity in ATC cells harbouring 
BRAFV600E. 

Suppression of Akt pathway [62] 

Aceteoside Temozolomide In vitro Glioblastoma The combination exhibited synergistic 
effects in glioblastoma therapy. 

Increased phosphorylated p53 and up- 
regulated MAPK induced autophagy and 
apoptosis 

[63] 

Baicalein Dexamethasone In vitro Myeloma The combination consistently 
suppressed cell growth. 

The activation of peroxisome proliferator- 
activated receptors β which suppressed the 
NF-κB activity. 

[64] 

Baicalein Gemcitabine In vitro 
and in 
vivo 

Pancreatic 
cancer 

The combination inhibited the growth 
of the human CFPAC‑1 pancreatic 
cancer cell line and xenografts in nude 
mice. 

Altered expression levels of pro‑apoptotic 
and anti‑apoptotic molecules including 
Bcl‑2, bcl-2-like protein 4 (Bax), survivin, 
poly-ADP ribose polymerase (PARP) and 
caspase‑3 

[65] 

Baicalein Gemcitabine and 
Docetaxel 

In vitro Pancreatic 
cancer 

Synergism of baicalein with 
gemcitabine or docetaxel in inducing 
apoptosis of pancreatic cancer cells 

Arrested pancreatic cancer cells in the S 
phase; associated with caspase-3/PARP 
signalling pathway 

[66] 

Baicalein 10-Hydroxy 
camptothecin 
(HCPT) 

In vitro 
and in 
vivo 

Gastric, breast 
and liver cancer 

Baicalein at non-toxic doses 
prominently enhanced the anti-cancer 
activities of HCPT. 

Up-regulated p53 to induce cell apoptosis 
and cell cycle arrest 

[67] 

Baicalein Lenalidomide In vitro Myeloma The combination synergistically 
induced cell apoptosis. 

Up-regulated of CRBN mRNA expression 
and consequent cereblon protein 
expression, which inhibited NFκB 
activation and led to cell apoptosis 

[68] 

Baicalin Oxaliplatin In vitro Gastric cancer The combination exhibited an enhanced 
activity in the growth inhibition and 
apoptosis rate on human gastric cancer 
cell line SGC-7901. 

NA [69] 

Luteolin Gemcitabine In vitro Human 
pancreatic 
cancer cells 

Pre-treatment for 24 h with 13 μM of 
luteolin, and gemcitabine for 36 h was 
optimal to inhibit cell proliferation. 

Inhibition of the Glycogen synthase kinase- 
3β (GSK-3β)/NF-κB signalling pathway 
leading to apoptosis 

[61] 

Scutellarin Bleomycin In vitro 
and in 
vivo 

Hepato- 
carcinoma 

The combination prolonged the survival 
time of mice bearing H22 ascites 
tumour, alleviated bleomycin-induced 
pulmonary fibrosis, reduced 
inflammatory cytokines and increased 
apoptotic rate. 

Increased the protein expression of p53 and 
gene expression of miR-29b, and decreased 
the expression of Transforming growth 
factor beta 1 (TGF-β1) 

[70] 

Wogonin Doxorubicin In vitro 
and in 
vivo 

Breast cancer Wogonin increased the doxorubicin 
sensitivity in breast cancer cells. 

Regulation of insulin-like growth factor 1 
receptor (IGF-1R)/AKT signalling pathway 

[71] 

Wogonin Icotinib In vitro Lung cancer The combination produced a more 
pronounced growth inhibition and 
significantly increased the percentage of 
early apoptotic cells and cleavage of 
caspase-3. 

Up-regulated the levels of phosphorylated 
mammalian target of rapamycin (mTOR) 
which enhanced the effects on apoptosis 
and autophagy 

[72] 

Wogonin Oxaliplatin In vitro 
and in 
vivo 

Gastric cancer The combination resulted in strong 
synergistic inhibition of the cell viability 
in BGC-823 cells and in a zebrafish 
xenograft model. 

Increased phosphorylation of c-Jun N- 
terminal kinase (JNK), induced autophagy, 
suppressed the phosphorylation of ULK1, 
loss of mitochondrial transmembrane 
potential, and activation of mitochondrial 
apoptotic pathways 

[73] 

Wogonin Sorafenib In vitro Hepato-cellular 
carcinoma 

The combination exhibited an enhanced 
cell death. 

Effectively inhibited sorafenib‑induced 
autophagy which enhanced apoptosis rate 

[74]  
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ciprofloxacin against MRSA strains via the reduction of over-expressed 
NorA efflux pump which led to the synergistically enhanced 
anti-bacterial effect in vitro [89]. A similar effect was found in the syn-
ergistic interaction of baicalein-tetracycline in Escherichia coli, of which 
baicalein strongly inhibited the efflux of tetracycline with membrane 
vesicles, contributing to significantly lower MIC values [92]. In addition, 
Cai et al. (2016) suggested that the synergy of baicalein and cefotaxime 
against Klebsiella pneumoniae was associated with the inhibition of 
CTX-M-1 mRNA expression and the dissemination of the resistance gene, 
and thus reduced the drug cefotaxime resistance [93]. 

Baicalin has been shown to enhance the anti-bacterial effect of cef-
tazidime, meropenem, norfloxacin, ciprofloxacin, ofloxacin, levo-
floxacin, meropenem and sulbactam-cefoperazone on P. aeruginosa and/ 
or its biofilm formation as evidenced by further reduced MIC values 
[94–99]. In addition, baicalin enhanced the effect of amoxicillin [100], 
b-Lactam antibiotics [101], ciprofloxacin [102] and azithromycin [103] 
in reducing the bacterial colony of helicobacter pylori, benzylpenicillin 
against MRSA and penicillin resistant S. aureus, E. coli and Staphylo-
coccus saprophyticus, respectively. However, the mechanistic action of 
the observed synergy is yet to be investigated. 

3.3.2. Interactions with anti-fungal drugs 
Amphotericin B is a gold standard anti-fungal drug albeit with some 

severe side effects. Fu et al. (2011) reported that the combination of 
baicalein and amphotericin B accelerated apoptosis accompanied with 
increased ROS and caspase activity via the corresponding increase of 
gene CaMCA1 in Candida. albicans [104]. In addition, acteoside com-
bined with amphotericin B also resulted in further reduced minimum 
biofilm reduction and enhanced fungicidal effect on C. albicans, Cryp-
tococcus neoformans and Aspergillus fumigatus. The potentiation was 
likely due to the subinhibitory concentrations of amphotericin B that 
facilitated the uptake of acetoside which resulted in increased of fungal 
cell death [105]. 

