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On the improvement of paired ranked set sampling to
estimate population mean

Syed Abdul Rehman1, Javid Shabbir2

ABSTRACT

In ecological and environmental sampling the quantification of units is either difficult or
overly demanding in terms of the time, money, workload, it requires. For this reason effi-
cient and cost-effective sampling methods need to be devised for data collecting. The most
commonly used method for this purpose is the Ranked Set Sampling (RSS). In this paper,
a sampling scheme called Improved Paired Ranked Set Sampling (IPRSS) is proposed to
estimate the population mean. The performance of the proposed IPRSS is evaluated under
perfect and imperfect rankings. A simulation study based on selected hypothetical distri-
butions and a real-life data set showed that IPRSS is more precise than RSS, Paired RSS
(PRSS) or Extreme RSS (ERSS).
Key words: order statistics, ranked set sampling, relative efficiency, unbiased estimator,

imperfect ranking.

1. Introduction

There are several methods of sampling that can be used to survey the natural resources
of agriculture, biology, ecology, environmental management and forestry, etc. Whatever
method of sampling is used, the main objective is to obtain precise estimates of population
parameters at lowest cost of time, money and labour. One efficient sampling method is
RSS, which provides more efficient estimates than simple random sampling (SRS). RSS is
used when the exact quantification of selected units is expensive yet ranking a small set of
selected units is inexpensive. For example, if interest lies in estimating the average weight
of abalone, then it is easy to rank a small set of abalone with respect to their visual size.
Similarly, the fuel consumption of vehicles can be ranked by a visual inspection of the
vehicle size. McIntyre (1952) was the first to suggest the RSS method and estimated the
average pasture and forage yields. The theory of RSS procedure was developed by Takahasi
and Wakimoto (1968) assuming perfect ranking. Dell and Clutter (1972) showed that the
mean estimator under imperfect RSS remains an unbiased estimator of population mean.
Lynne Stokes (1977) showed the possibility of the ranking of the study variable based on
an inexpensive concomitant variable. More applications of RSS can be seen from Johnson
et al. (1993), Patil (1995), Mode et al. (1999), Al-Saleh and Al-Shrafat (2001), Yu and Tam
(2002), Al-Saleh and Al-Hadrami (2003), Chen et al. (2003), Buchanan et al. (2005), Haq
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et al. (2013) and references cited therein.
Muttlak (1996) introduced the paired RSS (PRSS) and Median RSS (MRSS) schemes for es-
timation of population mean. Muttlak (1998) extended the work of Patil (1995) and showed
that the mean estimator under MRSS is more efficient than the mean estimators under SRS
and RSS. Samawi et al. (1996) suggested Extreme RSS (ERSS) for estimation of popula-
tion mean. Muttlak (2003) suggested quartile RSS (QRSS) to get more representative units
as a sample. Biradar and Santosha (2015) proposed Independent Extreme RSS (IERSS)
by modifying original RSS. It is well understood that population parameters like mean and
variance might not be estimated more efficiently when the population under study is sus-
pected of containing some extreme values or outliers. The selection of any of these extreme
values in a sample will affect both the precision and accuracy of estimates. All the above
discussed RSS schemes, especially usual RSS, MRSS and ERSS, might suffer the conse-
quences of extreme values being selected in a sample. In order to overcome this deficiency,
we propose a new RSS scheme by taking the advantage of ranking made in RSS. Our pro-
posed RSS scheme called Improved Paired RSS (IPRSS) is more efficient as compared to
other existing RSS schemes to estimate the population mean. Another advantage of using
the IPRSS is that it requires less number of units to identify or observe as compared to RSS
and MRSS, while requiring more units to identify as compared to PRSS.
Let Y and X respectively be the study variable and concomitant variable respectively. Let
Yi(i) j be the ith order statistic in the ith set of the jth cycle of the RSS scheme. Let ȳRSS be the
sample mean of study variable based on the RSS sample. Let ∆i = µ(i)−µ be the deviation
of the ith order statistic from true mean. Similarly, other deviations can be defined in the
same manner.

