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Abstract
Basilaphelenchus brevistylus n. sp. was isolated from masson pine 
(Pinus massoniana) in Guangdong province, China. The new species 
is characterized by an offset lip region, short stylet (female stylet 4.5-
5.5 μ m and male stylet 4-5 μ m long) with three elongate posteriorly 
directed knobs, posteriorly located metacorpal valve and lateral field 
composed of three lines. The female has an elongate postuterine sac 
and a short conical tail, uniformly narrowing toward a sharp tip, or 
tapering to a slightly offset mucronate tip in a few individuals. The 
male has a conical tail with a sharp terminal mucro, three pairs of 
caudal papillae, and small arcuate spicules with a bluntly rounded 
condylus and small pointed rostrum. B. brevistylus n. sp. can be 
distinguished from all described Basilaphelenchus nematodes by 
numerous morphological and morphometrical traits, especially the 
tail morphology of both sexes and stylet length. In addition, molecular 
phylogenetic trees inferred from rRNA small subunit and D2-D3 
expansion domains of large subunit revealed that this nematode 
belongs to the Basilaphelenchus, and is clearly different from all the 
other Basilaphelsenchus species.
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The family Aphelenchoididae Skarbilovich, 1947, 
with over 400 species, is a large group of aphelench 
nematodes (Hunt, 2008). Ecologically, they include 
phytoparasites, mycetophagous species, and preda
tors. Many species are reported to be associates 
or parasites of insects (Hunt, 1993). Six subfamilies 
within the Aphelenchoididae were listed by Hunt 
(2008), whereas seven subfamilies were proposed on 
the basis of the classification for the Aphelenchoididae 
given by Kanzaki (2014). The difference between 
the two taxonomy systems is that the latter placed 
Anomyctus (Allen, 1940) in a separate subfamily,  
the Anomyctinae (Goodey, 1960). By the year of 
2014, one new subfamily Tylaphelenchinae (Kanzaki 
et al., 2014) belonging to the Aphelenchoididae was 

established (Kanzaki et al., 2014). Currently four genera 
Tylaphelenchus (Rühm, 1956), Pseudaphelenchus 
(Kanzaki et al., 2009), Albiziaphelenchus (Bajaj, 2012), 
and Basilaphelenchus (Pedram et al., 2018) com
prise the subfamily Tylaphelenchinae. Morphologically, 
they all have  at least one tylenchid-like character, 
such as small spherical median bulb, tylenchid-type 
bursa, and elongate posteriorly directed stylet knobs 
(Mirzaie Fouladvand et al., 2019a). Phylogenetically, 
although molecular data are unavailable for the two 
genera Tylaphelenchus and Albiziaphelenchus, recent 
phylogenetic analysis based on rRNA small subunit 
(SSU) and D2-D3 expansion domains of large subunit 
(LSU D2-D3) confirmed that Pseudaphelenchus 
and Basilaphelenchus form a monophyly of the 
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Tylaphelenchinae (Aliramaji et al., 2020; Kanzaki, 
2021; Mirzaie Fouladvand et al., 2019a, b; Pedram  
et al., 2018).

Basilaphelenchus, the latest genus in Tylaphel-
enchinae, was erected in 2018. It currently contains 
seven species: B. persicus (Pedram et al., 2018);  
B. grosmannae (Pedram et al., 2018; Rühm, 1965); 
B. gorganensis (Mirzaie Fouladvand et al., 2019a);  
B. brevicaudatus (Mirzaie Fouladvand et al., 2019b); 
B. magnabulbus (Aliramaji et al., 2020); B. pedrami 
(Kanzaki, 2021), and B. hyrcanus (Golhasan et al., 
2021). All Basilaphelenchus species are unique in  
stylet with three elongate and posteriorly directed 
knobs (Aliramaji et al., 2020; Kanzaki, 2021; Mirzaie 
Fouladvand et al., 2019a, b; Pedram et al., 2018; 
Rühm, 1965).

In a survey of aphelench nematodes from pine 
wood in China, an unknown species of aphelenchoi
did was extracted from a dead Pinus massoniana 
Lamb. in Xingning city, Guangdong Province, China. 
Intensive morphological and molecular studies of 
the nematode revealed that it is a new species of 
the genus Basilaphelenchus. The new species is 
described and illustrated herein as Basilaphelenchus 
brevistylus n. sp. Phylogenetic analysis based on SSU 
and LSU D2-D3 was performed to investigate the 
relationships of the new species with other species of 
Tylaphelenchinae.