Other studies have investigated the synergistic interaction of baicalin 
and fluconazole against C. albicans biofilms, and found that the combi-
nation further down-regulated the RNA expression of agglutinin-like 
sequence (ALS) genes including ALS1, ALS3, EAP1, SUN41 and CSH1, 
which inhibited the adherence of Candida sp. to host tissues and cells 
[106]. The synergy was also related to the down-regulation of Ras/cyclic 
adenosine monophosphate (cAMP)/protein kinase A (PKA) signalling 
pathway, which inhibited the morphological transition from yeast to 
hyphae and thus reduced the virulence of Candida sp. [107]. 

3.3.3. Interactions with anti-viral drugs 
The synergistic interaction of baicalin and ribavirin (antiviral drug) 

was investigated in influenza A (H9N2, H5N1, H1N1) infected MDCK 
cell lines. By comparing individual and combined EC50 values, it was 
found that the combined ribavirin and baicalin exhibited strong synergy 
in inhibiting viral replication of H9N2, but caused additive effects 
against H5N1 and H1N1 in vitro. The combination enhanced the pro-
tection of mice against lethal dose of H1N1 infection with 100% survival 
rate compared to 60% and 50% survival rate in ribavirin and baicalin 
monotherapy groups, respectively [108]. 

Collectively, there is a great potential for S. baicalensis and its bio-
actives to be used in combination with anti-microbials as synergistic 
drug therapy to reduce the undesirable side effects and multi-drug 
resistance of anti-microbials in human and animals. However, further 
studies are needed to address the stability, selectivity and bioavailability 
of individual bioactives to confirm the beneficial interactions with 
pharmacodynamic and/or pharmacokinetic evidence clinically, 
including if any adverse interactions. In this regards, animal models 
with engineered strains lacking the particular resistant genotype can be 
used to precisely define the pharmacokinetic and pharmacodynamic 
targets followed by stringent human studies to verify the optimal ratio 
and dosing regimens to maintain efficacy with minimal toxicological 
profiles [109]. 

3.4. Other pharmaceutical drugs 

3.4.1. Levodopa (drug for Parkinson’s disease) 
Baicalein (10 mg/kg) improved the effect of levodopa (25 mg/kg) in 

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in 
old C57BL/6 mice, with significant improvements in gait function, dy-
namic gait function, restoration of walking speed and gait coordination 
in the combined treatment in comparison to that of the same dosage of 
baicalein and levodopa alone. However, such augmented effect was not 
detected in the baicalein (10 mg/kg) combined with high dose of levo-
dopa (50 mg/kg). Tissue processing and immunohistochemistry assays 
revealed that the combined treatment allowed a higher number of viable 
dopamine neurons to survive. Such effect can be attributed to baicalein 
which exerted a neurotrophic effect by suppressing caspase-3 and 
inflammation via the down-regulation of tumor necrosis factor-α 
expression [110]. 

3.4.2. Labetalol hydrochloride (anti-epileptic drug) 
A randomised controlled trial compared the therapeutic effect of 

combined baicalin capsule and labetalol hydrochloride injection to that 
of labetalol hydrochloride injection alone on severe preeclampsia. A 
total of 78 women in pregnancy at 30.86 ± 1.52 weeks were recruited, 
who were diagnosed with severe preeclampsia but without kidney dis-
eases, chronic hypertension and any other haematological system dis-
eases. After 7 days of treatments with labetalol hydrochloride (150 mg/ 
200 mL, 1 time/day) in glucose injection (5%) with or without baicalin 
capsule (0.5 g/time, 3 times/day), the combined treatment showed a 
greater improvement in the clinical outcomes than using labetalol hy-
drochloride alone, with decreased systolic pressure and diastolic pres-
sure, lowered urine protein, restored kidney function, and reduced 
incidence of complications [111]. However, the mechanisms involved 
are not clear. 

3.4.3. Mefenamic acid (nonsteroidal anti-inflammatory drug) 
It was reported that the co-administration of S. baicalensis extract 

(300 mg/kg, twice daily) and mefenamic acid (40 mg/kg, daily) in rats 
for 5 days potentiated the inhibition of prostaglandin E2 in murine 
macrophage RAW264.7 cells compared to that of the individual 
administration. S. baicalensis extract also prolonged the COX-2 inhibi-
tory effect, alleviated the gross ulcer index and sum of lesion length of 
mefenamic acid, suggesting the co-administration enhanced the anti- 
inflammatory effects while relieving the stomach adverse effects of 
mefenamic acid. S. baicalensis did not alter the pharmacokinetic pa-
rameters of mefenamic acid in Sprague-Dawley rats, and thus the 
combined administration may not affect the drug concentration of 
mefenmic acid in the body (information also shown in Table 2) [112]. 

3.4.4. Acetaminophen (analgesics and antipyretics drug) 
Acetaminophen (APAP) is one of the most widely used anti-pyretic 

and analgesic drugs. However, APAP overdose can cause severe liver 
injury and even acute liver failure which limits its efficacy in clinics. The 
liver injury of APAP is mainly attributed to oxidative stress [113] and 
inflammation response [114,115]. Zhou et al. (2019) [116] established 
an APAP-induced liver injury model by giving the infusion of APAP 
(350 mg/kg) to mice, and liver injury was manifested as reduced body 
weight, and elevated serum alanine transaminase and aspartate 
aminotransferase levels. The pre-treatment of baicalein (100 mg/kg) 
significantly alleviated oxidative stress, cytokine release in serum and 
liver in a dose-dependent manner, and modulated autophagy-related 
proteins in response to APAP overdose. The mechanistic action of bai-
calein against APAP-induced cytotoxicity is versatile, involving MAPK, 
janus kinase (JAK)/signal transducer and activator of transcription 3 
(STAT3), and AKT/mTOR signalling pathways [116]. A diagram 
depicting the mechanistic pathway of baicalein in protecting the liver 
from APAP overdose is depicted in Fig. 3. In addition, luteolin was found 
to strongly block APAP sulfation by inhibiting CYP1A2 and CYP3A4 
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Table 2 
Pharmacokinetics herb-drug interaction of S. baicalensis and its bioactives.  