2. Ranked Set Sampling (RSS)

By means of the RSS procedure, initially m2 units are identified from the population
and randomly allocated to m sets each of size m. Now within each set, units are ranked
visually with respect to the variable under study or by any other economical method. The
lowest ranked unit from the first set is selected and the second lowest ranked unit is selected
from the second set. The procedure is carried out until the highest ranked unit is selected
from the last set. A sample of m units is collected which also completes one cycle of a RSS.
Repeating this procedure times results in a sample of size n = mr.
Let Y1(1) j,Y1(2) j, · · · ,Y1(m) j; Y2(1) j,Y2(2) j, · · · ,Y2(m) j; · · · ,Ym(1) j,Ym(2) j, · · · ,Ym(m) j be m inde-
pendent random sets (samples) in the jth cycle, each of size m, such that i = 1,2, · · · ,m and
j = 1,2, · · · ,r . Hence, the collected units in a sample by means of the RSS procedure are:
Y1(1) j,Y2(2) j, · · · ,Ym(m) j . Takahasi and Wakimoto (1968) showed that under perfect ranking,
the mean of RSS is ȳRSS =

1
rm ∑

r
j=1 ∑

m
i=1 Yi(i) j , which is an unbiased estimator of population

mean µ and is more precise than ȳSRS =
1
n ∑

n
i=1 Yi. The variance of ȳRSS is given by

Var(ȳRSS) =Var(ȳSRS)−
1

rm2

m

∑
i=1

∆
2
(i) (1)
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where ∆(i) is defined earlier.

2.1. Mathematics of RSS procedure

Let Y be the study variable with pdf f (y) and CDF F(y) with mean µ and variance σ2.
Let Y1,Y2, · · · ,Ym be a simple random sample of size m drawn from f (y) for which the order
statistics is Y(1:m),Y(2:m), · · · ,Y(m:m) . The pdf and CDF of the ith order statistics Y(i:m) for
i = 1,2, · · · ,m , respectively, are given by

f(i:m)(y) =
m!

(m− i)!(i−1)!
{F(y)}i−1{1−F(y)}m−i f (y) −∞ < y < ∞ (2)

and

F(i:m)(y) =
m

∑
i=1

(
m
r

)
{F(y)}r{1−F(y)}m−r (3)

The expression for mean and variance of Y(i:m), respectively, are given by

µ(i:m)(y) =
∫

y f(i:m)(y)dy and (4)

σ
2
(i:m)(y) =

∫
(y−µ(i:m)(y))

2 f(i:m)(y)dy , (5)

for detail see David and Nagaraja (2003).

3. RSS with errors in ranking (imperfect)

In practical situations, we come across problems in which visual ranking of the study
variable is difficult or impossible. Lynne Stokes (1977) introduced a model to rank the study
variable (Y ) with respect to ranks of the auxiliary variable (X) correlated with (Y ). This
procedure was named imperfect RSS (IRSS). Following Lynne Stokes (1977), it is assumed
that (Y,X) follows a bivariate normal distribution and the regression of Y on X is linear, i.e.

Yi[i] j = µy +ρ
σy

σx

(
Xi(i) j −µx

)
+ εi j (6)

where ρ is the population correlation coefficient between Y and X , and εi j is the error term
with zero mean and a constant variance, i.e.,

E(εi j) = 0 and Var(εi j) = σ
2
ε = σ

2
y (1−ρ

2) (7)

Here, Xi(i) j is the ith order statistics selected from the ith sample in the jth cycle of the
auxiliary variable whose Xi[i]) j corresponding is the ith judgment order statistics of the study
variable. The sample mean ȳIRSS and its variance under IRSS respectively, are given by

ȳIRSS =
1
n

r

∑
j=1

m

∑
i=1

Yi[i] j (8)



