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Abstract: Bridge infrastructures are continuously subject to degradation due to aging and excess 

loading, placing users at risk. It has now become a major concern worldwide, where the majority of 

bridge infrastructures are approaching their design life. This compels the engineering community 

to develop robust methods for continuous monitoring of bridge infrastructures including the loads 

passing over them. Here, a moving load identification method based on the explicit form of New-

mark-β method and Generalized Tikhonov Regularization is proposed. Most of the existing studies 

are based on the state space method, suffering from the errors of a large discretization and a low 

sampling frequency. The accuracy of the proposed method is investigated numerically and experi-

mentally. The numerical study includes a single simply supported bridge and a three-span contin-

uous bridge, and the experimental study includes a single-span simply supported bridge installed 

by sensors. The effects of factors such as the number of sensors, sensor locations, road roughness, 

measurement noise, sampling frequency and vehicle speed are investigated. Results indicate that 

the method is not sensitive to sensor placement and sampling frequencies. Furthermore, it is able to 

identify moving loads without disruptions when passing through supports of a continuous bridge, 

where most the existing methods fail. 

Keywords: moving load identification; bridge health monitoring; explicit form of Newmark-β 

method; road roughness; generalized Tikhonov regularization; vehicle-bridge interaction system 

 

1. Introduction 

Condition assessment of bridge structures based on vibration measurements has at-

tracted increasing interest among researchers. There are two main types of dynamic vi-

bration tests: the ambient vibration test and the forced vibration test. When a bridge is 

subjected to a moving vehicle exposed to a forced vibration test, there is no need for traffic 

interruption and extensive experimental arrangements. Using moving vehicles as exciters 

has the potential of inducing structural vibration with a large amplitude and reasonable 

signal-to-noise ratio [1–10]. 

Estimating the moving load is of high importance in structural health monitoring. 

Direct measurement of the moving load is expensive, difficult and subject to errors; there-

fore, indirect identification methods from measured responses are desired, as they are 

easier and cheaper to carry out. Weigh-in-Motion (WIM) techniques have been developed 

to estimate equivalent static axle loads; however, their results are reliable only if the road 

surface is smooth and the vehicle moves at low speeds [11–14]. Chan, et al. [15] carried 
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out an experimental study to compare four different methods of moving load identifica-

tion (Interpretive Method I, Interpretive Method II, Time Domain Method and Frequency-

Time Domain Method) and concluded that the time domain method is the best for incor-

poration in a moving load identification system. Law and Zhu [16] improved the results 

of moving load identification at the beginning and end of the beam by Tikhonov regular-

ization, and investigated the effect of different beam models, as well as the number of 

moving forces on the accuracy of moving load identification. However, there are limita-

tions in choosing the number of sensors and the sampling frequency. Law and Fang [17] 

developed a new method of moving load identification in state space based on a dynamic 

programming technique to overcome the weakness of having large fluctuations in the 

identified results; however, the method was not studied for multi-span continuous 

bridges. To reduce the effect of measurement noise, and to consider the efficiency for con-

tinuous bridges, Zhu and Law [18] proposed a generalized orthogonal function approach 

to obtain the derivatives of the bridge modal responses. Results indicated that loads were 

identified at high sampling frequencies and were sensitive to the number of mode shapes. 

Furthermore, the error at two-span continuous bridge was more than the error at the sin-

gle span bridge, and loads were identified as zero at mid supports. These are common 

weaknesses which can also be seen in references such as [19,20]. Asnachinda, et al. [21] 

adopted an updated static component to identify moving loads passing over a multispan 

continuous bridge and verified their method numerically and experimentally. Experi-

mental studies showed increase of identification errors at higher speeds. All of the above 

studies and the ones done by Oliva, et al. [22] and Zhou [23], did not consider the effect 

of road roughness, few of them were experimentally investigated or studied the efficiency 

of the method for continuous bridges. 

Wu and Law [24] proposed a novel stochastic moving load identification method in 

which statistics of the moving time histories were identified from samples of the structural 

responses. Uncertainty in the bridge structural responses due to road surface roughness, 

and the effect of measurement noise, and speed were not studied. Furthermore, they did 

not consider the modal characteristic of the vehicle, including mass, damping and stiff-

ness, and the method did not investigate a multispan continuous bridge. Eshkevari, et al. 

[25] proposed a simplified vehicle-bridge interaction model for medium to long span 

bridges subjected to random traffic, using the implicit form of the Newmark-β method. 

They verified their method numerically considering the road roughness and concluded 

that the proposed method was very computationally efficient; however when the natural 

frequency of the heavy vehicle was close to the fundamental frequency of the bridge, there 

was a noticeable error. 

Most of the above methods are based on the state space method and their perfor-

mances are limited by long sampling duration and large discretization error [26]. State 

space is explicit and conditionally stable. However, the Newmark-β method is an implicit 

method and it is unconditionally stable [26]. Liu, et al. [26] presented the explicit form of 

this implicit method for inverse force identification and verified it by two shear-frame 

buildings and a planar truss structure. However, this method was only numerically veri-

fied for force identification. Wang, et al. [27] proposed a state space method based on the 

Galerkin weak formulation and compared the method with a conventional state space 

method and the explicit form of the Newmark-β method. They verified their results nu-

merically by a single-span simply supported truss subject to a moving force, but the phys-

ical properties of the vehicle, speed, the road surface roughness and the effect of the num-

ber of spans were not included in their study. 