Herb Dose and 
route of 
compound 

Drugs Dose and 
route of 
drugs 

Drug class Subjects Pharmacokinetics 
consequences of 
the drug 

Molecular 
mechanisms 

References 

S. baicalensis 2.4 g/kg, i.g. Tolbutamide 50 mg/ 
kg, i.g. 

Antidiabetic Female Rats ↑AUC0− t NA [133] 

S. baicalensis 2.4 g/kg, i.g. Tolbutamide 50 mg/ 
kg, i.g. 

Antidiabetic Male Rats No interaction NA [133] 

S. baicalensis 200 mg/kg, 
28 days, oral 

Metformin 100 mg/ 
kg, 28 
days, oral 

Antidiabetic Rats ↓biliary excretion of 
metformin, ↑ 
metformin 
concentration in the 
liver 

↓mRNA level of 
hepatic toxin 
extrusion protein 1 

[141] 

S. baicalensis 300 mg/kg, 
twice daily, 5 
days, oral 

Mefenamic acid 40 mg/ 
kg, daily, 
5 days, 
oral 

Nonsteroidal anti- 
inflammatory drugs 

Sprague-Dawley 
rats 

No interaction on 
Cmax, AUC0–24, Tmax 

or clearance. 

NA [112] 

S. baicalensis 1.0 g/kg, oral Methotrexate 5.0 mg/ 
kg, oral 

Chemotherapy Rats ↑Cmax, AUC0–30, 
AUC0–280 and mean 
residence time 
(MRT) 

↓BCRP and MRP2 
mediated efflux 
transport 

[131] 

S. baicalensis 2.0 g/kg, oral Methotrexate 5.0 mg/ 
kg, oral 

Chemotherapy Rats ↑AUC0–2880 and MRT 
↓AUC0–30 

↓BCRP and MRP2 
mediated efflux 
transport 

[131] 

S. baicalensis 1 g/kg and 
2 g/kg, i.g. 

Cyclosporine 1.25 mg/ 
kg, i.g. 

Immunosuppressants Rats ↓Cmax and AUC0–540 NA [132] 

Compounds Dose and 
route of 
compound 

Drugs Dose and 
route of 
drugs 

Drug class Subjects Pharmacokinetics 
consequences of 
the drug 

Molecular 
mechanisms 

References 

Apigenin 250 mg/kg, i. 
g. 

Venlafaxine 20 mg/ 
kg, i.g. 

Anti-depressant SD rats ↑AUC0− t and Cmax ↓metabolism rate [149] 

Baicalein 1.5 and 6 mg/ 
kg, i.g. 

Doxorubicin 50 mg/ 
kg, i.g.; 
10 mg/ 
kg, i.v. 

Chemotherapy Rats ↑AUC0− t and Cmax, 
↑absolute and 
relative 
bioavailability 

↓P-gp and the CYP3A 
subfamily in the 
intestine and/or liver 

[124] 

Baicalein 2 and 8 mg/ 
kg 

Nimodipine orally 
(12 mg/ 
kg) 

Calcium channel 
blockers 

Rats ↑AUC0− t and Cmax ↓CYP3A4 and P-gp [143] 

Baicalein 20, 40, 
80 mg/kg/ 
day for 5 
consecutive 
days, i.g. 

Ciprofloxacin 20 mg/ 
kg, i.g. 

Quinolone 
antibiotics 

Rats ↓Cmax, AUC0–480 min 
and relative 
bioavailability 

↑P-gp [125] 

Baicalein 3 and 10 mg/ 
kg, i.g. 

Tamoxifen 10 mg/ 
kg, i.g. 

Chemotherapy Rats ↑AUC, Cmax 

↑absolute 
bioavailability 

↓metabolism ↓P-gp [126] 

Baicalein 50 mg/kg/ 
day, 7 days, i. 
g. 

Florfenicol 25 mg/ 
kg, i.g. 

Antibiotics Rats ↑AUC0–24 h, Cmax, 
MRT0–24 h, ↓reduced 
CLz and Vz 

NA [150] 

Baicalein 112 µmol/kg, 
oral 

Cyclosporine 112 µM/ 
kg, i.g., i. 
g. 

Immunosuppressants Rats ↑Cmax and AUC0–540 NA [132] 

Baicalin 50 mg, 14 
days, oral 

Rosuvastatin 20 mg, 
oral 

Statin Healthy adult 
men who were 
CYP2C9*1/*1 
with different 
OATP1B1 
haplotypes 

↓AUC0–72 h and 
AUC0-∞ 

↑ organic anion 
transporter family 
member 1B1 and thus 
↑ uptake into the liver 

[127] 

Baicalin 80 mg/kg, i. 
v., 7 days 

Cyclosporine 80 mg/ 
kg, i.v., 7 
days 

Immunosuppressants Rats No interaction NA [142] 

Baicalin 80 mg/kg, 7 
days, i.g. 

Cyclosporine 80 mg/ 
kg, 7 
days, i.g. 

Immunosuppressants Rats ↓Cmax, AUC0− t and 
AUC0-∞ 

↑P-gp ↓the 
absorption in 
intestine in vitro 

[142] 

Baicalin 0.6 and 0.2 g/ 
kg, i.g. 

Nifedipine 10 mg/kg Calcium channel 
blockers 

Rats ↑AUC0− t and 
bioavailability 
↑Cmax, ↓CLz and Vz 

↓CYP3A [128] 

Baicalin 200 mg/kg, 7 
days, i.g. 

Fexofenadine 30 mg/kg Antihistamines Rats ↑Cmax and AUC0–12 ↓P-gp [129] 

Baicalin 112 µM/kg, 
oral 

Cyclosporine 112 µM/ 
kg, i.g. 

Immunosuppressants Rats ↑Cmax and AUC0–540 NA [132] 

Baicalin 100 mg/kg, 
10 days 

Norfloxacin 50 mg/kg Antibiotics Fenneropenaeus 
chinensis 

Faster clearance ↓t1/ 

2. 

↑CYP450 [130] 

Baicalin 200 mg/kg/ 
10 mL corn 
oil, oral 

Caffeine 1 mg/kg, 
oral 

Psychoactive Rats No interaction NA [151] 

(continued on next page) 
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which are the major pathways of APAP clearance. The clinical signifi-
cance of these findings on APAP-induced liver toxicity is not clear due to 
the high IC50 concentration in vitro [117]. On the other hand, the herbal 
extract of S. baicalensis was also linked with potential hepatotoxicity as 
reported by clinical case studies [118,119]. The reason of this discrep-
ancy warrants further investigations. 

