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Abstract
Many people suffer from movement disabilities and would benefit 
from an assistive mobility device with practical control. This paper 
demonstrates a face-machine interface system that uses motion 
artifacts from electroencephalogram (EEG) signals for mobility 
enhancement in people with quadriplegia. We employed an Emotiv 
EPOC X neuroheadset to acquire EEG signals. With the proposed 
system, we verified the preprocessing approach, feature extraction 
algorithms, and control modalities. Incorporating eye winks and jaw 
movements, an average accuracy of 96.9% across four commands 
was achieved. Moreover, the online control results of a simulated 
power wheelchair showed high efficiency based on the time 
condition. The combination of winking and jaw chewing results in 
a steering time on the same order of magnitude as that of joystick-
based control, but still about twice as long. We will further improve 
the efficiency and implement the proposed face-machine interface 
system for a real-power wheelchair.
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Introduction

Brain-computer interfaces (BCIs) have been markedly 
developed to serve paralysis patients via assistive 
technology (Brunner et al., 2014). BCIs can be 
categorized as invasive or noninvasive. Most BCIs 
are noninvasive systems. Electroencephalography 
(EEG) measures the field potentials produced by 
neurons from the scalp, and it has been widely used 
in clinical applications and BCI systems (Abdulkader 
et al., 2015; Nicolas-Alonso and GomezGil, 2012). 
Currently, brain acquisition technology is developing 
rapidly. Neuroheadsets (Chamola et al., 2020) based 
on dry electrodes can acquire EEG signals and other 
relevant signals, such as electrooculogram and 
facial electromyogram (EMG) signals (Jang et al., 
2016; Šumak et al., 2019; Yulianto et al., 2020). The 
Emotiv and NeuroSky companies have presented 
dry electrode systems for entertainment and other 

applications (Brunner et al., 2014; Yulianto et al., 
2020). BCI devices and applications have mainly 
been used for smart homes, control of prosthetic 
devices, such as arm and hand exoskeletons, 
artificial arms, and power wheelchairs, and assistive 
and rehabilitation devices (Ben Taher et al., 2015; 
Long et al., 2012). In addition, BCIs can be beneficial 
for people with quadriplegia paralysis (severe 
disabilities). For people with hemialgia or paraplegia 
paralysis, an MYO gesture armband (Chu et al., 
2020) and video-based human action recognition 
(Sarabu and Santra, 2021) can be suitable to extend 
their activity.

Currently, hybrid BCIs can yield high efficiency 
in practical devices and systems to serve people 
with severe disabilities. An improvement over the 
conventional BCI has been proposed by combining it 
with other BCI modalities. Electrooculography (EOG) 
measures potential changes, while controlling eye 
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movements such as wink and blinks. EOG is widely 
utilized in cooperation with EEG-based BCI systems 
(He et al., 2020; Punsawad et al., 2010; Yang et al.,  
2016). A facial EMG signal measures changes in 
electrical potential that occur when facial, jaw, 
and tongue movements are executed. BCI-based 
assistive technology has been developed to serve 
disabled patients who have lost movement ability 
in their upper or lower limbs. A wheelchair is an 
assistive mobility device that can increase the level 
interaction between patient abilities and the external 
environment. Paralysis is the most common neural 
disorder that causes the loss of control of one or 
more muscles in the body. Because the different 
types of paralysis are a challenge in BCI development, 
we have tried to create a BCI-based assistive 
technology strategy for tetraplegia, especially in 
terms of mobility enhancement. Previous research 
has demonstrated many techniques and modalities 
that can be employed to build assistive mobility 
devices for patients with all paralysis types. Artifacts 
are other internal biomedical signals and other 
external signals that interfere with EEG signals within 
the same frequency range (Brunner et al., 2014). For 
example, facial and head movements are some of 
the most common signals that appear when people 
blink or move their eyeballs or eyelids. A hybrid BCI 
(Amiri et al., 2013; Tello et al., 2015) is a highlighting 
technique that improves the interaction performance 
of the given system by combining multiple or different 
input channels with BCI channels. The modalities of 
hybrid BCIs consist of (i) hybrid BCIs that combine 
multiple brain signals; (ii) combination of brain activity 
with other physiological signals such as EMG, EOG, 
and electrocardiogram (ECG) signals; and (iii) a 
combination of two BCI channels or a combination 
of a BCI with special assistive input devices (e.g.,  
joysticks, smart wheelchair systems, etc.) (Hernandez-
Ossa et al., 2017; Tello et al., 2015; Tang et al., 2018; 
Yang et al., 2016).