196 S. A. Rehman, J. Shabbir.: On the improvement. . .

and

Var(ȳIRSS) =
1

rm2

{
mσ

2
y (1−ρ

2)+ρ
2 σ2

y

σ2
x

m

∑
i=1

σ
2
x(i)

}
(9)

4. Paired Ranked Set Sampling (PRSS)

The PRSS procedure was suggested by Muttlak (1996) to estimate the mean of finite
population. The procedure is as follows: For even sample size m, identify m/2 sets each
of size m and rank the units in each set. The lowest and highest ranked units are collected
from the first set, and the second lowest and second highest ranked units are collected from
the second set. The process continues until (m/2)th and ((m+ 2)/2)th ranked units are
collected from the last set. For odd sample size m , identify ((m+ 1)/2) sets, each of size
m , and select units as previously mentioned in the case of even size until (m/2)th set. Also
((m+ 1)/2)th ranked unit is collected from the last set. This concludes in one cycle of a
PRSS of size m. By repeating this process r times a sample of size m can be obtained. The
sample mean under PRSS depending on even (E) and odd (O) sample sizes are calculated
as, respectively

ȳE
PRSS =

1
rm

r

∑
j=1

m

∑
i=1

(
Yi(i) j +Yi(m+1−i) j

)
(10)

and

ȳO
PRSS =

1
rm

r

∑
j=1

(
(m+1)/2

∑
i=1

Yi(i) j +
(m−1)/2

∑
i=1

Yi(m+1−i) j

)
(11)

The bias and variances of ȳE
PRSS and ȳO

PRSS respectively, are given by

Bias(ȳE
PRSS) =

1
rm

r

∑
j=1

m

∑
i=1

(
∆i(i) j +∆i(m+1−i) j

)
(12)

Var(ȳE
PRSS) = Var(ȳSRS)−

1
rm2

r

∑
j=1

m

∑
i=1

(
∆

2
i(i) j +∆

2
i(m+1−i) j

)
+

2
(rm)2

r

∑
j=1

m

∑
i=1

∆i(i) j∆i(m+1−i) j (13)

and

Bias(ȳO
PRSS) =

1
rm

r

∑
j=1

(
(m+1)/2

∑
i=1

∆i(i) j +
(m−1)/2

∑
i=1

∆i(m+1−i) j

)
(14)

Var(ȳO
PRSS) = Var(ȳSRS)−

1
rm2

(
(m+1)/2

∑
i=1

∆
2
(i)+

(m−1)/2

∑
i=1

∆
2
(m+1−i)

)

+
2

r2m2

r

∑
j=1

(m−1)/2

∑
i=1

∆(i)∆(m+1−i) (15)
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In the case of symmetrical distribution both ȳE
PRSS and ȳO

PRSS are unbiased estimators of
population mean.

5. Extreme Ranked Set Sampling (ERSS)

The ERSS procedure was introduced by Samawi et al. (1996) to estimate the population
mean. It is an essential sampling scheme in the case where population is fat-tailed, e.g.
students t-distribution, Uniform distribution, Cauchy distribution, etc., units deviates from
their mean beyond 5-sigma limits. The ERSS technique is executed as:
From the population, identify m2 units and allocate them randomly to m sets, each of size .
Now rank the units within each set. For m = even , select the lowest ranked units from the
first m/2 sets and highest ranked units from the last m/2 sets. For m= odd, select the lowest
ranked unit from the first (m−1)/2 sets, and the highest ranked units from set (m+1)/2 to
set (m−1) . The median, i.e. ((m+1)/2))th unit is selected from the last set. This conclude
one cycle of ERSS of size m. A sample of size n = mr can be obtained by repeating the
ERSS process r times.
In the jth cycle , ERSS is termed as: Y1(1) j,Y2(1) j, · · · ,Ym/2(1) j,Ym+2/2(m) j, · · · ,Ym(m) j for
even m. While, for odd m, Y1(1) j,Y2(1) j, · · · ,Ym−1/2(1) j,Ym+1/2(m) j, · · · ,Ym(m) j,Ym(m−1/2) j
units are selected. The estimators based on ERSS, are given by:

ȳE
ERSS =

1
rm

r

∑
j=1

(
m/2

∑
i=1

Yi(1) j +
m

∑
i=(m+2)/2

Yi(m) j

)
(16)

and

ȳO
ERSS =

1
rm

r

∑
j=1

(
(m−1)/2

∑
i=1

Yi(1) j +
m−1

∑
i=(m+1)/2

Yi(m) j +Ym(m+1)/2

)
(17)

The bias and variance of each estimator is obtained as

Bias(ȳE
ERSS) =

1
rm

r

∑
j=1

(
m/2

∑
i=1

∆(1)+
m

∑
i=(m+2)/2

∆(m)

)
(18)

Var(ȳE
ERSS) =Var(ȳSRS)−

1
rm2

(
m/2

∑
i=1

∆
2
(1)+

m

∑
i=(m+2)/2

∆
2
(m)

)
(19)

and

Bias(ȳO
ERSS) =

1
rm

r

∑
j=1

(
(m−1)/2

∑
i=1

∆(1)+
m−1

∑
i=(m+1)/2

∆(m)+∆((m+1)/2)

)
(20)

Var(ȳO
ERSS) =Var(ȳSRS)−

1
rm2

(
(m−1)/2

∑
i=1

∆
2
(1)+

m−1

∑
i=(m+1)/2

∆
2
(m)+∆

2
((m+1)/2)

)
(21)
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6. Improved Paired Ranked Set Sampling (IPRSS)

The proposed RSS procedure called IPRSS is an improvement in PRSS and is an effort
to overcome the drawback of ERSS. There is a great chance that ERSS will select the
extreme values contained by population under study by considering only the first and last
order statistic of sets, which not only affects the representativeness of a sample but the
accuracy and precisions both are also highly affected. The proposed IPRSS scheme is also
an effort to counter this drawback.
The IPRSS procedure is as follows:
For an even sample size m , identify m/2 sets each of size m+ 2 from a population and
within each set rank the units. Now, choose the second lowest and second highest ranked
units from the first set. Similarly select the third lowest and third highest ranked units from
the second set. The procedure continues until (m+ 4)th and (m+ 4/2)th ranked units are
selected from the last set.
For an illustration, a selection of units by IPRSS for m = 4 is given by

Y1(1) j Y1(2) j Y1(3) j Y1(4) j Y1(5) j Y1(6) j

Y2(1) j Y2(2) j Y2(3) j Y2(4) j Y2(5) j Y2(6) j

In case of odd sample size m, identify m+ 1/2 sets each of size m+ 2 and select units as
aforesaid in case of even until m− 1/2 set. Also (m+ 3/2)th ranked unit is choosen from
the last set. For example m = 5 , then the IPRSS procedure can be illustrated as

Y1(1) j Y1(2) j Y1(3) j Y1(4) j Y1(5) j Y1(6) j Y1(7) j

Y2(1) j Y2(2) j Y2(3) j Y2(4) j Y2(5) j Y2(6) j Y2(7) j

Y3(1) j Y3(2) j Y3(3) j Y3(4) j Y3(5) j Y3(6) j Y3(7) j

This concludes one cycle of an IPRSS of size m. The process can be repeated r times to
obtain IPRSS of size n = mr. The sample means under IPRSS depending on even (E) and
odd (O) sample sizes are respectively given by

ȳE
IPRSS =

1
rm

r

∑
j=1

m/2

∑
i=1

(
Yi(i+1) j +Yi(m+2−i) j

)
(22)

and

ȳO
IPRSS =

1
rm

r

∑
j=1

(
(m+1)/2

∑
i=1

Yi(i+1) j +
(m−1)/2

∑
i=1

Yi(m+2−i) j

)
(23)