3.4.5. Alpha-interferon (immunomodulator) 
Two clinical studies compared the combination and individual drug 

therapies of oral baicalin capsule and alpha-interferon (intramuscular or 
subcutaneous injection) to treat chronic hepatitis B induced liver 
fibrosis. After a 6-month treatment regime, the combined treatment 
showed a higher effectiveness in restoring liver function (manifested by 
reduced levels of alanine transaminase, aspartate transaminase, gamma- 
glutamyl transferase, and total bilirubin) and lower hepatitis B virus 
(HBV) DNA levels compared to that of alpha-interferon monotherapy 
[120]. In addition, the combined treatment significantly alleviated the 
fibrosis level as evidenced by significantly lowered levels of type III 
procollagen, type IV collagen, laminin and hyaluronidase. Moreover, Lv 

et al. (2018) showed reduced side effects of alpha-interferon-baicalin in 
treating hepatitis [121]. In addition, baicalin used together with ade-
fovir or lamivudine yielded more desired clinical outcomes, not only 
inhibiting HBV replication, but also restoring liver function and 
enhancing cellular immunity [122,123]. The reduction by baicalin of 
oxidative stress and inflammation complement induced by adefovir or 
lamivudine may explain the observed synergistic action of the combined 
treatment. 

4. Pharmacokinetic drug-herb interaction 

4.1. Modulation of efflux and uptake transporters for absorption, 
distribution and elimination 

Despite the large number of pharmacokinetic studies on 
S. baicalensis-drug interaction, the results are quite conflicting, with 
most studies tested on animals only. Notably, most of the interactions 
were attributable to the modulation of efflux and uptake transporters 
which then affected the absorption, distribution and elimination of 

Table 2 (continued ) 

Herb Dose and 
route of 
compound 

Drugs Dose and 
route of 
drugs 

Drug class Subjects Pharmacokinetics 
consequences of 
the drug 

Molecular 
mechanisms 

References 

Chrysin 100 mg/kg/ 
2 mL corn 

Caffeine 5 mg/kg, 
i.g. 

Psychoactive Rats No interaction on 
metabolism 

Chrysin metabolites 
rapidly and almost no 
bioavailability 

[152] 

Oil, i.g. 
No inhibitory effects 
on CYP enzymes 
responsible for 
caffeine metabolism 

Luteolin 4 and 10 mg/ 
kg, iv bolus 
doses 

γ-hydroxybutyrate 400 and 
1000 mg/ 
kg 

Psychoactive Rats ↓plasma 
concentration and 
AUC ↑the total and 
renal clearances 

Inhibited the 
monocarboxylate 
transporter 1 
mediated transport of 
γ-hydroxybutyrate 

[153] 

Scutellarin 6.8 mg/kg, 
oral 

Clopidogrel 11.8 mg/ 
kg, oral 

Anti-platelet Rats ↑AUC0-∞ and Cmax ↓metabolism [154] 

Wogonin 10, 20 and 
40 mg/kg, 3 
days, oral 

Docetaxel 10 mg/ 
kg, i.v. 

Chemotherapy Rats ↑Cmax and AUC0− t NA [155] 

Compounds Dose and 
route of 
compound 

Drugs Dose and 
route of 
drugs 

Drug class Subjects Pharmacokinetics 
consequences of 
the compound 

Molecular 
mechanisms 

References 

Baicalin 3, 10, 30 mg/ 
kg, i.v. 

Cyclosporine 20 mg/ 
kg, i.v. 

Immunosuppressants Rats ↑the active transport 
into bile ↓ AUC 

The metabolism of 
baicalin in the liver 
was extremely 
affected by the 
CYP450 inhibitor, 
SKF-525A, thus 
promoting rapid 
biliary excretion of 
baicalin, but not 
associated with P-gp 

[145] 

Baicalin 3, 10, 30 mg/ 
kg, i.v. 

Quinidine 10 mg/ 
kg, i.v. 

Antiarrhythmic Rats ↑the active transport 
into bile ↓ AUC 

As above [145] 

Baicalein 10, 30 and 
60 mg/kg, i.v. 

Cyclosporin A 20 mg/ 
kg, i.v. 

immunosuppressant Rats No interaction in 
blood. 

NA [146] 

↓AUC and Cmax in 
the bile. ↑ blood-to- 
brain distribution 
(AUC and Cmax) 

Scutellarin Breviscapine 
injection 
containing 
scutellarin 
(20 mg/kg, 
iv) 

Valsartan 15 mg/ 
kg, i.g. 

Anti-hypertensive Rats ↓the plasma 
clearance (CLp) and 
the bile clearance 
(CLb) 

NA [140] 

Scutellarin Breviscapine 
injection 
containing 
scutellarin 
(50 mg/kg, i. 
v.) 

Pravastatin 50 mg/ 
kg, i.g. 

Statins Mouse ↓plasma clearance 
(CL) ↑AUC 

NA [147]  
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various drugs, such as P-gp and multidrug resistance-associated protein 
2 (MRP2). P-gp is also known as multidrug resistance protein 1 (MDR1) 
or ATP-binding cassette sub-family B member 1 (ABCB1), whereas 
MRP2 is also known as canalicular multispecific organic anion trans-
porter 1 (cMOAT) or ATP-binding cassette sub-family C member 2 
(ABCC2). They are both ATP-binding cassette transporter members that 
affect the uptake and efflux of many important drugs [124–130]. A 
summary of the pharmacokinetics studies that are associated with these 
transporters is listed in Table 2 and these studies can be classified into 
three categories: (1) the effect of S. baicalensis extract altering the 
pharmacokinetics of a drug (2) the effects of S. baicalensis bioactive(s) 
altering the pharmacokinetics of a drug (3) the effects of a drug on the 
pharmacokinetics of S. baicalensis bioactive(s). The current findings on 
each of the category include.  

