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ABSTRACT 

The article presents a new probability distribution, created by compounding the Poisson 
distribution with the weighted exponential distribution. Important mathematical and 
statistical properties of the distribution have been derived and discussed. The paper 
describes the proposed model’s parameter estimation, performed by means of the maximum 
likelihood method. Finally, real data sets are analyzed to verify the suitability of the proposed 
distribution in modeling  count data sets representing vaccine adverse events and insurance 
claims. 
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1.  Introduction 

Compounding a discrete distribution with a continuous distribution is a valuable 
method for creating flexible distributions to assist modelling of count data. Count data 
distributions play a key role in several applications for applied fields and theoretical 
research like health, transport, insurance and engineering, etc. Barreto-Souza and 
Bakouch (2013) obtained a new class of compound distribution with decreasing failure 
rate by compounding zero-truncated Poisson Lindley distribution and exponential 
distribution. Hajebi et al. (2013) obtained a new lifetime model by compounding 
exponential distribution with negative binomial distribution. Mohmoudi and Jafari 
(2014) introduced a new lifetime compound probability distribution which generalizes 
the linear failure rate of distribution. Ghitany et al. (2011) obtained weighted Lindley 
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distribution and pointed that Lindley distribution is valuable in exhibiting biological 
data from mortality studies. Asgharzadeh et al. (2014) created a new class of 
distribution by mixing any continuous distribution and Poisson Lindley distribution 
through a compounding technique. Chesneau et al. (2020) introduced Cosine 
geometric distribution for count data modelling. Bourguigon et al. (2014) obtained the 
Birnbaum-Saunders power series distribution. The new lifetime distribution has 
a decreasing, increasing or constant hazard rate. Silva and Cordeiro (2015) created 
a new lifetime distribution by mixing Burr XII and power series distribution through 
a compounding technique. Pinho et al. (2015) obtained a new distribution by assuming 
that simple size distribution as Harris distribution. Bardbar and Nematollahi (2016) 
obtained a modified exponential distribution-geometric distribution with increasing or 
decreasing failure rate. Flores et al. (2013) obtained the complementary exponential 
power series distribution by considering the distribution of vectors through maximum 
components.   

In this paper, we propose a new compounding distribution by compounding the 
Poisson distribution with the weighted exponential distribution, as there is a need to 
find a more flexible model for analysing statistical data. This model has over-dispersed 
nature so it will become most appropriate for analysing over-dispersed count data sets. 
This property makes this model unique as compared to other compounding models 
already in the statistical literature.    

2.  Definition of the proposed model (Poisson weighted exponential 
distribution) 

If ~|Z P   , where  is itself a random variable following weighted exponential 
distribution with parameter ),(  , then determining the distribution that results from 
marginalizing over  will be known as a compound of the Poisson distribution with 
that of weighted exponential distribution, which is denoted by  ,;ZPWED . It may 
be noted that the proposed model will be a discrete one since the parent distribution is 
discrete. 
Theorem 2.1: The probability mass function of a Poisson weighted exponential 
distribution, i.e.  ,;ZPWED is given by 
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Proof: Using the definition (2), the pmf of a PWED  ,;Z can be obtained as 
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When its parameter  follows weighted exponential distribution (WED) with pdf
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which is the p.m.f. of  PWED. 
 

The corresponding c.d.f of PWED is obtained as: 
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3.  Special Cases 

Case 1: If we put 0 the PWED reduces to the Poisson exponential distribution with pmf 
as 
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Case 2: If we put 1 the PWED reduces to the Poisson size biased exponential 
distribution with pmf as 
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Figure 1.  The above figures show the pmf plot for different values of   and   
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Figure 2.  The above figures show the cdf plot for different values of   and   

4.  Collective risk model 

Theorem 4.1: Let Z follow PWED (  , ), be a primary distribution with exponential 

distribution (  ) as a secondary distribution, then the aggregate loss U=


M

0i
iZ has p.d.f 

given as 
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Proof: Let claim severity follow an exponential distribution  > 0, we know that gamma
),n(  distribution is thn  fold convolution of exponential distribution, which is given 

as 
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The probability of no claim is given by 
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Theorem 4.2: For collective risk model with PWED (  , ) as a primary distribution and  
Erlang ),2(   as secondary distribution, then the probability density function of aggregate 

loss random variable U=


M
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Proof: Let claim severity follow Erlang ),2(   and we know that gamma ),2( n

distribution is thn fold convolution of Erlang ),2(  distribution with pdf given as 
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So, the aggregate loss random variable U has pdf given as 
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The probability of no claim is given by
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5.  Reliability Analysis 