In this paper, the explicit form of Newmark-β method is used to overcome the dis-

advantages of the state space method in identifying moving loads considering road 

roughness. Dynamics of the vehicle-bridge interaction system is explained in Section 2 

and moving loads identification formulations are developed in Section 3. In Section 4, a 

numerical study is carried out for a single span bridge, and in Section 5 a numerical study 
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is done on a three-span continuous bridge. In Section 6, an experimental study is con-

ducted on a single-span bridge. In these studies, the effects of different factors such as 

measurement noise, sensor number and placement, road surface roughness and continu-

ity of bridges are explored. The results are concluded in Section 7. 

2. Dynamics of the Vehicle-Bridge Interaction System 

2.1. Road Surface Roughness 

Road surface roughness distinctly affects the dynamic responses of both the bridge 

and vehicles. ISO 8608 classifies road profiles from A to H according to their degree of 

roughness. In agreement with the ISO road roughness surface classification, a road profile 

can be calculated by the inverse Fourier transform of the road profile spectrum as follows 

[28]: 

3 0
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( ) .2 .10 .( )cos(2 . . . )
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i
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n
r x n i n x
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(1)

where x is a variable from 0 to L, L is the length of the bridge, Δn = 1/L, N is the number of 

data points which is equal to L/B = T × Sampling Frequency, B is the sampling interval, T is 

the total time that the vehicle needs to pass the bridge, k is a constant integer increasing 

from 3 to 9 corresponding to the profiles from class A (very good surface) to class H (very 

poor surface), �� = 0.1   ������/����� and �� is the random phase angle distributed uni-

formly between 0 and 2. A MATLAB code was created to generate the surface roughness 

profile. 

2.2. Dynamic Model of a Vehicle 

As shown in Figure 1, the vehicle-bridge interaction (VBI) system is modelled by a 

simply-supported or continuous bridge subject to a moving vehicle [29], which is repre-

sented by a four-degree-of-freedom system. This system was chosen among other devel-

oped systems [13,30–33] since it has a fair simplicity-complexity balance to study the effi-

ciency of the proposed method. Here, �� and ��  are the mass and the pitch moment of 

inertia of the vehicle body, respectively; ��� and ��� are masses of the front and rear 

axles, respectively; ���, ���, ��� and ���  are the linear suspension stiffness and the vis-

cous damping parameters of the front and rear axles, respectively; ���, ���, ��� and ��� 

are the linear tire stiffness and the viscous damping parameters, respectively; �� and ��  

are the axle distances with respect to the gravity centre of the vehicle body; ρ is the mass 

per unit length of the bridge; EI is the flexural stiffness of the bridge, a product of Young’s 

modulus E and the moment of inertia I, and���, ��� , ��� and ��� are the bridge displace-

ments, and road profile displacements under the front and rear wheels moving on the 

bridge, respectively. 
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Figure 1. Vehicle-bridge interaction system. 

The equation of motion of the vehicle can be rewritten as [29]  
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Equation (2) can be simplified into Equation (3) and the vehicle frequency can be 

obtained by Equation (4). 
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�� = �

0
0

�����̇�� + �̇��� + ������� + ����

���(�̇�� + �̇��) + ���(��� + ���)

� 

det(�� − ���) = 0 (4)

where  is an eigenvalue of �� and ��. 

2.3. Dynamic Model of a Bridge 

The equation of motion of abridge subjected to a moving vehicle can be written as: 

���̈� + ���̇� + ���� = ������ (5)

where �� , �� , and ��  are the bridge mass, damping and stiffness matrices, respec-

tively; ��, �̇�, and �̈� are the nodal displacement, velocity, and acceleration vectors, re-

spectively. The beam bridge is discretised into ��� equally spaced elements with ��� + 1 

nodes. Each node includes two degrees of freedom (DOFs), rotational and vertical trans-

lations. The total number of DOFs for the bridge is ���� = 2 × (��� + 1). 

A half vehicle model with two axles is used in this study and (������)ndof×1 is an 

equivalent global load vector at each time instant. The matrix �� is a ���� × 2 transfor-

mation matrix that distributes interaction forces (����), to equivalent nodal forces, which 

consists of the Hermitian shape function vectors at the DOFs of the beam elements where 

interaction forces are acting and zeros for the other entries, given by [34,35]. 
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The Hermitian shape function vector for a load moving on an element (see Figure 2) 

is defined as follows: 
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(7) 

where i is the number of the load, x is the location of the load, and l is the element length, 

as shown in Figure 2. 

 

Figure 2. An element under moving load. 

���� = �
�����(�)

�����(�)
�, �����(�) and �����(�) are the interaction forces acting on the bridge, 

which include the static plus dynamic interaction forces between the two axles and the 

bridge, specifically: 
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����� = − ���� ��̇�� − ��̇�� + �̇���� + ��� ���� − ���� + ������ + �� 

����� = −[���(�̇�� − (�̇�� + �̇��)) + ���(��� − (��� + ���))] + �� 

(8) 

where �� = (�� × ��/� + ���)� and �� = (�� × ��/� + ���)� are the static loads at the 

front and the rear wheel locations, respectively; ��� , ���, ��� and ��� are the bridge dis-

placements and road profile displacements under the front and rear wheel moving on the 

bridge, respectively. The bridge displacement under either of the wheels at each time step 

can be calculated by 

��� = ���
� ��         ��� = ���

� ��  (9) 

In this study, Rayleigh damping is adopted for the bridge, i.e., �� = ��� + ��� . The 

constants α and  can be obtained from � = 2zw�w�/(w�+w�)  and  � = 2z/(w�+w�) , 

where z is the damping ratio, w� and w�  are the first two natural frequencies respec-

tively. 