1) The administration of a single oral dose of S. baicalensis aqueous 
decoction in rats increased the blood level of methotrexate and liver 
concentration of metformin [131], lowered the bioavailability of 
cyclosporine [132], showed no interaction with mefenamic acid 
[112], and exhibited conflicting results with tolbutamide [133]. The 
increased absorption of methotrexate was associated with the inhi-
bition of breast cancer resistance protein (BCRP) and MRP-2 efflux 
transports by serum metabolites of S. baicalensis, resulting in 
restricted transport of their substrates from the extracellular space 
into cells [134,135]. Thus it increased the distribution and overall 
exposure of methotrexate in the body [136,137]. Similar mechanism 
was suggested for baicalein, baicalin and scutellarin [136–140]. 
Another animal study suggested that a 28-day metformin treatment 

with S. baicalensis aqueous extract increased the liver concentration 
of metformin through the reduction of mRNA level of hepatic toxin 
extrusion protein 1-mediated metformin uptake, leading to sequen-
tially decreased metformin efflux from the liver to bile, and higher 
hepatic distribution of metformin in rats. Although the extract did 
not affect the overall pharmacokinetics of metformin, it led to an 
increased plasma lactate and glucose tolerance distribution in liver 
without causing hypoglycemia in rats compared to rats with 28-day 
metformin only [141].  

2) A number of studies have demonstrated the pharmacokinetics 
interaction of S. baicalensis bioactives including apigenin, baicalein, 
baicalin, chrysin, scutellarin, luteolin and wogonin and different 
classes of pharmaceutical drugs including anti-depressant, chemo-
therapy, cardiac, antibiotic and psychoactive drugs. However, it is 
difficult to draw a concrete conclusion for each interaction due to 
limited amount of studies and varied results. For example, three 
studies investigated the interaction between baicalin and cyclo-
sporin, and obtained different results: no interaction if both were 
injected intravenously [142], decreased absorption (Cmax, AUC0− t 
and AUC0-∞) with oral administration of high dose (80 mg/kg) of 
baicalin [142], and increased absorption (Cmax and AUC0–540) with 
oral administration of low dose (112 µM/kg) of baicalin [132]. Most 
studies have linked the mechanism of dual regulation of the CYP3A 
subfamily and P-gp. Several studies have revealed that baicalein 
interacted with P-gp in the small intestine, and thus affected the oral 
bioavailability of their substrates including doxorubicin, tamoxifen 
and ciprofloxacin. However, whether baicalein acted as P-gp inducer 
or inhibitor seems to be dependent on the treatment duration. For 

Fig. 3. Diagram of baicalein in protecting liver from the APAP overdose by inhibiting oxidative stress, regulating autophagy and suppressing inflammation pathways.  
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instance, Cho et al. (2011) suggested that 3 h of baicalein treatment 
inhibited P-gp in MCF-7/ADR cells that overexpressed P-gp [143], 
whereas a 72 h treatment upregulated the gene expression of P-gp on 
S174T and HepH2 cells [144]. The role of baicalin in regulating P-gp 
is also unclear. Tsai et al. (2004) suggested that baicalin was not the 
substrate of P-gp, as they found that the effect of ciclosporin on 
baicalein was similar to the interaction with SKF-525A (a 
non-specific CYPs inhibitor) without crossing with P-gp function in 
rats [145]. In agreement with this finding, Fan et al. (2008) showed 
that baicalin had no impact on the induction of P-gp. They observed 
that baicalin decreased the systemic plasma exposure of rosuvastatin 
substantially, and it was mainly relevant to OATP1B1 (an hepatic 
drug uptake transporter) which promoted the hepatic uptake of this 
drug from blood [127]. However, Tian et al. (2019) showed that 
multiple doses of baicalin decreased the oral bioavailability of 
ciclosporin which may be attributable to the induction of P-gp [142]. 
Overall, more studies warrant further investigation, especially clin-
ical trials, to determine the clear interaction of baicalin associated 
with P-gp.  

3) Several studies explored the pharmacokinetics profile of S. baicalensis 
compound(s) that were altered by drugs to understand the actions of 
these compounds in the body and brain. Cyclosporin A significantly 
increased the distribution of unbound baicalein in the brain and 
reduced excretion into the bile, suggesting that there was a rapid 
exchange and equilibration of baicalin between the peripheral 
compartment and the central nervous system, which was facilitated 
by cyclosporin A [146]. Moreover, it was suggested that the dispo-
sition of baicalein was regulated by P-gp which was reputedly 
expressed in blood-brain barrier and hepatobiliary membrane. 
Interestingly, the blood circulation of baicalein was not affected by 
cyclosporin A. Further study is warranted to investigate if this pro-
cess is associated with the involvement of P-pg. In contrast, baicalin 
was not detected in the brain striatum either treated alone or with 
cyclosporin, suggesting that baicalin might not be able to pass 
through the blood-brain barrier [145]. Another two studies investi-
gated the pharmacokinetics of scutellarin, and suggested that MRP2 
played an essential role in the uptake and elimination of scutellarin 
[140,147]. It was observed that the plasma clearance (CLp) and the 
bile clearance (CLb) of scutellarin was significantly reduced in the 
presence of valsartan (MRP2 substrate), and the action may be 
attributed to the active transportation of scutellarin by MRP2 [140]. 
Interestingly, the pharmacokinetic parameters of valsartan were not 
affected by the coadministration of scutellarin. Thus it was consid-
ered to be clinically safe if valsartan was co-administered with scu-
tellarin for the therapeutic use of valsartan against diabetic 
nephropathy [148]. 

It is worth mentioning that the inhibitory effect of S. baicalensis and 
bioactives on drug transporters may be useful to enhance the bioavail-
ability or the therapeutic index of certain drugs and P-gp/MRP2 sub-
strates. However, there is still a gap between findings of preclinical 
studies and clinical applications. 

4.2. Inhibition or induction of CYP-450 activities for metabolism 

CYP450 enzymes play a pivotal role in the metabolism of various 
drugs in the body. Drug interactions via CYP450 enzyme(s) have been 
well studied using various in vitro and in vivo methods including sub-
strate cocktail assays [156]. Generally speaking, the inhibition of 
CYP450 enzymes may reduce drug/substrate’s metabolism, which often 
leads to increased drug effects or even toxicities, while induction of 
CYP450 enzymes may result in reduced drug effects via increased drug 
metabolisms [157]. 