Materials and methods

Nematode extraction and morphological 
observations

Decaying wood and its bark samples were collected 
from a standing dead Pinus massoniana in Xingning 
city, Guangdong province in the south of China during 
early June 2020. The nematodes were extracted from 
samples by the Baermann funnel method (Feng, 
2001), killed by gentle heat, fixed in DESS solution 
(Yoder et al., 2006), and processed by the glycerin-
ethanol method for permanent slides (Seinhorst, 
1959). Specimens were measured and photographed 
with the aid of a Nikon ECLIPSE Ni microscope 
equipped with a Nikon Digital Sight Camera and 
exclusive NIS-Elements BR software (Nikon, Tokyo, 
Japan).

DNA extraction, amplification, and  
sequencing

DNA was extracted from three nematodes according 
to the protocol described in detail by Mundo-
Ocampo et al. (2008). Two rRNA gene fragments, 

SSU and LSU D2-D3, were amplified. A combination 
of primers for SSU amplification were forward 1096F 
(5′-GGTAATTCTGGAGCTAATAC-3′) and reverse 1912R  
(5′-TTTACGGTCAGAACTAGGG-3′); forward 1813F 
(5′-CTGCGTGAGAGGTGAAAT-3′) and reverse 2646R 
(5′-GCTACCTTGTTACGACTTTT-3′) (Holterman et al.,  
2006). Primers for LSU D2-D3 amplification were 
forward D2A (5′-ACAAGTACCGTGAGGGAAAGTTG-3′) 
and reverse D3B (5′-TCGGAAGGAACCAGCTACTA-3′) 
(De Ley et al., 1999). PCR amplifications were per
formed according to the protocols as described pre
viously (De Ley et al., 1999; Holterman et al., 2006). 
DNA fragments were sequenced as described by 
previous study (Zhuo et al., 2010). The newly obtained 
sequences of SSU and LSU D2-D3 were deposited 
in the GenBank database with accession numbers 
MW722958 and MW722960, respectively.

Phylogenetic analysis

The sequences of B. brevistylus n. sp. were compared 
with aphelench nematode sequences in GenBank 
using the BLAST homology search program. The 
close-related and published sequences of aphelench 
nematodes were chosen for phylogenetic analyses. 
Outgroup taxa for each dataset were selected 
according to previous phylogenetic study for aphe
lench nematodes (Aliramaji et al., 2020). DNA 
sequences were aligned by ClustalW implemented 
in the program MEGA6.0 (Tamura et al., 2013) using 
default parameters. Models of base substitution were 
evaluated using Modeltest3.7 (Posada and Crandall, 
1998) combined with PAUP4.0 (Swofford, 1998). The 
Akaike-supported model, the base frequencies, the 
proportion of invariable sites, the gamma distribution 
shape parameters, and substitution rates were used 
in our phylogenetic analyses. Bayesian analysis for 
SSU and LSU D2-D3 under the GTR + I + G model was 
employed to confirm the tree topology using MrBayes 
3.2 (Huelsenbeck and Ronquist, 2001) running four 
chains for 1 × 106 generations and setting the ‘burn-
in’ at 2,500. The MCMC (Markov Chain Monte Carlo) 
method was used within a Bayesian framework to 
estimate the posterior probabilities of the phylogenetic 
trees (Larget and Simon, 1999) and generate a 50% 
majority rule consensus tree. TreeView1.6 was used to 
display and edit the trees (Page, 1996).

Results

Systematics

Basilaphelenchus brevistylus n. sp.
(Figs. 1-3).
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Figure 1: Line drawings of Basilaphelenchus brevistylus n. sp. (A) female; (B) male; (C) female 
anterior region; (D) vulval region; (E) female tail; (F) male tail; (G) spicule. (Scale bars: A, B = 50 µm; 
C-G = 10 µm).

Measurements

Measurements of the new species are given in Table 1.