2.4. Vehicle-Bridge Coupled Model 

Assuming that there is no separation between vehicle wheels and bridge surface, the 

vehicle and bridge models can be combined as follows:  

�
��     �   
�        ��

� �
�̈�

�̈�
� + �

��     �   
�        ��

� �
�̇�

�̇�
� + �

��     �   
�        ��

� �
��

��
� = �

������

 ��
� (10) 

On the right-hand side of Equation (10), there are elements depending on bridge and 

vehicle responses which should be moved and coupled with the left-hand side. The final 

version of the vehicle-bridge coupled model is shown in Equation (11). 

Using the explicit form of the Newmark-β method, Equation (11) can be solved step-

by-step to obtain the dynamic responses of the bridge and the vehicle. Due to the interac-

tion of the system with moving loads; the mass, damping and stiffness matrices, as well 

as the force vectors of the system, are time-dependent and should be updated at each time 

instant. Having the dynamic responses of the bridge, the reference loads ���� can be cal-

culated from Equation (5) or Equation (8). 
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3. Moving Load Identification Formulations 

The Newmark-β method can be applied when establishing a relationship between 

output measurements and input loadings. Whenever the external load is known, bridge 

responses can be predicted by forward analysis. However, in the real world, moving ve-

hicles act as external loads and they are unknown. Identifying moving loads is an inverse 

problem, requiring calculation of moving loads using response measurements with a lim-

ited number of sensors installed on the bridge. It is an ill-posed least-squares problem. 

Here in this study, a known vehicle was considered to verify the accuracy of the generated 

method. However, in the practical use of the generated method, it is not necessary to know 

the vehicle. By knowing the vehicle dynamic properties, the real interaction forces be-

tween the tires and road surface can be calculated and compared with the identified ones 

to check the method’s accuracy. 

3.1. Represention of the Explicit Form of the Newmark-β Method for Moving Loads 

The equation of motion of any system has a format as follows: 

��̈ + ��̇ + �� = �� (12) 

where mass (�), stiffness (�), damping (�), external force (�), and its influence matrix 

(�) can be either time-dependent or constant. The representation of Equation (12) by the 

explicit form of the Newmark-β method for the case system is subject to a non-moving 

load, and mass, stiffness and damping of the system are constant during time, is proposed 

by Liu et al. [26]. To simulate the response measurements in this study, the method was 

extended for a general system where the bridge is subject to a moving load, and the mass, 

stiffness, and damping matrices of the general system are time-dependent. Later, the 

method was developed to identify moving loads. 
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In general, the representation of Equation (12) by the explicit form of the Newmark-

β method is as follows: 
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The generated method can be applied to solve Equation (11) to simultaneously obtain 

bridge and vehicle responses. 

To identify moving loads from Equation (5), where the mass, stiffness and damping 

matrices are constant, Equation (4) can be represented by: 

�
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Vector � ∈ ���×� denoting the output of the structural system can be presented as 

follows: 

a v dx=R y+R y+R y 
 (16) 

where �� , ��  and ��   ∈ ���×�  are the influence matrices that are multiplied by the re-

lated measured responses, �� is the dimension of the measured responses and � is the 

number of degrees of freedom of the structure. 

Letting � = [��   �� ��], Equation (15) can be represented as follows: 
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Assuming zero initial conditions of the structure, the following equation can be written: 
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Equation (17) can then be rewritten in the matrix convolution form in the time dura-

tion from ��  to  ��� as: 

� = ��� (19) 

where tt is the number of time instants and 

� = �

�(��)
�(��)

⋮
�(���)

� , �� =

⎣
⎢
⎢
⎡

�����
                    0              …           0

�����
             �����

          …            0

⋮                             ⋮                ⋱             ⋮
��������

    ��������
     …      ������⎦

⎥
⎥
⎤

 , and � = �

����(��)
����(��)

⋮
����(���)

� (20) 

where � is the assembled measured acceleration vector, ���� is the assembled unknown 

force vector and � is known as the Hankel matrix of the bridge consisting of the system 

Markov parameters. It should be highlighted that ���
 is time-dependent and should be 

updated at each time step. 

3.2. Regularized Solution for Moving Load Identification 

The ordinary least squares solution (LSQ) for Equation (19) would lead to un-

bounded solutions because of the presence of noise in the measurements, especially at the 

entrance and exit of the bridge. In order to provide a bounded solution, a regularization 

technique can be used. Here, in this study, the damped least-squares method known as 

Tikhonov regularization [36] was adopted to minimize the function. 

min{‖��� − �‖�
� + ��‖�(� − ��)‖�

�} (21) 

where � is the Tikhonov regularization parameter, �� is an initial estimation of response 

and � is defined below [37,38]: 

� = �

1    − 2     1              
         1    − 2     1

               ⋱    ⋱    ⋱
                 1    − 2     1

�

(���)×�

 (22) 

where � is the number of samples (number of columns in  ��). The generalized cross-

validation (GCV) method was used to find the optimal regularization parameter [37,38]. 
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3.3. Procedure of Identification Algorithm 

In the numerical study, the procedure of moving load identification consists of two 

sections, namely: simulating measured responses and identifying moving loads. The main 

unknown parameter to be identified is the dynamic moving load. However, since this is 

a numerical study, measured responses should be simulated as well. Simulation of the 

measured responses is achieved through applying the Newmark-β method and solving 

Equation (14) (see Figure 3). Having the simulated measured responses of the bridge at 

selected points, moving loads are identified by solving Equation (19) (see Figure 4). 