Table 3 summarises the studies regarding the effects of S. baicalensis 
and its bioactives on CYP enzymes in vitro or in vivo. There are significant 
variations in findings, which may be related to experimental conditions, 

species difference, and concentrations/doses used. 
For instance, Yi et al. (2009) investigated the aqueous extract of 

S. baicalensis on a series of CYP450 enzymes in healthy human volun-
teers, and found that the extract strongly inhibited CYP2C9 and 
increased CYP2E1 activity manifested by altered plasma metabolic ra-
tios of their probe drugs. No significant change was observed for 
CYP3A4 [158]. In contrast, the total flavonoids of S. baicalensis had no 
effect on CYP2E1 in human liver microsomes. Baicalein was found to 
down-regulate CYP3A4 in human baculovirus-infected insect cells [143] 
and liver microsomes [159], whereas it induced CYP3A4 in LS174T cells 
[144] (see Table 3). The reason for this discrepancy is not clear. It may 
be related to complex interactions among S. baicalensis constituents, 
such as baicalein, baicalin, wogonin, scutellarin and 2′,5,6′,7-tetrahy-
droxyflavone which showed different effects on metabolic enzymes 
(induction or inhibition). It was also noted that effects of baicalein and 
baicalin on certain CYP enzymes were time and dose dependent. For 
instance, the treatment of baicalin (0.01–1 µM) for 24–36 h increased 
the expression of CYP3A4, CYP2C9 and CYP2C19, but decreased the 
expressions of CYP3A4, CYP2C9 at 48 h in HeLa cells [160]. It is 
assumed that a lower dosage and a certain time frame with the 
co-incubation of baicalin would lead to an induction of enzymes, 
whereas persistent induction and high dose would lead to cytotoxicity 
and/or mRNA degradation which would then result in decreased ex-
pressions of CYPs. Further studies are needed to elucidate the mecha-
nism of these interactions. 

In addition, it is notable that some S. baicalensis bioactives showed 
pronounced effects in vitro but not in vivo. For example, chrysin inhibited 
CYP1A and 1A activities, with IC50 values of 28.5 and 2.9 µM respec-
tively in rat liver microsomes in vitro. However, it did not alter the 
pharmacokinetic parameters of caffeine (CYP1A substrate) and its me-
tabolites in rats in vivo [152]. This may be related to a rapid metabolism 
of chrysin in vivo which could not be replicated in the cultured cells 
[152]. Overall, the current evidence of CYP-mediated drug interactions 
by S. baicalensis and its bioactives is still limited. Further studies on other 
clinical relevant CYPs such as 2D6, CYP2C9, CYP2C19, CYP2D6 and 
CYP3A should also be explored [156,161]. 

5. Conclusion and future perspectives 

The present review highlights potential interactions of S. baicalensis 
and its bioactives with various drugs via pharmacodynamic and phar-
macokinetic mechanisms. Most research on the pharmacodynamic in-
teractions centres around the synergistic actions to enhance drug’s 
efficacy or reduce drug resistance. Such synergistic interactions have 
been demonstrated for S. baicalensis extract and its bioactives (i.e. bai-
calein, baicalin, apigenin and oroxylin A) in combination with various 
drugs used for cancer, diabetes, microorganism infection, Parkinson’s 
disease, epilepsy and inflammatory diseases. However, there is lack of 
studies, especially in clinical trials, that evaluate the adverse reactions 
induced by S. baicalensis drug interaction. The pharmacokinetic in-
teractions of S. baicalensis and various drugs have also been demon-
strated mainly via the regulation of P-gp and CYP enzymes. However, it 
is important to note that most of these studies were conducted in 
cultured cells or animals. There are still gaps in correlating in vitro and in 
vivo data and translating preclinical findings into clinical implications. 

There are also challenges in studying interactions mediated by 
complex multi-herb formulae and metabolites of S. baicalensis. The 
future studies in these areas may help verify or predict important drug- 
herb interactions which may be used for developing complementary or 
adjunct therapies to improve clinical outcomes or minimising the po-
tential risks or adverse reactions of conventional therapies. 
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Table 3 
The effect of S. baicalensis and its bioactives on cytochrome P450 isoenzyme in in vitro, in vivo and human.  

Compounds Subjects CYP Key results References 

Aqueous extract of 
S. baicalensis 

Healthy human male 
volunteers 

↓CYP2C9, ↑CYP2E1 No effect on 
CYP1A2, 2C19, 2D6 and 3A4. 

After repeated doses, the metabolic ratios of losartan (CYP2C9) were 
decreased to 71% of baseline value, and the metabolic ratio of 
chlorzoxazone (CYP2E1) was increased significantly. No significant 
change was found for CYP1A2, 2C19, 2D6 and 3A4. 

[158] 

Flavonoids isolated from 
S. baicalensis 

Human liver 
microsomes 

No effect on CYP2B1, CYP2C19, 
CYP2D6 and CYP2E1 

All flavonoids did not substantially inhibit pentoxyresorufin O- 
deethylation (CYP2B1), mephenytoin 4-hydroxylation (CYP2C19), 
dextromethorphan O-demethylation (CYP2D6), and chlorzoxazone 6- 
hydroxylation (CYP2E1): IC50 > 50 µM. 

[159] 

Apigenin Human liver and 
kidney microsomes 

↓CYP4F2 No effect on CYP4A11 Apigenin inhibited CYP4F2 with an IC50 value of 4.6 μM. [163] 

Baicalein Human baculovirus- 
infected insect cells 

↓CYP3A4 Baicalein inhibited CYP3A4 with an IC50 = 9.2 μM. [143] 
Baicalein significantly enhanced the bioavailability of nimodipine in 
rats possible due to its inhibition of CYP3A4. 

Baicalein Human LS174T cells ↑CYP3A4 Baicalein induced the expression of CYP3A4 and MDR1 mRNA by 
activating pregnane X receptor and constitutive androstane receptor. 

[144] 

Baicalein Human baculovirus 
infected insect cells 

↓CYP3A4 Baicalein inhibited CYP3A4 with an IC50 = 9.2 mM. [126] 
Baicalein enhanced the oral bioavailability of tamoxifen, which may be 
mainly attributable to the inhibition of the CYP3A4-mediated 
metabolism of tamoxifen in the small intestine and/or in the liver. 

Baicalein Rat liver microsomes ↓CYP1A, ↓CYP2B, No effect on 
CYP2E1, CYP3A 

Baicalin inhibited CYP1A (EROD), CYP1A (MROD) and CYP2B (BROD) 
with IC50 values of 6.4, 0.5 and 35.9 µM, respectively. 

[151] 

Baicalein Human liver 
microsomes 

↓CYP3A4 Baicalein inhibited hepatic testosterone 6β-hydroxylation (CYP3A4) 
activity with an IC50 of 17.4 µM. 