In case of a symmetric distribution about zero, i.e. Y(i+1) ≊ Y(m+2−i) for i = 1,2, · · · ,m.
Arnold et al. (1992) showed that µ(i+1) =−µ(m+2−i) and σ2

(i+1) ≊−σ2
(m+2−i). This indicates

that if m is odd, then µ(m+1/2) = µ = 0. Hence, the suggested IPRSS provides unbiased
estimators, however in the case of asymmetrical distribution the expressions for bias along
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with the variance of ȳE
IPRSS and ȳO

IPRSS respectively, are given as

Bias(ȳE
IPRSS) =

1
rm

r

∑
j=1

m/2

∑
i=1

(
∆(i+1)+∆(m+2−i)

)
(24)

Var(ȳE
IPRSS) = Var(ȳSRS)−

1
rm2

m/2

∑
i=1

(
∆

2
(i+1)+∆

2
(m+2−i)

)
+

2
(rm)2

r

∑
j=1

m/2

∑
i=1

∆(i+1)∆(m+1−i) (25)

and

Bias(ȳO
IPRSS) =

1
rm

r

∑
j=1

(
(m+1)/2

∑
i=1

∆(i+1)+
(m−1)/2

∑
i=1

∆(m+2−i)

)
(26)

Var(ȳO
IPRSS) = Var(ȳSRS)−

1
(rm)2

(
(m+1)/2

∑
i=1

∆
2
(i+1)+

(m−1)/2

∑
i=1

∆
2
(m+2−i)

)

+
2

(rm)2

r

∑
j=1

(m−1)/2

∑
i=1

∆(i+1)∆(m+2−i) (27)

7. IPRSS with ranking errors (imperfect ranking)

In the case of ranking errors, the quantified observations of the study variable from the
ith sample may not be the ith order statistics instead of the ith judgment order statistics.
Dell and Clutter (1972) demonstrated that the sample mean of RSS with errors in ranking
is an unbiased estimator of the population mean, and has smaller variance than the usual
estimator based on SRS with the same sample size. However, the variance of the estimator
with errors in ranking will be larger than the variance of the estimator with perfect ranking.
Let Y[i+1] and Y[m+2−i] denote the (i+1)th and (m+2− i)th judgment order statistics of the
sample for i = 1,2, · · · ,m+2. Then, the IPRSS estimator of population mean with errors in
ranking is defined as:

ȳE
IPRSS =

1
rm

r

∑
j=1

m/2

∑
i=1

(
Yi[i+1] j +Yi[m+2−i] j

)
(28)

and

ȳO
IPRSS =

1
rm

r

∑
j=1

(
(m+1)/2

∑
i=1

Yi[i+1]+
(m−1)/2

∑
i=1

Yi[m+2−i] j

)
(29)



200 S. A. Rehman, J. Shabbir.: On the improvement. . .

the bias and variance of ȳE
IPRSS and ȳO

IPRSS are

Bias(ȳE
IPRSS) =

1
rm

r

∑
j=1

m/2

∑
i=1

(
∆[i+1]+∆[m+2−i]

)
(30)

Var(ȳE
IPRSS) = Var(ȳSRS)−

1
rm2

m/2

∑
i=1

(
∆

2
[i+1]+∆

2
[m+2−i]

)
+

2
(rm)2

r

∑
j=1

m/2

∑
i=1

∆[i+1]∆[m+1−i] (31)

and

Bias(ȳO
IPRSS) =

1
rm

r

∑
j=1

(
(m+1)/2

∑
i=1

∆[i+1]+
(m−1)/2

∑
i=1

∆[m+2−i]

)
(32)

Var(ȳO
IPRSS) = Var(ȳSRS)−

1
(rm)2

(
(m+1)/2

∑
i=1

∆
2
[i+1]+

(m−1)/2

∑
i=1

∆
2
[m+2−i]

)

+
2

(rm)2

r

∑
j=1

(m−1)/2

∑
i=1

∆[i+1]∆[m+2−i] (33)