 

Figure 3. Calculating the vehicle/bridge responses and the true moving loads by the explicit form 

of Newmark-β method. 
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Figure 4. Moving load identification by the explicit form of Newmark-β method 

Known parameters used are:  

1. The bridge geometry and its material density,  

2. Dynamic characteristics of the vehicle (��,  ��,  ��),  

3. The vehicle speed v and axle spacing l. 

4. Numerical Study 1: Simply-Supported Single-Span Bridge 

In this example, a simply supported single-span bridge with 30 m length subjected 

to the moving vehicle is considered. The first five natural frequencies for the simply sup-

ported bridge are 3.9, 15.6, 35.1, 62.5 and 97.6 Hz, and the first four natural frequencies of 

the vehicle are 1.63, 2.29, 10.35 and 15.1 Hz, respectively. Tables 1 and 2 list the parameter 

values of the vehicle [39] and bridge subsystems, respectively. The effects of the number 

of sensors, surface roughness, vehicle speed and measurement noise were investigated 

Table 1. Vehicle parameters 

mv = 17735 kg mt1 = 1500 kg Mt2 = 1000 kg 

Iv = 1.47E5 Nm2 Ks1 = 2.47E6 N/m Ks2 = 4.23E6 N/m 

a1 = 0.519 m Kt1 = 1.75E6 N/m Kt2 = 3.5E6 N/m 

a2 = 0.481 m Cs1 = 3E4 N/m/s Cs2 = 4E4 N/m/s 

S = 4.27 m Ct1 = 3.9E3 N/m/s Ct2 = 4.3E3 N/m/s 

Table 2. Bridge parameters 

L = 30 m EI = 2.5 × 1010 Nm2 ρA = 5 × 103 kg/m Damping ratio for all modes = 0.02 
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4.1. Effect of the Number of Sensors and Noise Level 

The vehicle moves on top of the beam at a constant speed of 15 m/s, the road surface 

roughness level is “A” and the sampling frequency is considered as 200 Hz. To investigate 

the effect of noise, the calculated responses are polluted with white noise as follows: 

� = ����� + �����(�����)�����  (23) 

where � is a vector of polluted response, ����� is the vector of real responses, �� is a 

noise level, and ����� is a standard normal distribution vector with zero mean and unit 

standard deviation. To quantify the force identification accuracy, a percentage error is de-

fined as ����� = ‖����� − ���‖/‖�����‖ × 100 %, where ����� denotes the simulated true 

time-varying moving axle loads and ��� is the identified load by the proposed method. 

The effects of different sensor placements were investigated as listed in Table 3. In 

case S7, seven sensors were equally spaced, and in S6, S5, and S4, one sensor was removed 

step by step to see the effect. In the case with three sensors, the third sensor was randomly 

placed to consider the case when a part of the bridge is inaccessible to install a sensor. 

Table 3. Sensor Placement. 

Sensor Case Sensor No. Sensor Location  

S3 3 1/3L, 2/3L,4/5L 

S4 4 1/8L, 1/4L, 1/2L, 3/4L 

S5 5 1/8L, 1/4L, 1/2L, 3/4L, 7/8L 

S6 6 1/8L, 1/4L, 1/2L, 5/8L, 3/4L, 7/8L 

S7 7 1/8L, 1/4L, 3/8L, 1/2L, 5/8L, 3/4L, 7/8L 

The relative percentage errors of identified loads from different sensor placements 

and at different noise levels are listed in Table 4. As can be seen in Table 4, without meas-

urement noise, the identification errors are zero or close to zero, which shows the accuracy 

of the method. With noise, results from all sensor placements are slightly affected by the 

measurement noise level and the identification accuracy is decreased with the increase of 

the noise level. It should be noted that since the road roughness and measurement noise 

are being generated randomly at each run of the program, the values of errors can be 

slightly more or less than these values. In general, it can be concluded that the method is 

reliable at different noise levels and sensor placements. 

Table 4. The relative error (%) of the identified forces for different sensor placements. 

Sensor Case Noise Level (%) Front Axle Load Rear Axle Load 

S3 

0 0 0.25 

2 2.68 2.8 

5 4.19 3.71 

S4 

0 0 0.23 

2 2.3 2.73 

5 3.11 3.18 

S5 

0 0.22 2.9 

2 3.03 4.12 

5 3.2 4.03 

S6 

0 0.31 2.42 

2 2.78 2.92 

5 2.6 3.29 

S7 

0 0 0.24 

2 2.15 2.01 

5 3.3 3.85 
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Figure 5 show the effect of the measurement noise level on moving load identification 

results by placements of sensor S7. As can be seen, identified loads fluctuate around the 

static load (100 kN). When loads are out of the bridge, the interaction forces are not iden-

tified as zero. This part of time history is excluded in calculating the errors. 

 
(a) 

 
(b) 

Figure 5. Identified loads at road roughness level A with speed 15 m/s using sensor placement S7. 