[159] 

Baicalin Human LS174T cells No effect on CYP3A4 Baicalin had no effect on either CYP3A4 or MDR1 gene expression. [144] 
Baicalin Rat liver microsomes 

(RLMs) 
↓CYP3A2 Multiple doses of baicalin decreased the expression of hepatic CYP3A2 

by approximately 58% (p < 0.01), and it competitively inhibited 
midazolam metabolism in rat liver microsomes in a concentration- 
dependent manner. 

[164] 

Baicalin Rat liver microsomes ↓CYP3A In vitro: Baicalin competitively inhibited CYP3A activity in rat liver 
microsomes in a concentration-dependent manner and thus increased 
bioavailability of nifedipine in rats. 

[165] 

Baicalin HeLa [Chang Liver] 
cells 

CYP3A4, CYP2C9 and CYP2C19 Treatment of baicalin (0.01–1 µM) for 24–36 h increased the expression 
of CYP3A4, CYP2C9 and CYP2C19. 

[160] 

However, decreased expressions were seen for CYP3A4, CYP2C9 at 
48 h. 

Baicalin Rat Primary Cultured 
Hepatocytes 

↑CYP3A1 The expression of CYP3A1 in rat hepatocytes increased gradually with 
the treatment of low concentration baicalin (<10 mol/L). 

[166] 

Baicalin Rat and human liver 
microsomes 

CYP1A2， CYP2B6， CYP2C9， 
CYP2C19， CYP2D6， CYP2E1 
and CYP3A4 

In rat liver microsomes: baicalin showed no inhibition on CYP1A2, 
CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4. 

[167] 

In human liver microsomes: CYP1A2, CYP2C19 and CYP2E1 were 
inhibited weakly by baicalin, IC50 were 39.72, 40. 91 and 32. 83 μmol/ 
L, respectively. 

Baicalin On Paralichthys 
olivaceus liver 

↑CYP1A Treatment of baicalin (50, 100, and 100 mg/kg/d) for 3, 6 and 9 days 
upregulated gene and enzyme expressions of CYP1A. 

[168] 

Baicalin Healthy male 
volunteers 

↑CYP2B6 Baicalin significantly induced CYP2B6-catalysed bupropion 
hydroxylation. 

[169] 

Baicalin Rats liver microsome ↓CYP3A Baicalin with concentrations of 30 and 90 μg/mL reduced amounts of 
oxidised nifedipine in incubation solution, and inhibited the activities 
of CYP3A. 

[170] 

Baicalin Rat liver microsomes ↓CYP1A, ↓CYP2B, No effect on 
CYP2E1, CYP3A 

Baicalin inhibited CYP1A (7-ethoxy-resorufin O-deethylation), CYP1A 
(7-methoxyresorufin O-demethylation) and CYP2B (7- 
benzyloxyresorufin oxidation) with IC50 values of 24.2, 9.3 and 
22.9 µM, respectively. 

[151] 

However, it did not alter the pharmacokinetic parameters of oral 
caffeine and its three metabolites between control and baicalin-treated 
rats. 

Chrysin Rat liver microsomes ↓CYP1A Chrysin inhibited CYP1A (7-ethoxy-resorufin O-deethylation) and 1A 
(7-methoxyresorufin O-demethylation) with IC50 values of 28.5 and 
2.9 µM, respectively. However, the treatment of chrysin in rats did not 
alter the pharmacokinetic parameters of caffeine and its three 
metabolites. 

[152] 

Luteolin Human liver 
microsomes 

↓CYP3A Luteolin partially inhibited both 1′-OH-MDZ and 4-OH-MDZ formation 
with mixed competitive–non-competitive type. 

[171] 

Luteolin Human liver 
microsomes 

↓CYP1A2, CYP3A, CYP2B6, 
CYP2C8, CYP2C9, CYP2C19, 
CYP2D6 and CYP2E1 

The IC50 values ranged from 0.61-103.4 µM. [117] 

Wogonin Human microsomal CYP1A2 Wogonin had a strong biological activity against CYP1A2, with an IC50 

value of 248 nM. 
[172] 

Oroxylin A Human microsomal CYP1A2 Oroxylin A had a strong biological activity against CYP1A2, with an 
IC50 value of 579 nM. 

[172] 

Scutellarin Human liver 
microsomes; rat liver 
microsome 

↓CYP2C19, Weak inhibitory of 
CYP1A2, CYP2C8, CYP2C9, 
CYP2D6 and CYP3A4 

Scutellarin showed negligible inhibitory effects on the six tested CYPs 
except for a weak inhibition in CYP2C19. 

[173] 

Scutellarin had no inhibitory effect on six tested CYPs using rat liver 
microsome, except for weak inhibitions in CYP2C7 and CYP2C79. 

(continued on next page) 
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Appendix A. Chemical compounds identified from S. baicalensis Georgi (Huang Qin) and analysis methods  

Analysis method Identified compounds References 

Capillary electrophoresis Baicalein, baicalin, wogonin, wogonin 7-O-glucuronide [177] 
HPLC Baicalin, wogonin-7-O-glucuronide, wogonin, baicalein [18] 
Micellar electrokinetic 

chromatography 
baicalin, baicalein and wogonin, phenylethanoid glycoside [178] 

RP-HPLC Baicalin, baicalein, wogonin glucuronide, wogonin, oroxylin A [179] 
HPLC Baicalin, wogonin 7-O-glucuronide, oroxylin A 7-O-glucuronide, baicalein, wogonin, oroxylin A, wogonoside [21] 
HPLC Baicalein, wogonin, oroxylin A [180] 
HPLC Baicalein, wogonin, neobaicalein, skullcapflavone [20] 
HPLC baicalein, wogonin, neobaicalein, and skullcapflavone [20] 
High-speed counter-current 

chromatography 
Baicalin, wogonoside [19] 

HPLC-DAD and LC-MS-MS 2′,3,5,6′,7-Pentahydroxyflavanonol, 6-C-arabinose-8-C-glucose-chrysin, cynaroside, 6-C-glucose-8-C-arabinose-chrysin, 
viscidulin III-2′-O-D–glucoside, viscidulin I, chrysin 8-C-β-D-glucoside, 5,7,2′,6′-tetrahydroxyflavone, baicalin, dihydrobaicalin, 
apigenin-7-O-β-D-glucuronide, oroxylin A 7-O-β-D-glucuronide, chrysin-7-O-β-D-glucuronide, wogonoside, norwogonin, 
baicalein, 8,8′’- baicalein, wogonin, chrysin, oroxylin A 