5.1.  Reliability Function R(z): The reliability function is defined as the  probability 
 that a system survives beyond a certain time. The reliability function or the 
 survival function of PWED is given as 
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5.2. Hazard Function: The hazard function, also known as the hazard rate, is given as 
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5.3. Reverse Hazard Rate and Mills Ratio: The reverse hazard rate and the Mills 
 ratio of PWED are respectively given as 
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6.  Statistical properties 

In this section, structural properties of the PWE model have been evaluated.  
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6.1.  Moments 

6.1.1. Factorial Moments 

Using (2.1), the rth factorial moment about origin of the PWED (2.1) can be 
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Taking r=1,2,3,4 in (5.1), the first four factorial moments about origin of the PWED 
can be obtained as 
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6.1.2. Moments about origin (Raw moments)          

Using the relationship between the factorial moments about origin and the 
moments about origin, the first four moments about origin of the PWED (2.1) can be 
obtained as: 
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6.1.3. Moments about the Mean (Central moments) 
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PWED (2.1) can be obtained as
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Table 1.  Index of Dispersion, Mean and Variance of PWED ),(   for different values of 
parameters
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2.8 
10.09 

3.6 

3.19 
6.83 
2.14 

4.13 
6.88 
1.66 

5.56 
7.53 
1.35 

8.64 
9 

1.05 

12.95 
10.98 

0.84 

5.1  
IOD 
VAR 
MEAN 

5.35 
50.3 

9.4 

2.7 
9.5 
3.5 

2.89 
5.97 
2.06 

3.65 
5.84 

1.6 

4.85 
6.3 
1.3 

7.52 
7.52 

1 

11.34 
9.16 

0.8 

8.1  
IOD 
VAR 
MEAN 

5.4 
50 
9.3 

2.66 
9.1 

3.41 

2.71 
5.43 

2 

3.36 
5.19 
1.54 

4.42 
5.53 
1.25 

6.85 
6.6 

0.96 

10.37 
8.06 
0.77 

2  
IOD 
VAR 
MEAN 

5.3 
50.5 

9.5 

2.76 
9.86 
3.56 

3.07 
6.49 
2.11 

3.93 
6.47 
1.64 

5.27 
7.03 
1.33 

8.19 
8.44 
1.03 

12.31 
10.26 

0.85 

2.2  
IOD 
VAR 
MEAN 

5.3 
50.7 

9.6 

2.84 
10.3 
3.62 

3.31 
7.17 
2.16 

4.32 
7.3 

1.68 

5.84 
8.02 
1.37 

9.09 
9.66 
1.06 

13.6 
11.7 
0.86 
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6.3. Moment generating function and probability generating function of Poisson 
 weighted Exponential Distribution 

Theorem 6.3.1: If Z has the PWED ( , ), then the probability generating function )(tPz  
has the following form: 

 
   

 
Proof: We begin with the well-known definition of the probability generating function 
given by 
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Theorem 6.3.2: If X has the PWED ( , ), then the moment generating function )(tMZ  
has the following form: 
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Proof: We begin with the well-known definition of the moment generating function 

given by
  

































0
2

2

)1(

)1()1(
)(

z
z

tz
Z

z
etM





  



















2

2

)1(

))1)((1(

)1)((
)(

t

tt

Z
e

ee
tM







                                               
 

Similarly Laplace and Fourier transforms as calculated as 
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6.4 Recurrence Relation between Probabilities 

The PWED can be written as 
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Dividing P(Z=z+1) by P(Z=z), we find the recurrence relation between 
probabilities 
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6.5. Quantile function 