(a) Rear axle load identification, (b) Front axle load identification 

4.2. Effect of Vehicle Velocity and Road Roughness Level 

In this section, the accuracy of the method at different vehicle speeds (10 m/s, 20 m/s, 

30 m/s and 40 m/s) and road roughness levels (A, B, and C) is investigated utilizing sensor 

placement S7. The sampling frequency is 200 Hz, and measurement noise is 2%. The rela-

tive percentage errors are tabulated in Table 5. 

Table 5. The relative error (%) of moving load identification from sensor placement S7. 

Speed (m/s) 10 20 30 40 

Road roughness A B C A B C A B C A B C 

Front axle load 1.1 9.5 12.2 2.2 8.1 - 1.8 8.5 - 1.2 8.9 - 

Rear axle load 1.5 6.5 19.6 2.8 9.6 - 2.2 14.3 - 2.4 8.6 - 

Based on ISO 8608, driving at high speeds on roads with roughness level C is not 

recommended, since it is not comfortable for passengers. Therefore, these cases are not 

included in this study. 

As can be seen from Table 5, the relative percentage errors at each speed increase as 

roads get rougher and are slightly affected by speed at each road roughness level. Con-

sidering that the road roughness and measurement noise are generated randomly at each 

run of the program, and error values can be slightly higher or lower than these values, it 

can be said that the method is not sensitive to speed. This is investigated further in the 

next example and through experimental studies in the laboratory. Identified loads at a 

speed of 10 m/s and road roughness level C can be seen in Figure 6. These figures show 

identified loads fluctuate around the static values, indicating the accuracy of the method. 
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(a) 

 
(b) 

Figure 6. Identified loads at road roughness level C at a of speed 10 m/s and with 2% noise: (a) rear 

axle load identification, (b) front axle load identification. 

5. Numerical Example 2: Three-Span Continuous Bridge  

Most existing studies are not successful when it comes to multi-span continuous 

bridges. They fail in identifying loads at the instants when a vehicle enters/exits the bridge 

or passes through the mid-supports [19,34,35], and they are not as accurate as for single-

span bridges. The application of the proposed method was studied for a 90 m three-span 

bridge with spans of 30 m (see Figure 7). The bridge is discretized into 45 equally spaced 

Euler-Bernoulli elements with 91 DOFs and its first five natural frequencies are 3.90, 5.00, 

7.30, 15.61 and 17.79 Hz. Other properties of the bridge and the vehicle passing on it are 

the same as the numerical example 1 (Tables 1 and 2). The time step in this study is 0.005 

sec and six sensors are placed at one-third of each span. The effects of measurement noise, 

vehicle speed and road surface roughness were investigated in the following sections. 

 

Figure 7. Three-span bridge model. 

5.1. The Effect of Noise Level and Vehicle Speed 

In this section, road roughness level “A” is considered, and the accuracy of the 

method at different levels of speed (15, 20, 30 and 40 m/s) and noise (0, 2 and 5%), is ex-

plored. The results are tabulated in Table 6 and Figure 8. 
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Table 6. Percentage errors of the identified moving loads at different levels of speed and noise 

Speed (m/s) 15 20 30 40 

Measurement 

noise (%) 
0 2 5 0 2 5 0 2 5 0 2 5 

Front axle load 0.01 3.2 3.4 0.01 2.8 4.8 0.01 2.6 3.1 0.02 2.9 3.6 

Rear axle load 0.16 3.5 3.6 0.2 3.6 5.9 0.3 4.6 3.8 0.46 3.8 4.1 

 

 
(a) 

 
(b) 

Figure 8. Effect of noise on load identification at road roughness level A and speed of 40 m/s: (a) 

rear axle load identification, (b) front axle load identification. 

From the above table, it can be seen that the identification accuracy is slightly affected 

by adding measurement noise; however, it is not sensitive to increase in the noise level or 

vehicle speed, and the error values are in the same range. 

From Figure 8 it can be seen that this method is able to identify moving loads without 

disruptions when passing through supports, which is not possible by other methods [35]. 

This is a significant improvement in moving load identification. This is further investi-

gated in the next sections. 

5.2. The Effect of Road Roughness Level and Vehicle Speed 

In this section, the accuracy of the method at different road roughness levels (A, B, 

and C) as well as different vehicle speeds (15, 20, 30 and 40 m/s) with and without noise 

is investigated, and results are tabulated in Tables 7 and 8. It is important to note that since 

both road roughness and measurement noise are produced by random functions in 

MATLAB, the error values might not be the same at different runs of the program. 

Table 7. The relative error (%) of the identified forces at noise 0%. 

Speed (m/s) 15 20 30 40 

Road roughness A B C A B C A B C A B C 

Front axle load 0.01 0.05 0.25 0.01 0.01 - 0.1 0.1 - 0.02 - - 

Rear axle load 0.16 0.15 0.13 0.2 0.21 - 0.4 0.3 - 0.46 - - 

 

80
85
90
95

100
105
110
115
120
125
130

0 0.5 1 1.5 2 2.5

R
ea

r 
ax

le
 lo

ad
 (

kN
)

Time (s)

Rear True load
0% Noise
2% Noise
5% Noise

80

90

100

110

120

130

0 0.5 1 1.5 2 2.5

Fr
on

t a
xl

e 
lo

ad
 (

kN
)

Time (s)

Front True load
0% Noise
2% Noise
5% Noise



Remote Sens. 2021, 13, 2291 16 of 28 
 

 

Table 8. The relative error (%) of the identified forces at 2% noise. 