[22] 

HPLC Baicalin, baicalein, wogonin [19] 
LC-DAD Scutellarin, scutellarein, baicalin, wogonoside, apigenin, baicalein, wogonin, chrysin, oroxylin A, acteoside [17] 
HPLC Baicalin, wogonoside, baicalein, wogonin [181] 
HPLC Baicalin and baicalein [182] 
HPLC and LC-MS Baicalin, wogonoside, baicalein, wogonin, oroxylin A [183] 
UHPLC/orbitrap-MS More than 100 compounds [23] 

Isoschaftoside, schaftoside, 5,7,2,6-tetrahydroxyflavone 2-O-d-glucoside, (2R,3R)-3,5,7,2,6-pentahydroxyflavanone, (2S)- 
5,7,2,6-tetrahydroxy flavanone 2-O-d-glucoside, 3,5,7,2,6-pentahydroxyflavone, scutellarin, viscidulin III 6-O-d-glucoside, 
chrysin 6-C-α-l-arabinopyranoside-8-C-β-d-glucoside, acteoside, chrysin 6-C-β-l-arabinopyranoside-8-C-β-d-glucoside, 5,2,6- 
trihydroxy-7,8-dimethoxyflavone 2-O-β-d-glucoside, chrysin 6-C-β-dglucoside-8-C-α-l-arabinopyranoside, chrysin 6-C-β-d- 
glucoside-8-C-β-l-arabinopyranoside, chrysin 8-C-β-d-glucoside, (2S)-5,7,2,6-tetrahydroxyflavanone, viscidulin III, 5,7,2-trihy-
droxy-6-methoxyflavone 7-O-β-d-glucuronide, baicalin, baicalein 7-O-β-d-glucoside, norwogonin 7-O-β-d-glucuronide, wogonin 
5-O-β-d-glucoside, cistanoside D, chrysin 7-O-β-d-glucuronide, oroxylin A 7-O-β-d-glucuronide, oroxylin A 7-O-β-d-glucoside, 
(2S)-5,7-dihydroxy-6-methoxyflavanone 7-O-β-d-glucuronide, wogonoside, 5,7,6-trihydroxy-8,2-dimethoxyflavone, baicalein, 
wogonin, chrysin, 5,6-dihydroxy-6,7,8,2-tetramethoxyflavone, and oroxylin A 

Near-infrared spectroscopy Baicalein, baicalin, wogonin [184] 
HPLC-DAD Scutellarin, apigenin-7-O-β-D-glucopyranoside, baicalin, luteolin, wogonoside, alpinetin, apigenin, baicalein, wogonin, chrysin, 

and oroxylin A 
[185] 

UPLC-Q-TOF-MS Apigenin-6-C-glucosyl-8-C-arabinoside, 6-C-arabinopyranosyl-8-C-glucopyranosyl-5,7-dihydroxyflavone, 3,5,7,20,60- 
pentaydroxyflavanone, carthamidin, dihydroscutellarin, scutellarin, 7,2′,6′-trihydroxy-5-methoxyldihydroflavone, viscidulin I, 
hispidulin-7-O-glucuronide, 5,7,2′-trihydroxy-6-methoxyflavone, 6-methoxynaringenin, 5,7-dihydroxy-8,2′- 
dimethoxydihydroflavone-7-O-glucuronide, baicalin, norwogonin, baicalein-7-O-glucoside, scutellarein, viscidulin III, 
dihydrobaicalin, naringenin, 5,8-dihydroxy-6,7-dimethoxyflavone, apigenin-7-glucoside, acacetin, apigenin, apigenin-7-O- 
glucuronide, 5,8,2′-trihydroxy-7-methoxyflavone, scutevulin-7-O-glucuronide, oroxylin A-7-O-glucuronide, eriodyctiol, 
chrysin-7-O-glucuronide, kaempferol 5-rhamnoside, negletein, wogonoside, dihydrooroxylin A, 5,7-dihydroxy-8,2′- 
dimethoxylflavone7-O-glucuronide, 5,7-dihydroxy-8,2′-dimethoxyflavone, skullcapflavone, 4′-hydroxywogonin, 5,2′ ,5′- 
trihydroxy-6,7,8- trimethoxyflavone, apigenin-7-O-glucuronide-6-ethyl ester, hispidulin, baicalein, viscidulin II, 5,2′ ,4′- 
trihydroxy-6,7,5′- trimethoxyflavone, 5,2′-dihydroxy-6,7,8- trimethoxyflavone, wogonin, chrysin, skullcapflavon I, 
skullcapflavon II, oroxylin A, 5,2′-dihydroxy-6′,7,8- trimethoxyflavone, dibutyl phthalate, linoleic acid 

[186]  

Table 3 (continued ) 

Compounds Subjects CYP Key results References 

Scutellarin Rat liver microsomes ↓CYP1A2 The inhibitory effect of CYP1A2 with an IC50 value of scutellarin was 
108.20 ± 0.657 µM and it was not time and NADPH-dependent. 

[174] 

Scutellarin inhibited CYP1A2 directlyin whole animal studies. 
Scutellarin Rat microsomes ↓CYP3A1, CYP2C11 The results showed that the inhibition concentrations of scutellarin on 

CYP3A1 and CYP2C11 were not greater than 1 μM, suggesting that 
scutellarin was a strong inhibitor of CYP3A1 and CYP2C11. 

[175] 

Wogonin Human liver 
microsomes 

↓CYP1A2, CYP2C19 Wogonin was a potent and competitive inhibitor of CYP1A2 (Ki =
0.24 µM), and a weak inhibitor of CYP2C19 (IC50 = 101.10 µM). 

[176] 
No effect on CYP2C9, CYP2D6, 
CYP2E1 and CYP3A4 Wogonin was not able to inhibit CYP2C9, CYP2D6, CYP2E1 and 

CYP3A4 (IC50 >200 µM). 
2′,5,6′,7- 

tetrahydroxyflavone 
Human liver 
microsomes 

↓CYP3A4 2′,5,6′,7-tetrahydroxyflavone inhibited CYP3A4 (hepatic testosterone 
6β-hydroxylation) activity with an IC50 of 7.8 µM. 

[159]  
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[137] B. Kalapos-Kovács, B. Magda, M. Jani, Z. Fekete, P.T. Szabó, I. Antal, P. Krajcsi, 
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