At present, there are few assistive devices for 
patients with quadriplegia paralysis on the market. 
Nevertheless, biomedical signal acquisition techniques 
and devices have been continuously developed for 
medical applications, such as a biosignal-based 
wearable device with a wireless biomedical sensor 
network (WBSN) for home healthcare. Therefore, 
we aim to develop a BCI system that can integrate a 
WBSN and serve a patient with quadriplegia paralysis 
in daily activities. In this paper, we develop a practical 
BCI system using EEG motion artifacts from a 
neuroheadset for assistive mobility device control in 
patients with quadriplegia paralysis. By employing EEG 
artifacts to control an electric wheelchair, a simulator is 

proposed. We design a control creation and translation 
strategy of EEG artifacts and motor imagery for a user-
friendly BCI-controlled electric wheelchair simulator. 
The efficiency of the system and the user are verified. 
To evaluate the EEG headset, it is compared with 
previous work that involved an electrode placed on the 
skin.

The paper can be divided into four main sections, 
of which the first section is the introduction. The 
second section will describe research methods and 
includes four parts, i.e., (i) the proposed system, (ii) 
signal acquisition and preprocessing, (iii) feature 
extraction and algorithms, and (iv) command trans-
lations. The third section presents experimental re-
sults and discussions to demonstrate the efficiency of 
the proposed system and algorithm from the second 
section for online testing. In the last section, the 
outcome and outlook of the proposed system will be 
presented as a conclusion, and future work will be 
suggested.

Research methods

Proposed system

In this work, we propose a human-machine interface 
system by using EEG artifacts obtained from an 
Emotiv EPOC X neuroheadset. The main idea is to use 
EEG artifacts that are generated from eye winking and 
jaw chewing to control the direction of a wheelchair. 
Four commands for direction control consisting of 
going forward, turning left, turning right, and reversing 
were created by employing an EEG artifact-based 
face-machine interface with two proposed command 
strategies. For the first command modality, we set 
a forward translation by using both jaw chewing 
(turning left by jaw chewing on the left, turning right 
by jaw chewing on the right) and eye winks (reversing 
by winking both eyes). The second modality consists 
of forward commands generated by jaw chewing (left 
or right or both), turning left with a left eye wink, and 
turning left with a left eye wink, as well as a backward 
command generated by winking both eyes. In the 
idle state, the wheelchair is stopped. However, in an 
emergency, the user winks both eyes three times to 
toggle off the wheelchair controller system, and the 
wheelchair stops immediately; winking three times 
again reenables the system. An overview of the 
proposed system for real-time simulated wheelchair 
control is shown in Figure 1. The process consists of 
preprocessing, algorithms, and command translation. 
A simple method is utilized for EEG feature extraction 
and classification. The details of each part are 
presented in the second section (Table 1).
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Figure 1: The proposed face-machine 
interface system for simulated 
wheelchair control using artifacts from 
an EEG neuroheadset.

Table 1. The commands for simulated 
wheelchair control.

Commands 
No.

Actions
Output 

commands

1 Jaw chewing on 
both sides

Forward

2 Jaw chewing on the 
left side

Turn Left

3 Jaw chewing on the 
right side

Turn Right

4 Winking both eyes Backward

5 Winking the left eye Turn Left

6 Winking the right eye Turn Right

Optional Winking the left eye 
and then the right 
eye within 3 sec

Enable/Disable 
System

Signal acquisition and preprocessing

The Emotiv EPOC X is the latest version of the 
14-channel EEG neuroheadset produced by the 
Emotiv company (Hernandez-Ossa et al., 2020). This 

device was designed for human brain research to 
provide access to professional-grade brain data with 
an improved and easy-to-use design. For software, 
EmotivPRO has been developed for neuroscience 
research and education. In addition, EmotivBCI soft-
ware was developed and implemented for brain-
computer interface research. For the 14-channel 
EEG acquisition, electrodes were positioned on both 
sides of the brain lobe at positions AF3, F3, F7, FC5, 
T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4. The 
reference electrodes were positioned on the parietal 
lobe at positions M1, P3, M2, and P4 to enhance 
the generated EEG signals. The electrode positions 
followed the international 10-20 electrode placement 
system. The Cortex application programming inter-
face (API), an application programming interface 
developed by Emotiv, was used for streaming the 
obtained data to develop the abovementioned third-
party applications. The Cortex API was built on 
JavaScript object notation (JSON) and WebSocket, 
which enables it to easily access various programming 
languages and platforms. This API provides EEG data 
in JSON format with a sampling rate of 256 Hz, and 
the program was implemented in Python for McGill 
immersive wheelchair simulator (miWE) control (https://
emotiv.gitbook.io/epoc-x-user-manual/introduction/
introduction-to-epoc-x; Pirani et al., 2018; Routhier 
et al., 2018; https://atrehab.ca/research/wheelchair-
training/). The components are shown in Figure 2.