Speed (m/s) 15 20 30 40 

Road roughness A B C A B C A B C A B C 

Front axle load 3.2 10.8 32.5 2.8 12.7 - 2.6 9.6 - 2.3 - - 

Rear axle load 3.5 11.8 29.2 3.6 18.0 - 4.6 12.4 - 3.4 - - 

According to Table 7, when there is no measurement noise, the method is not sensi-

tive to speed and road roughness level, and errors are very close to zero, showing the 

accuracy of the method. However, in the presence of measurement noise (Table 8), the 

accuracy of the method is affected at road roughness levels “B” and “C”. Identified loads 

at a speed of 15 m/s, road roughness B, and measurement noise of 0% and 5% can be seen 

in Figures 9 and 10. 

 
(a) 

 
(b) 

Figure 9. Identified loads at road roughness level B, speed 15 m/s and 0% noise: (a) rear axle load 

identification, (b) front axle load identification. 
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(a) 

 
(b) 

Figure 10. Identified loads at road roughness level B, speed 15 m/s and 2% noise: (a) rear axle load 

identification, (b) front axle load identification. 

6. Experimental Study 

6.1. Experimental Test Set-Up and Measurements 

A simply supported steel bridge was designed in the laboratory with the experi-

mental test set up shown in Figure 11. The main beam was 3 m long with a 25 × 100 mm 

uniform cross-section and it was simply supported. There were 3 m leading and trailing 

beams for vehicle acceleration and deceleration. To have a simply supported beam, there 

was a gap between the main beam and the other two beams. The details of support, pho-

toelectric sensor, and the gap between the two beams are shown in Figure 12a. Three pho-

toelectric sensors were equally spaced on the beam to monitor the vehicle entrance/exit 

and measure its speed. The measured density of the beam was 19.7 kg/m and the initial 

young’s modulus was considered as 210 GPa. 



Remote Sens. 2021, 13, 2291 18 of 28 
 

 

. 

 

Figure 11. Experimental set-up of the vehicle-bridge system. 

 
(a) (b) 

Figure 12. (a) Details at the left-hand support of the main beam, (b) the two-axle model vehicle. 

The model vehicle (Figure 12b) had two axles spacing at 30 cm and running on four 

steel wheels wrapped by a rubber band. The model was symmetrical and weighed 4.4 kg. 

A “U” shaped aluminum section was used to guide the vehicle on the beams. The vehicle 

was pulled along the guide by a string connected to an electrical motor. 

Seven strain gauges and accelerometers were evenly distributed underneath the 

main beam. Strain gauges were model FLA-5-11-3LJCT, and accelerometers were piezoe-

lectric model ICP®. A 9-slot data acquisition system model NI PXIe-1078 was used to pro-

cess the signals (Figure 13) connected to LabVIEW as postprocessing software. 
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(a) (b) (c) 

Figure 13. (a) Data acquisition system, (b) strain gauge and (c) accelerometer. 

6.2. Modal Test of the Beam 

To identify the dynamic properties of the steel beam, a modal test was carried out. In 

the modal test, an impact hammer was used to excite the beam at a certain reference point, 

and the accelerations of the beam were measured by accelerometers. The impact hammer 

used to excite the beam was a PCB model 086C41 as shown in Figure 14. The reference 

point was located at 0.45 L, and the beam responses were measured by two piezoelectric 

accelerometers at locations 3L/16 and L/2. 

 

Figure 14. Impact hammer. 

The accelerometer installed at location L/2 was able to clearly identify the 1st, 3rd 

and 5th modes, but not 2nd and 4th modes, since it was located on the node point of these 

modes. An accelerometer installed at location 3L/16 was able to clearly identify all first 

five modes. The reference point was chosen at location 0.45 L as none of the first five flex-

ural mode shapes had a node point at location 0.45 L. All these modes were excited 

through this technique and hence could be identified. 

The sampling rate was set at 500 Hz with 35,000 time-domain data points being rec-

orded. The impact force curve of the impact hammer is shown in Figure 15. The proper 

impact force had only one peak with maximum amplitude and minimum duration which 

could excite the main frequencies of the beam. A soft plastic tip (white color) was used for 

excitation. 

 

Figure 15. Hammer impact force. 
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The acceleration time history at location 3L/16 is shown in Figure 16. It consists of 

three parts, namely: before impact, during impact, after impact. The response during the 

impact force duration is called forced vibration and the response after impact force is 

called free vibration. To find the first five natural frequencies, sixty seconds of the free 

vibration signal, including 30,000 data points were considered. 

 

Figure 16. Acceleration response at location 3L/16. 

The free vibration signals in the time domain were converted into the frequency do-

main using a Fast Fourier Transform (FFT), as illustrated in Figure 17. In this figure, dis-

tinct frequency peaks are visible describing the first five flexural modes. Some other picks 

can also be observed, relating to torsional or transversal modes which cannot be precisely 

identified by the current sensor setup. 

 

Figure 17. FFT of acceleration responses at locations L/2 and 3L/16. 

The finite element model (FEM) of the bridge beam was created in MATLAB includ-

ing 8 Euler-Bernoulli beam elements with two degrees-of-freedom at each node. The nu-

merical natural frequencies from the FEM of the beam, experimental frequencies and the 

errors between them, are tabulated in Table 9. The numerical frequencies were found to 

be very close to the measured values, confirming the accuracy of the model for the simu-

lation. 