Description

Female

Small size. Body slender and slightly ventrally curved 
when heat-relaxed; annules fine. Lateral fields with 
three incisures. Lip region raised, 1.5 to 2.5 times 

wider than high, offset from body, separated from 
body by a clear constriction; vestibule well sclerotized, 
X-shaped in lateral view. Stylet short, 4.5 to 5.5 μ m 
long, with three elongate and posteriorly directed 
knobs, stylet cone comprising ca. 30% of total 
stylet. Procorpus cylindrical, ca. three to four stylet 
lengths. Metacorpus (median bulb) small, spherical, 
its width 66.5 ± 3.2 (59.1-78.3)% corresponding body 
diam., with glandular anterior part and muscular 
posteior part. Valve of median bulb weak, but 
discernible, situating posteriorly, at 60.7 to 72.0% of 
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Figure 2: Females of Basilaphelenchus brevistylus n. sp. under the light microscrope. (A) entire 
body; (B) lip region and stylet; (C) anterior region; (D) metacorpus; (E) lateral lines; (F) oocytes;  
(G) vulva region and post-vulval sac; (H) tail. (Scale bars: A = 100 µm; B-H = 10 µm).

metacorpus length from anterior end of metacorpus. 
Pharyngo-intestinal junction immediately posterior 
to metacorpus. Nerve ring encircling intestine and 
pharyngeal glands, and ca. 1/4-3/4 metacorpal length 
posterior to metacorpus. Excretory pore usually 
difficult to observe, posterior to metacorpus, at the 
level of nerve ring. Hemizonid invisible. Pharyngeal 
glands overlapping intestine dorsally for ca. 2.5 to 
3.5 body diameters. Three glands observed, each 
containing a nucleus separately. Reproductive system 
monodelphic, outstretched, occupying 38.9 to 61.7% 
of body length (excluding post-vulval uterine sac), 
oocytes present in single row; oviduct connecting 
ovary and spermatheca; spermatheca elongate-oval, 
sperms present in some individuals; crustaformeria 
ovate-oblong, posterior to spermatheca, visible in 
some individuals; uterus with thick wall, posterior to 
crustaformeria. Vagina inclined anteriorly at ca. 45° 

to body axis, both anterior and posterior vulval lips 
slightly protruding, vulval flap absent. Postuterine sac 
long, 36.2 to 56.5 μ m long, extending 40.0 to 62.5% 
of vulva-anus distance, ca. 2.6 to 4.9 vulval body 
widths or 4.2 to 8.0 anal body widths long, sperms 
usually present. Intestine simple, rectum and anus 
functional. Tail conical, short, uniformly narrowing 
toward a sharp tip, or tapering to a slightly offset 
mucronate tip in a few individuals.

Male

About equal number as females. Body slender and 
slightly ventrally curved when heat-relaxed. Anterior 
region and cuticle similar to female. Testis single, cells 
in single row, anteriorly outstretched, occupying 43.3 
to 61.7% of body length. Spicules paired, separate, 
condylus bluntly rounded, rostrum small and pointed, 
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Figure 3: Males of Basilaphelenchus brevistylus n. sp. under the light microscrope. (A) entire 
body; (B) lip region and stylet; (C) testis cells; (D, F) tail and spicule; (E) tail tip; (G) papillae. (Scale 
bars: A = 100 µm; B-G = 10 µm).

capitulum with shallow depression, calomus-lamina 
complex (blade) smoothly tapering and smoothly 
ventrally curving to a fine rounded terminus, cucullus 

not observed. Gubernaculum absent. Three pairs 
of papilliform caudal papillae, i.e., P2 subventral 
adcloacal, P3 post and near the middle of tail, and P4 
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Table 1. Morphometrics of Basilaphelenchus brevistylus n. sp

Female Male

Character Holotype Paratypes Paratypes

n – 15 15

L 469.1 413.6 ± 35.4 (364.3-483.1) 381.7 ± 19.6 (352.4-413.1)

a 29.7 29.2 ± 2.9 (25.2-36.8) 33.6 ± 3.0 (29.6-40.5)

b 10.4 9.9 ± 0.5 (9.4-10.9) 8.9 ± 0.5 (8-9.6)

c 18.5 17.7 ± 1.3 (16.2-20.9) 16.2 ± 1.0 (13.9-17.8)

c′ 3.0 3.1 ± 0.3 (2.7-3.5) 2.9 ± 0.2 (2.6-3.4)

V or T 72.2 71.7 ± 1.1 (69.8-73.8) 49.9 ± 4.6 (43.2-61.7)

M 30.0 32.5 ± 3.7 (28.0-38.0) 31.0 ± 4.4 (24.0-37.0)