The relative efficiency (RE) of the proposed ȳIPRSS with respect to ȳRSS , ȳPRSS and ȳERSS is
defined as:

RE(ȳIPRSS , ȳ•) =
MSE(ȳ•)

MSE(ȳIPRSS)
(34)

where
MSE(ȳ•) =Var(ȳ•)+(Bias(ȳ•))

2 (35)

and
MSE(ȳ•) =Var(ȳIPRSS)+

(
Bias(ȳIPRSS)

)2 (36)

8. Empirical study

To evaluate the efficiency comparison of IPRSS against other competing procedures, a
simulation study is conducted based on the following steps:
Generate a hypothetical (Normal, Logistic, Exponential and Poisson) distribution, say “X”
of size 1000 and also generate “e ∼ N(1000,0,1)”. Compute the study variable “Y ” by
using the relation Y = ρX + e

√
1−ρ2, where ρ is the population coefficient of correlation

between the study variable and the concomitant variable whose value is taken fixed as 0.50,
0.70 and 0.90. Draw a sample of size n = mr , using SRSWOR, and estimate mean for each
sampling procedure, for all the pairs of r = 1,3 and m = 4,6,8. This procedure is repeated
10,000 times. The results are given in Tables 1 and 2.
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Table 1: RE of IPRSS over other sampling procedures based on perfect ranking

RSS ERSS PRSS
Distribution m/r 1 3 1 3 1 3

4 1.05 1.09 1.24 1.28 1.47 1.48
Normal(1000,100,5) 6 1.04 1.03 1.45 1.45 4.98 11.96

8 1.01 1.04 1.58 1.66 12.33 35.00
4 1.29 1.27 1.68 1.73 1.73 1.64

Logistic(1000,5,2) 6 1.24 1.21 2.05 2.05 5.17 12.29
8 1.18 1.18 2.36 2.43 12.41 33.98
4 1.16 1.09 1.48 1.44 1.56 1.48

Exponential(1000,1) 6 1.07 1.04 1.80 2.05 4.79 11.5
8 1.08 1.03 2.43 3.04 12.11 30.58
4 1.39 1.36 2.03 1.98 1.91 1.76

Poisson(1000,3) 6 1.44 1.39 3.11 3.27 5.00 11.97
8 1.40 1.29 4.24 4.62 12.21 30.4
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Table 2: RE of IPRSS over other sampling procedures based on imperfect ranking

RSS ERSS PRSS
Distribution r m/ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

4 1.04 1.05 1.05 1.18 1.21 1.22 1.35 1.4 1.43
1 6 1.05 1.05 1.05 1.36 1.39 1.40 3.66 4.17 4.44

Normal 8 1.04 1.03 1.02 1.42 1.47 1.50 7.98 9.59 10.49
(1000,100,5) 4 1.08 1.08 1.08 1.23 1.25 1.25 1.34 1.39 1.42

3 6 1.03 1.03 1.03 1.34 1.38 1.40 8.13 9.61 10.41
8 1.08 1.07 1.06 1.50 1.56 1.58 21.76 26.76 29.53
4 1.20 1.24 1.26 1.47 1.57 1.62 1.44 1.54 1.61

1 6 1.19 1.21 1.22 1.64 1.79 1.89 3.14 3.79 4.20
Logistic 8 1.13 1.16 1.18 1.76 1.96 2.08 6.11 7.94 9.17
(1000,5,2) 4 1.18 1.22 1.24 1.45 1.53 1.58 1.44 1.55 1.62

3 6 1.14 1.17 1.19 1.63 1.79 1.88 6.59 8.41 9.58
8 1.12 1.14 1.16 1.82 2.02 2.14 15.61 20.97 24.56
4 1.02 1.03 1.04 1.11 1.17 1.25 1.06 1.09 1.13

1 6 1.01 1.01 1.01 1.25 1.4 1.57 1.38 1.55 1.74
Exponential 8 1.01 1.00 1.00 1.46 1.78 2.13 1.8 2.2 2.66
(1000,1) 4 1.02 1.02 1.04 1.09 1.15 1.21 1.03 1.04 1.07