Table 9. Calculated and measured natural frequencies of the test beam (Hz) 

Modal Frequency 1st 2nd 3rd 

Measured 6.27 27 61.17 

Calculated 6.48 25.78 57.38 

Error  3.34% 4.52% 6.19% 

6.3. Signal Processing 

To mitigate the effect of measurement noise on the accuracy of the identified loads, 

the Chebyshev Polynomial was used to smooth measurements as follows: 
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�(�, �) = � ��(�)��(�)

��

���

 (24)

where {��(�), � = 1,2,3, . . . , ��} is the generalized orthogonal function [18], �� is the num-

ber of terms in the generalized orthogonal function, and {��(�), � = 1,2,3, . . . , ��} is the 

vector of coefficients in the expansion expression. �� can affect the accuracy of the results; 

therefore, a study is performed to find the best value ��. 

6.4. Moving Load Identification Verification 

In this section, the effects of the number of terms in the generalized orthogonal func-

tion (��), as well as sensor arrangements, sampling frequency, and vehicle speed on the 

accuracy of the moving load identification are experimentally investigated. The FEM of 

the beam was created in MATLAB, including 8 Euler-Bernoulli beam elements. Strain 

measurements were used as inputs and converted to nodal displacements using the gen-

eralized orthogonal function [18]. To quantify the moving loads’ identification accuracy, 

percentage error is defined as: 

Reconstructed response error = ||measured response – reconstructed re-

sponse|| × 100%/||measured response|| 
(25)

The reconstructed response can be obtained by inputting the identified loads into the 

system and calculating the responses of the beam as a forward analysis. The accurately 

identified moving loads should be able to reconstruct the response very close to the meas-

ured one. Another way to check the accuracy of the identified moving load is to compare 

it with the related static loads of the vehicle. The identified moving loads fluctuated 

around the static loads of the vehicle model. 

6.5. The Effect of �� (the Number of Terms in the Generalized Orthogonal Function) 

In this test, the test vehicle was pulled over the beam at an average speed of 0.47 m/s. 

The sampling frequency was set at 200 Hz and strain measurements from seven strain 

gauges were recorded. The number of master DOFs to convert strains to displacement 

was considered equal to the number of measured strains. Moving loads were identified 

by the Tikhonov regularization technique, and the optimal regularization parameter was 

obtained by the L-curve method. Moving loads were identified with different �� ranging 

from 100 to 800, and the error of reconstructed strain at mid-span was calculated and 

shown in Figure 18. The figure shows �� = 283 provides the minimum rating of error 

(1.75%). Here, �� was optimized for each test separately. In Figure 19, the reconstructed 

strain at mid-span is compared with the measured strain when �� = 283, showing they 

match very closely. 

 

Figure 18. The effect of �� on the error of the reconstructed strain. 
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Figure 19. Measured and reconstructed strain at mid-span. 

When ��  is smaller, a bigger range of higher frequencies is omitted resulting in 

smoother responses and, therefore, smoother identified loads, which are very close to the 

static axle loads and cannot precisely show the dynamic parts of responses. When �� is 

bigger, a lesser range of higher frequencies is omitted, and noise usually appears in high 

frequencies. Hence, an optimized �� removes noise while keeping the dynamic proper-

ties of the response. Comparison of the identified moving loads with �� = 283 and �� = 

50 is shown in Figure 20. 

 

Figure 20. Comparison of the effects of a small Nf and the optimized value on the identified axle 

loads. (a) Identified front axle load, (b) identified rear axle load. 

6.6. The Effect of Different Measurement Arrangements 

To investigate the effect of sensor arrangements on identifying moving loads, seven-

teen different cases were studied, as tabulated in Table 10. The vehicle was pulled over 

the beam at an average speed of 0.47 m/s, and the sampling frequency was set at 200 Hz.  

Strain measurements were smoothed by the Chebyshev polynomial with �� = 283, 

and converted into nodal displacements. The Tikhonov regularization method was used 

to identify moving loads and the optimal regularization parameter was obtained by the 

L-curve method. 
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Table 10. Sensor arrangements. 

Case 

Number 
Number of Sensors 

Sensor Location 

L/8 L/4 3L/8 L/2 5L/8 6L/8 7L/8 

#1 7 * * * * * * * 

#2 3  *  *  *  

#3 3 *   *   * 

#4 3   * * *   

#5 3 *  *  *   

#6 4 * * * *    

#7 4 *  * *  *  

#8 4 * *  * *   

#9 4 *  *  *  * 

#10 5 * *  *  * * 

#11 5 *  * * *  * 

#12 5  * * * * *  

#13 6 * * *  * * * 

#14 1    *    

#15 2   *  *   

#16 2  *    *  

#17 2 *   *    

*. The location with sensor 

Since the true interaction force was not known to investigate the accuracy of identi-

fied axle loads, the strain at mid-span was reconstructed, and percentage errors were cal-

culated and listed in Table 11. Conclusions from Table 11 are as follows: 

 Moving load identification from seven strain gauges provided the best accuracy with 

1.75% reconstructed strain error. 

 At least three strain gauges were required to identify moving loads in such a way 

that reconstructed strain had less than 5% error.  

 Sensor placements #1, #2, and #9 to #13, with sensors equally spaced, indicated in-

creasing the number of sensors increases the accuracy of moving load identification. 

Table 11. The percentage error for different sensor arrangements. 