Max. body diam. 15.8 14.1 ± 1.8 (11.4-18.0) 11.4 ± 1.1 (9.8-13.2)

Lip region diam. 4.4 4.5 ± 0.4 (4.1-5.3) 4.4 ± 0.2 (4-4.8)

Lip region height 2.5 2.4 ± 0.3 (2-2.6) 2.3 ± 0.1 (2.1-2.5)

Stylet conus 1.5 1.6 ± 0.2 (1.4-1.9) 1.4 ± 0.2 (1.1-1.8)

Stylet length (total) 5.0 4.9 ± 0.3 (4.5-5.5) 4.6 ± 0.4 (4.0-5.0)

Distal end of metacorpus 
from anterior

45.0 41.5 ± 2.5 (37.7-45.1) 42.6 ± 1.3 (39.0-43.7)

Metacorpus length 9.2 8.4 ± 0.6 (7.3-9.5) 8.3 ± 0.6 (7.3-9.7)

Metacorpus diam. 6.6 6.8 ± 0.7 (5.8-8.1) 6.6 ± 0.5 (5.4-7.8)

Position of the valve of 
metacorpus (%)

65.2 66.0 ± 3.7 (60.7-72) 67.3 ± 2.7 (63-72)

Body diam. at metacorpus 
level

10.9 11.0 ± 2.4 (9.7-11.7) 9.6 ± 0.7 (8.5-10.8)

Gonad length 213.3 190.1 ± 21.8 (160.1-223.9) 189.9 ± 18.4 (163.9-242.6)

Vulval body diam. 12.0 12.1 ± 1.2 (10.5-14.4) –

Spicule length (chord) – – 11.5 ± 0.7 (10.3-12.8)

Spicule length (arc) – – 10.5 ± 0.6 (9.6-11.3)

Post-vulval uterine sac length 48.8 45.9 ± 7.0 (36.6-56.5) –

Vulva-anus distance 104.9 93.7 ± 7.1 (83.1-107.3) –

Anal or cloacal body diam. 8.4 7.3 ± 0.8 (6.5-8.9) 8.0 ± 0.3 (7.5-8.7)

Tail length 25.4 22.0 ± 0.6 (20-26.6) 23.5 ± 1.6 (20.1-27.3)

Notes: All measurements are in µm and in the form: mean ± s.d. (range).

near to tail tip. Tail short, conoid, with a sharp terminal 
mucro, ca. 2.5 to 3.5 μ m.

Type host and locality

The type material was isolated from Pinus masso­
niana in Xingning city (latitude N23°98.753′, longitude 

E115°91.007′), Guangdong province, PR China in June 
2020.

Type specimens

The holotype female, 15 female and 15 male paratypes 
are deposited in Laboratory of Plant Nematology, 
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College of Plant Protection, South China Agricultural 
University, Guangzhou, China. Five paratype females 
and five paratype males are deposited in the USDA 
Nematode Collection, Beltsville, MA, USA.

Etymology

The specific epithet is derived from the shorter 
stylet of the new species compared with the other 
Basilaphelenchus species.

Differential diagnosis

Except the general characteristics of the genus 
Basilaphelenchus, i.e. stylet having three elongate 
posteriorly directed knobs and posteriorly located 
valve of metacorpus (median bulb), Basilaphelenchus 
brevistylus n. sp. is also characterized by three 
incisures in the lateral field, an offset lip region, very 
short stylet (4.5-5.5 μ m in females and 4-5 μ m in 
males), long postuterine sac (extending ca. 40.0-62.5% 
of vulva-anus distance), short conical tail of both sexes, 
female tail narrowing toward a sharp tip or tapering to 
a slightly offset mucronate tip in a few individuals, male 
tail bearing a sharp terminal mucro, and small arcuate 
spicules with a bluntly rounded condylus and small 
pointed rostrum. And the new species has specific 
LSU D2-D3 and SSU sequences.