Theorem 6.5: The quantile function of the PWED (  , ) is 
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7.  Order statistics 
Let        nZZZZ ....,,, 321 be the ordered statistics of the random sample 

nZZZZ ,....,, 321  drawn from the discrete distribution with cdf  zFZ and pmf  zPZ , 
then the pmf of the rth order statistics  rZ  is given by:
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Using the equations (2.1) and (2.2), the probability density function of the rth order 
statistics of the Poisson weighted exponential distribution is given by
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Then, the pmf of the first order  1Z  Poisson weighted exponential distribution is 
given by 
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And the pmf of the nth order  nZ  Poisson weighted exponential model is given  
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8.  Estimation of Parameters 

In this section, we estimate the parameters of the Poisson weighted exponential 
distribution using methods of moments and the method of maximum likelihood 
estimation. 

8.1.  Method of Moments 

In order to obtain sample moments, we replace population moments with sample 
moments: 
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Then, h(t) is strictly convex. Hence, by Jensen’s inequality, we have 
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Theorem 8.2: The MOM estimator  of
 is consistent and asymptotically normal. 
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Where   
prof: Consistency Since 𝜇 ൏ ∞, then 𝑍̅

௣
→ 𝜇. Also, sin ceh(t) is continuous funcationat 

t=𝜇 

then ℎሺ𝑧̅ሻ
௣
→ hሺ𝜇ሻ, 𝑖. 𝑒, 𝜇̂  

௣
→ 𝜇 

Asymptotic normality: Since ,2  then by the central limit theorem, we have 
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The theorem follows. 
As a result of this, the asymptotic 0

0)1(100  confidence interval for   is given by 
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 ) percentile of the standard normal distribution. 

8.2. Method of Maximum Likelihood Estimation 

This is one of the most useful methods for estimating the different parameters of 
the distribution. Let nZZZZ ,...,,, 321  be the random sample of size n draw from PWED, 
then the likelihood function of PWED is given as
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The above equations can be solved numerically by using R software (3.5.2). 
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9.  Applications of Poisson weighted exponential distribution 

In this section, we fit our proposed distribution to a data set representing vaccine 
adverse event counts and the number of claims in automobile insurance so as to 
illustrate our claim that our proposed model fits well when compared to other 
competing models. The data sets are given in Table 2 and 5 respectively. In Table 6 the 
degree of freedom is zero for some distributions, and hence p-value is not given and 
thus in such tables comparisons can be done on the basis of the AIC and BIC values. 

Table 2. Dataset representing vaccine adverse event counts (see C. E. Rose, S.W. Martain, K. A. 
Wannemueler, B. D. Plikaytis (2006)) 

Counts 0 1 2 3 4 5 6 7 8 9 10 11 12 

Actual 1437 1010 660 428 236 122 62 34 14 8 4 4 1 

We compute the expected frequencies for fitting Poisson Weighted Exponential 
(PWED), Zero Inflated Poisson (ZIPD), Negative Binomial (NBD), Geometric (GD), 
Poisson Lindley (PLD), Poisson Akash (PAD), Poisson Distribution (PD) and Discrete 
Generalized Inverse Weibull Distribution (DGIWD) with the help of R studio statistical 
software, and Pearson’s chi-square test is applied to check the goodness of fit of the 
models discussed. The calculated figures are given in Table 3 and 6. Based on the chi-
square, we observe that the Poisson weighted exponential distribution provides 
a satisfactorily better fit for the data set representing vaccine adverse event counts 
in Table 3 and the number of claims in automobile insurance in Table 6 as compared 
to other distributions. Also the parameters are estimated by using the ML method. We 
have analysed the data using R software (3.5.2). Parameter estimates along and the 
model function of the fitted distributions are given in Table 3 and 6.  

Table 3.  Fitted proposed distribution and other competing models to a dataset representing vaccine 
adverse event counts 

Z Obs.freq PD ZIPD NBD GD PLD DGIW PAD PWED 

0 1437 890.75 1436.4 1401.7 1603.5 1500.1 1354 1500.2 1417 

1 1010 1342.35 810.6 1065.3 963.9 1003.5 1377.2 977.65 1048 

2 660 1011.4 789.6 671.15 579.4 629.2 524.15 632.55 670 

3 428 508 529.5 393.75 348.3 378.7 248.9 392 397.4 

4 236 191.4 274.6 222.5 209.35 221.6 139 232.1 225.1 

5 122 57.7 117.3 122.8 125.85 127 86.45 132.1 123.6 

6 62 14.5 42.9 66.7 75.65 71 57.9 72.8 66.3 

7 34 3.1 13.8 35.8 45.45 39.9 41 39 35 

8 14 0.6 4 19.1 27.35 22 30.2 20.45 18.2 
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Table 3.  Fitted proposed distribution and other competing models to a dataset representing 
vaccine adverse event counts  (cont.) 