Case 

Number 

Number of 

Sensors 

The Percentage Error (%) 

Strain at 

Mid-Span 

Average of Identified 

Front Axle Load 

Average of Identified 

Rear Axle Load 

Average of Resultant 

Identified Load 

#1 7 1.75 0.09 0.25 0.08 

#2 3 2.97 1.03 2.46 0.72 

#3 3 4.79 2.33 3.53 2.93 

#4 3 4.06 1.66 0.35 0.66 

#5 3 2.55 3.77 3.87 0.05 

#6 4 4.96 4.10 3.8 0.51 

#7 4 2.00 4.15 4.38 0.12 

#8 4 3.76 0.03 1.02 0.49 

#9 4 2.31 0.51 2.56 1.03 

#10 5 2.51 0.53 1.16 0.32 

#11 5 1.86 0.28 2.12 0.92 

#12 5 1.99 0.32 1.55 0.61 

#13 6 1.80 0.36 0.66 0.15 

#14 1 10.78 0.31 0.65 0.48 

#15 2 5.28 1.70 0.04 0.87 

#16 2 11.02 1.74 0.18 0.96 

#17 2 9.07 8.82 11.87 1.52 
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Choosing the best sensor placement depends on budget and customer needs. Here, 

sensor placement #2 was chosen to investigate the effect of sampling frequency and vehi-

cle speed on identifying the loads moving over the beam. Front, rear, and resultant iden-

tified loads in sensor placement #2 were compared with axle and total static loads of the 

car as shown in Figure 21. It can be seen that both front and rear identified loads fluctuated 

around the static axle values (22 N), and the identified resultant load fluctuated around 

the total static weight of the vehicle (44 N). 

 

Figure 21. Identified front, rear, and resultant load in comparison with the static axle load and static 

weight of the car (sensor placement #2). 

Large fluctuations can be seen around 0.625 s and 6.25 s in the identified moving 

loads time histories, originating from the 1mm-gap between the beams, which produced 

large impacts when the front/rear axle loads enter/exit the beam. The front/rear axle loads 

were identified as zero when they were not on the beam, showing the accuracy of the 

simulation. The pitching motion of the car can be seen in the time histories. 

6.7. The Effect of Sampling Frequency 

In this section, the effect of sampling frequency on the accuracy of the method is in-

vestigated. The car was pulled over the bridge at an average speed of 0.47 m/s and the 

sampling frequency was set at 600 Hz. To study the effect of different sampling frequen-

cies, recorded data was resampled at 300, 200 and 100 Hz. To analyze the data, sensor 

placement #2 was used and �� was considered equal to 283. 

The identified moving loads at different sampling frequencies are shown in Figure 

22. The accuracy was assessed by analyzing the reconstructed strain error at midspan, 

which is tabulated in Table 12. According to the results, the method was able to identify 

the moving loads with high accuracy at all sampling frequency ranges. Although increas-

ing sampling frequency could very slightly improve the reconstructed strains, it also sig-

nificantly increased the recorded data and prolonged the analysis time which is not desir-

able. 
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Figure 22. The effect of sampling frequency on the identified loads at speed 0.47 m/s. (a) front axle 

load, (b) rear axle load, (c) resultant axle load. 

Table 12. The percentage error at different levels of sampling frequency at speed 0.47 m/s 

Sampling Frequency (Hz) 100 200 300 600 

Reconstructed strain error (%) 3.35 2.97 2.5 2.28 

6.8. The Effect of Vehicle Speed 

To explore the effect of vehicle speed on the accuracy of moving load identification, 

the car was pulled over the bridge at speeds of 0.47, 0.75 and 0.94 m/s, and the sampling 

frequency was set at 200 Hz. The electric motor was allowed to work with a minimum 

speed of 0.47 m/s and a maximum speed of 0.97 m/s. Rear, front and resultant identified 

loads at a speed of 0.75 m/s is shown in Figure 23. The accuracy was assessed by the per-

centage errors of the reconstructed strain at midspan which is tabulated in Table 13. Ac-

cording to the results, the sensitivity of the method to the vehicle speed was insignificant 

and negligible. 

Table 13. The percentage error at different levels of speed  

Speed (m/s) 0.47 0.75 0.97 

Reconstructed strain error (%) 2.97 2.83 3.62 
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Figure 23. Identified front, rear, and resultant load in comparison with the static axle load and 

static weight of the vehicle (speed: 0.75 m/s). 

7. Conclusions 

In this paper, the explicit form of the Newmark-β method was applied to identify 

moving loads passing over a bridge, considering road roughness. Response measure-

ments were simulated by dynamic forward analysis of the vehicle-bridge interaction (VBI) 

system. The general form of the explicit form of the Newmark-β method was generated 

to do this. A half-car model vehicle, with four degrees of freedom, was adopted in this 

study and the Generalized Tikhonov Regularization method was used to provide bounds 

on the solution. 

Results show at least three strain gauges were required to identify moving loads in 

such a way that reconstructed strain had less than 5% error. Although increasing the num-

ber of sensors could increase accuracy, the method was not sensitive to this factor. When 

there was no measurement noise, the proposed method was not sensitive to speed or road 

roughness; however, when there was measurement noise, the identification accuracy was 

reduced at road roughness levels “B” and “C”. There was no constraint to identifying mov-

ing loads when the road surface level was “A”. 

The proposed method is able to identify moving loads without disruptions when 

passing through the supports which is a significant improvement in moving load identi-

fication. It is also reliable in estimating the static load of a moving vehicle. 

The use of this method will be extended for simultaneous identification of bridge 

structural parameters and moving loads, as well as substructural condition assessment of 

bridge structures under moving loads, as will be presented in future publications. 
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