Currently seven Basilaphelenchus species have been 
reported. B. brevistylus n. sp. can be distinguished 
from these seven species by the tail shape of both 
sexes (terminus not bent ventrally vs obviously or 
strongly bent ventrally) and a shorter stylet (4.5-
5.5 vs 5-10 μ m in females and 4-5 vs 5-10 μ m in 
males). Besides these, the new species differs from 
B. grosmannae by the different spicule shape (blade 
smoothly curved vs blade somewhat straight), more 
anteriorly located vulva (V = 71.7 (69.8-73.8) vs 72.9-
75.9), a higher b ratio (9.9 (9.4-10.9) vs 6.5-7.1 in 
females and 8.9 (8-9.6) vs 6.3-6.4 in males) and 
smaller cloacal body diam. (8 (7.5-8.7) vs 11.6 μ m); 
from B. persicus by the more posteriorly located 
vulva (V = 71.7 (69.8-73.8) vs 65.7 (63.6-70.8)), a 
longer body (413.6 (364.3-483.1) vs 352 (297-393) 
μ m in females and 381.7 (352.4-413.1) vs 322 (304-
331) μ m in males), shorter postuterine sac (45.9 
(36.6-56.5) vs 62 (50-70) μ m), shorter tail of females 
(22 (20-26.6) vs 36 (29-45) μ m; c = 17.7 (16.2-20.9) 
vs 9.7 (8.3-11.8); c′ = 3.1 (2.7-3.5) vs 5.3 (4.1-6.7)) and 
males (23.5 (20.1-27.3) vs 30 (24.5-36) μ m; c = 16.2 
(13.9-17.8) vs 10.7 (9-13); c′ = 2.9 (2.6-3.4) vs 3.9 (3.2-
4.6)), and higher b ratio (9.9 (9.4-10.9) vs 7.4 (6.9-8) 
in females and 8.9 (8-9.6) vs 6.3 (5-7) in males); from 
B. gorganensis by a shorter postuterine sac (45.9 

(36.6-56.5) vs 68 (59-79) μ m; extending for 40.0-
62.5% vs. 60-70% of vulva-anus distance) and lower 
a ratio (29.2 (25.2-36.8) vs 40 (34.2-47.7) in females; 
33.6 (29.6-40.5) vs 41.7 (36.3-52.5) in males); 
from B. brevicaudatus by the different tail tip shape 
of females (sharp vs generally broadly rounded, 
rarely narrow, sometimes with a mucron), a longer 
postuterine sac (45.9 (36.6-56.5) vs 32.4 (29-37) 
μ m; extending for 40.0-62.5% vs 30-40% of vulva-
anus distance), lower c ratio of females (17.7 (16.2-
20.9) vs 22.5 (19.5-26.6)) and males (16.2 (13.9-17.8) 
vs 19.3 (18-21)), lower a ratio of females (29.2 (25.2-
36.8) vs 37.2 (33.8-44.2)) and males (33.6 (29.6-
40.5) vs 43 (38-49)) and shorter spicule chord (11.5 
(10.3-12.8) vs14 (13-15) μ m); from B. magnabulbus 
by the different male spicule shape (relatively 
obvious capitulum depression vs somewhat straight 
capitulum anterior surface), different tail tip shape 
of males (terminus with a sharp mucro vs bluntly to 
finely rounded), a shorter female tail (22 (20-26.6) vs 
26-46 μ m; c = 17.7 (16.2-20.9) vs 9.9-13; c′ = 3.1 (2.7-
3.5) vs 6-9.3), longer male tail (23.5 (20.1-27.3) vs 
14-19 μ m; c = 16.2 (13.9-17.8) vs 17.3-43.9; c′ = 2.9 
(2.6-3.4) vs 1.6-2.5), lower female a ratio (29.2 (25.2-
36.8) vs 40.6-53.9) and higher male b ratio (8.9 (8-
9.6) vs 6-7.9); from B. pedrami by the different tail tip 
shape of males (tip with a long and sharp mucro vs 
tip with a short and blunt mucro), a shorter female 
tail (22 (20-26.6) vs 28 (25-32) μ m; c = 17.7 (16.2-
20.9) vs 15.4 (14.7-16.7); c′ = 3.1 (2.7-3.5) vs 4.3 (3.7-
4.9)), lower female a ratio (29.2 (25.2-36.8) vs 36.8 
(35-38.4)) and higher b ratio (9.9 (9.4-10.9) vs 9 
(8.3-9.8) in females and 8.9 (8-9.6) vs 7.8 (7.1-8.2) in 
males); from B. hyrcanus by a shorter tail of females 
(22 (20-26.6) vs 30 (28-31) μ m; c = 17.7 (16.2-20.9) 
vs 13 (11.5-14); c′ = 3.1 (2.7-3.5) vs 5.4 (4.8-6.2)) and 
males (23.5 (20.1-27.3) vs 24.5-36 μ m; c = 13.9-17.8 
vs 9-13; c′ = 2.6-3.4 vs 3.2-4.6), higher b ratio (9.9 
(9.4-10.9) vs 8.3 (7.3-9.5) in females and 8.9 (8-9.6) 
vs 7.3 (7-7.6 in males), more rounded median bulb 
(8.4 (7.3-9.5) × 6.8 (5.8-8.1) vs 10.7 (10-12) × 6.2 (5-7) 
μ m in females and 8.3 (7.3-9.7) × 6.6 (5.4-7.8) vs 11.1 
(11-12) × 6.3 (6-7) μ m in males), different tail tip shape 
of males (terminus with a sharp mucro vs sharp or 
finely rounded tip or small mucron like projection) and 
smaller anal body diam. (7.3 (6.5-8.9) vs 5.6 (5-6) μ m).