Z Obs.freq PD ZIPD NBD GD PLD DGIW PAD PWED 

9 8 0.1 1 10.1 16.45 12 23 10.5 9.4 

10 4 0.1 0.3 5.3 9.9 7 18 5.35 4.8 

11 4 0.1 0.1 2.75 5.9 3.55 14 2.65 2.9 

12 1 0.1 0.1 1.45 8.95 4 105 2.55 1.7 

Total 4020    

d.f  5 6 8 9 9 7 9 8 

Chi-
square 

 1901 570 10.4 78.68 20.12 488 14.16 6.21 

Parameter 
estimate 
(S.E) 
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p-value  0.00 0.00 0.23 0.00 0.017 0.00 0.11 0.62 

 
Furthermore, from Table 4 and 7, it has been observed that the Poisson weighted 

exponential distribution have the lesser AIC and BIC values as compared to other 
competing models. Hence, we can conclude that the PWED leads to a best fit as 
compared to other competing models for analysing the data set given in Table 2 and 5. 

 

Table 4. Model comparison criterion for fitted models to a data set representing vaccine adverse 
event counts  

Criterion PD NBD ZIPD GD PLD DGIW PAD PWED 

AIC 14464.2 13485.2 13741.5 13558 13494 14049.8 13487 13480 

BIC 14470.5 13486.33 13754.1 13564.3 13500.3 14068.7 13493.3 13481 
 

Table 5. Data set representing the number of claims in automobile insurance (see Klugman et al. 
(2012)) 

Claim counts 0 1 2 3 4 

Observed frequency 1563 271 32 7 2 
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Table 6. Fitted proposed distribution and other competing models to a data set representing the 
number of claims in automobile insurance 

Z Obs.fre PD ZIPD NBD GD PLD DGIW PAD PWED 

0 1563 1544.1 1562.9 1566.4 1570.1 1569.5 1562.7 1571.9 1564.4 

1 271 299.8 265.2 261.5 255.25 256.34 274.6 252.7 268.4 

2 32 29.1 42 40.15 41.5 41.34 27.15 41.85 35.7 

3 7 1.9 4.45 6.6 6.75 6.6 6.3 7 5.6 

4 2 0.1 0.35 1 1.3 1.0444 4.25 1.45 0.75 

Total 1875    

d.f  1    - 1 2 2       - 2 1 

Chi-square  57.04    - 3.61 3.29 3.87        - 3.72 1.51 

Parameter 
estimate 
(S.E) 

 

)01.0(

194.0ˆ 

 

)07(.

38.ˆ

)042(.

31.0ˆ









)07.0(

19.1ˆ

)4.0(

13.6ˆ





r

p
)007.0(

83.0ˆ p

)3.0(

89.05ˆ 

17(.03.ˆ

)17(.4.ˆ

2(.16.3ˆ







t

b

a

)27.0(

74.05ˆ 

 

)4.18(

83.8ˆ

)3.2(

87.7ˆ









 

p-value  0.00    - 0.05 0.19 0.14        - 0.15 0.22 

 

Table 7. Model comparison criterion for fitted models to a data set representing the number of 
claims in automobile insurance counts 

Criterion PD NBD ZIPD GD PLD DGIW PAD PWED 

AIC 2005.5 1991.1 1995.5 1989.8 1989.7 1994.6 1990.25 1987 

BIC 2011 1990.3 2006.2 1995.3 1995.25 2011.2 1995.8 1986.3 

 

10. Conclusion  

A new over-dispersed probability distribution is introduced using the 
compounding technique. Statistical properties of the proposed model are studied and 
applications in handling count data sets representing vaccine adverse counts and 
insurance claims are analysed. 
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