3 6 1.01 1.01 1.02 1.52 1.78 2.05 1.88 2.36 2.84
8 1.00 1.00 1.00 2.07 2.71 3.37 2.86 3.96 5.09
4 1.16 1.22 1.27 1.43 1.6 1.74 1.31 1.44 1.55

1 6 1.16 1.23 1.29 1.69 2.04 2.35 1.96 2.41 2.81
Poisson 8 1.09 1.14 1.19 1.89 2.4 2.87 3.12 4.25 5.3
(1000,3) 4 1.15 1.18 1.21 1.42 1.58 1.70 1.25 1.34 1.41

3 6 1.11 1.15 1.18 1.79 2.18 2.51 3.43 4.68 5.74
8 1.09 1.11 1.13 2.22 2.92 3.53 6.61 9.75 12.51

The simulation results show that the proposed IPRSS performs better than RSS, PRSS
and ERSS. It is also observable from the simulation results that the efficiency of IPRSS
significantly increases in comparison with other techniques when the number of cycles (r) is
increased, i.e. in each cycle IPRSS avoids two suspected extreme values that are selected by
other RSS schemes. Hence, with the increase in cycle (r), the number of suspected extreme
values avoided by IPRSS also increases, which help us getting a sample free from outliers
or extreme values. It is also notable that under imperfect ranking, all the RSS techniques
including IPRSS perform poor relative to the case of perfect ranking. Since IPRSS collects
a sample that avoids extreme values, so the results of IPRSS will be certainly better than
other techniques. Since IPRSS is an improvement in the PRSS and it is designed to avoid
the selection of extreme values in a sample so it is obvious that IPRSS will select more
representative sample especially when population contains extreme values.
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9. Application on real-life data set

For practical application, we consider the data provided by Singh and Mangat (2013).
The net irrigated area is considered as a study variable while the number of tractors is
considered as a concomitant variable. A simulation study is conducted by selecting 10,000
samples (the simulation procedure is discussed above). For simplicity we fix r = 1 and
m = 3,4,5,6,7 using the procedure of RSS, ERSS, PRSS and IPRSS, by means of both
perfect and imperfect rankings.
The MSE(ȳ(•)) of each sampling procedure is calculated as,

MSE(ȳ(•)) = 1
10,000

10,000

∑
i=1

(ȳ(•)−µy)
2 (37)

The relative efficiencies are given in Table 3.

Table 3: RE of IPRSS over other sampling procedures

RE
Ranking m RSS ERSS PRSS

Perfect

3 1.746 1.731 1.910
4 1.358 2.436 1.613
5 1.334 2.338 1.450
6 1.157 4.270 1.379
7 1.127 4.195 1.195

Imperfect

3 1.617 1.613 1.715
4 1.441 2.390 1.532
5 1.345 2.190 1.390
6 1.207 3.582 1.239
7 1.124 3.358 1.190

The results in Table 3 show that IPRSS performs better than RSS, ERSS and PRSS on
real-life data set. Furthermore, IPRSS performs better than ERSS distinguishably when the
sample size is increased.

10. Conclusions

In this article we proposed an efficient sampling scheme for the estimation of popula-
tion mean. We showed numerically that the mean estimators under IPRSS are more precise
than the mean estimators under RSS, ERSS and PRSS, for both perfect and imperfect rank-
ings based on various distributions and a real-life data set. Generally, the proposed mean
estimates under IPRSS are more efficient than the estimates under RSS, ERSS, and PRSS
when more cycles of small samples are selected. Hence, the use of IPRSS is recommended
over the existing RSS schemes. The current work can be extended to develop ratio and re-
gression type estimators of population mean based on IPRSS to get more precise estimates.
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Using the idea suggested in this paper, other RSS techniques can be modified to eliminate
the effects of extreme values in samples.
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