In addition, the SSU phylogenetic analysis revealed 
that B. brevistylus n. sp. has a close relationship to 
Pseudaphelenchus spp., however, B. brevistylus n. sp. 
can be easily distinguished from Pseudaphelenchus 
spp. by the absence or presence of bursa (male 
tail without bursa vs male tail with long bursa), the 
different stylet shape (stylet with three elongate 
posteriorly directed knobs vs stylet bipartite with small 
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Figure 4: Bayesian consensus tree inferred from D2-D3 under GTR + I + G model (−lnL = 18,080.8008; 
freqA = 0.1951; freqC = 0.1764; freqG = 0.3257; freqT = 0.3028; R(a) = 0.8366; R(b) = 2.5599; 
R(c) = 1.221; R(d) = 0.5867; R(e) = 4.2157; R(f) = 1; Pinva = 0.1777; Shape = 0.9323). Posterior 
probability values exceeding 50% are given on appropriate clades.
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Figure 5: Bayesian consensus tree inferred from SSU under GTR + I + G model (−lnL = 27,834.9805; 
freqA = 0.2254; freqC = 0.1985; freqG = 0.2797; freqT = 0.2964; R(a) = 1.0461; R(b) = 2.3739; 
R(c) = 1.4729; R(d) = 0.7716; R(e) = 2.9919; R(f) = 1; Pinva = 0.0959; Shape = 0.7961). Posterior 
probability values exceeding 50% are given on appropriate clades.
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and conspicuous basal knobs) and a shorter body 
of female (less than 500 μ m vs generally more than  
500 μ m).

Molecular profiles and phylogenetic  
status

The 628-bp LSU D2-D3 and 1597-bp near full-length 
SSU were sequenced. The molecular phylogenetic 
status of B. brevistylus n. sp. is presented in Figures 4 
and 5, and the two phylogenetic trees reconstructed 
based on sequences of LSU D2-D3 and SSU both 
confirm that the new species was within the Basila­
phelenchus clade. In Figure 4, the phylogenetic tree 
is based on LSU D2-D3 from a multiple alignment of 
1142 total characters, all Basilaphelenchus species 
reside within a 78% supported monophyletic clade. 
In the clade, B. brevistylus n. sp. is closely related  
to B. persicus with a 100% support, and they are 
clearly distinguished from each other. And the  
Basilaphelenchus clade is sister to the Pseuda­
phelenchus clade, forming a monophyletic clade of 
Tylaphelenchinae with a 66% support. In Figure 5, 
the phylogenetic tree is based on SSU from a multiple 
alignment of 2,734 total characters, B. brevistylus n. 
sp. is also closely related to B. persicus with a 100% 
support and clearly distinguished from it, but these 
two species and other Basilaphelenchus species do 
not form a monophyletic clade. Similar with the tree 
inferred from LSU D2-D3, all Basilaphelenchus and 
Pseudaphelenchus species form a monophyly of the 
subfamily Tylaphelenchinae, with a 100% support.

Discussion

In China, the genus Basilaphelenchus has not been 
reported to date. The finding of Basilaphelenchus 
brevistylus n. sp. expands the geographic distribution 
of this genus. The Basilaphelenchus is a relatively 
new genus within the family Aphelenchoididae. It 
was established in 2018 (Pedram et al., 2018). Since 
then, six Basilaphelenchus have been reported. Five 
of the six were found in Iran (Aliramaji et al., 2020; 
Golhasan et al., 2021; Mirzaie Fouladvand et al., 
2019a, b; Pedram et al., 2018), and the remaining 
one was described in Japan more recently (Kanzaki, 
2021). Besides, Tylaphelenchus grosmannae (Rühm, 
1965), originating from Chile, was transferred to the 
genus Basilaphelenchus as B. grosmannae due to 
typological similarities (Pedram et al., 2018). Therefore, 
B. brevistylus n. sp. is the eighth Basilaphelen­
chus species. So far, all Basilaphelenchus species 
were found in wood of trees, including Araucaria 

araucana, Fagus orientalis, and several unidentified 
trees (Golhasan et al., 2021; Kanzaki, 2021). In this 
study, B. brevistylus n. sp. was isolated from Pinusm 
massoniana, which is the first report of the genus 
from pine tree.

Currently, little is known about the biology of the 
genus Basilaphelenchus. However, a mycetophagus 
habit for this genus has been suggested as all 
Basilaphelenchus species were found in dead 
wood and rotten material, and multiple species, 
including B. persicus, B. pedrami, B. hyrcanus, and 
B. gorganensis, had been successfully multiplied 
on fungi (Golhasan et al., 2021; Kanzaki, 2021). 
Although we did not try to culture B. brevistylus 
n. sp. in fungi, the new species was also extracted 
from decaying wood. We therefore agree with the 
mycophagy hypothesis for this genus. In addition, 
it has also been proposed that this genus may be 
associated with wood borer and bark beetle insects 
because all Basilaphelenchus species were from 
wood and bark samples (Golhasan et al., 2021). 
However, so far only B. grosmannae was discovered 
to be carried by a bark beetle Hylurgonotus brunneus 
(Rühm, 1965). Insect associations of the other seven 
Basilaphlenchus species including B. brevistylus n. 
sp. have not been demonstrated. Interestingly, we 
noted that all Basilaphelenchus species stylets have 
an unique shape (with three elongate and posteriorly 
directed knobs) and are very short (no more than 10 
μ m). It has been found that stylet shape and length 
of several aphelenchoidid species are related to their 
biological characters. For example, Bursaphelenchus 
sinensis showed morphological differences between 
a mycophagous and predaceous form (Kanzaki et al., 
2019); the parasitic generation of Bursaphelenchus 
sexdentati has a smaller stylet than the free-living 
generation (Vosilite, 1990). Therefore, it would be 
valuable to further investigate potential insect carriers 
of Basilaphelenchus nematodes and the possible 
stylet modifications indicative of a specific insect-
nematode relationship.

Given that the small body sizes and morphological 
similarity with Aphelenchoides, it is possible that 
the Basilaphelenchus nematodes were overlooked 
during nematode surveys, and molecular techniques 
are of great assistance to confirm the status of 
Basilaphelenchus spp. (Kanzaki, 2021). In this study, 
our molecular phylogenetic analyses based on two 
rDNA markers, LSU D2-D3 and SSU, both place 
B. brevistylus n. sp. in a highly supported clade 
with B. persicus, and B. brevistylus n. sp. is clearly 
distinguished from all the other Basilaphelenchus 
species, which is in line with the result of morphological 
identification, confirming this nematode is a new 
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Basilaphelenchus species. Interestingly, the paraphyly 
of the genus Basilaphelenchus had been indicated 
according to several studies based on phylogenetic 
analyses inferred from SSU and LSU D2-D3, and 
Basilaphelenchus and Pseudaphelenchus always 
formed a Tylaphelenchinae monophyly (Aliramaji et al., 
2020; Kanzaki, 2021; Mirzaie Fouladvand et al., 2019a, 
b). In our study, Basilaphelenchus spp. are closely 
related to Pseudaphelenchus spp. but the exact 
nature of that relationship is not clear. Both LSU D2-
D3 and SSU provide weak to moderate support for 
a sister genus relationship and the monophyly of 
Basilaphelenchus. To date we have not identified a 
consistent morphological or host-range character 
that define the relevant clades. Similar unresolved 
relationships have been reported in other Tylenchina, 
e.g. Rotylenchus (Cantalapiedra-Navarretea et al., 
2013), Filenchus (Qing et al., 2017), Mesocriconema, 
and Criconemoides (Powers et al., 2017). We believe 
additional genetic markers and additional taxa will 
improve our understanding of the relationships in this 
often overlooked genus of fungal feeding nematodes.
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