Feature extraction and algorithms

In this paper, we used the Emotiv EPOC X 
neuroheadset to acquire EEG signals from channels 
AF3, F7, F3, and FC5, which exhibit strong features 
when the left eye is winked. For right eye winks, EEG 
signals from channels AF4, F8, F4, and FC6 also 
demonstrated a strong feature. Winking with both 
eyes generated EEG signal patterns from channels 
AF3, F7, F3, FC5 AF4, F8, F4, and FC6, as shown in 
Figure 3. Moreover, in this study, we utilized another 
EEG artifact: the signals induced by jaw movements. 
During chewing, including chewing on both the left 

Figure 2: Components of the EEG 
signal acquisition process using an 
Emotiv EPOC X neuroheadset.
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and right sides of the jaw, the EEG channels that 
exhibited patterns during eye winking again showed 
clear features but different patterns, as shown in 
Figures 3 and 4. The process of the proposed face-
machine interface system is shown in Figure 5.

Following the determination of EEG features, 
we selected four channels from among the eight 

total EEG channels for each participant during 
preprocessing by using the channel amplitudes. 
The EEG signals from F7 and F8 were employed for 
left and right eye wink detection. EEG signals from 
FC5 and FC6 were used to capture signals while jaw 
chewing. Using real-time processing, the EEG signals 
were used to detect actions, and commands were 

Figure 3: Examples of EEG signals from the Emotiv Neuroheadset: (a) left eye winking, (b) right 
eye winking, and (c) both eyes winking.

Figure 4: Examples of EEG signals from the Emotiv Neuroheadset during: (a) left side jaw 
chewing, (b) right side jaw chewing, and (c) jaw chewing on both sides.
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Figure 5: Flowchart of the proposed classification decisions.

issued every second for the direction control of the 
virtual wheelchair.

Thresholding

Before executing the proposed face-machine interface 
system, threshold parameters must be acquired during 
left and right eye winks as follows:

TJL = mean (JLF (1), JLF (2), JLF (3), …, JLF (10)) (1)

TJR = mean (JRF (1), JRF (2), JRF (3), …, JRF (10)) (2)

where JLF represents the variance of the EEG signal 
obtained from channel FC5, while that of left jaw 
chewing is calculated similarly to JL according to (5). 
JRF represents the variance of the EEG signal obtained 
from channel FC6, while that of right jaw chewing is 
calculated similarly to JR according to (6). To create 
the threshold parameters of jaw actions such as TJL 

and TJR, 10 variance values were used to calculate the 
mean variance:

TWL = mean (WLF (1), WLF (2), …, WLF (10)) (3)

TWR = mean (WRF (1), WRF (2), …, WRF (10)) (4)

where WLF represents the amplitude range of the 10 
EEG signals obtained from channel F7 during left 
eye winking. WRF represents the range of 10 EEG 
signals obtained from channel F8 during left eye 
winking. Then, each set of 10 range numbers was 
used to calculate the threshold parameter of the 
corresponding winking action (TWL and TWR).

Parameter setting

The features acquired during facial movements, JL 
and JR, are defined as the feature parameters of left 
and right jaw chewing, respectively, and WL and WR 
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are defined as the feature parameters of left and right 
eye winking, respectively; these four parameters are 
calculated as follows:

JL = variance (XFC5[1], XFC5[2], …, XFC5[n]) (5)

JR = variance (XFC6[1], XFC6[2], …, XFC6[n]) (6)

WL = range (XF7[1], XF7[2], …, XF7[n]) (7)

WR = range (XF8[1], XF8[2], …, XF8[n]) (8)

where XFC5, XFC6, XF7, and XF8 are the EEG signals 
acquired in real time at channels FC5, FC6, F7, and 
F8, respectively, with a sampling rate (n) of 256 Hz.

Decision making

As the feature parameters were acquired, simple de-
cision rules were used to compare the real-time fea-
tures and threshold parameters that were obtained. 
The classification decisions for the seven commands 
were produced as follows:

if JL > TJL & JR > TJR, Decision is “Com#1”

if JL > JR & JL > TJL, Decision is “Com#2”

if JR > JL & JR > TJR, Decision is “Com#3”

if WL > TWL & WR > TWR, Decision is “Com#4”

if WL > WR & WL > TWL, Decision is “Com#5”

if WR > WL & WR > TWR, Decision is “Com#6”

Otherwise, No Decision

Figure 5 presents the flowchart of the classification 
algorithm for command creation. Conditional state-
ments (if-statements) and iterative statements (while-
loops) were used to check conditions by com-
paring feature and threshold parameters. Then, the 
command will be translated to control the direction of 
the simulated wheelchair, as shown in Figure 6.

Command translations

For command translations, the first proposed command 
modality, we controlled the forward movement by jaw 
chewing (turning left by moving the left side of the jaw 
and turning right by moving the right side of the jaw) 
and the backward movement by winking with both 
eyes. Moreover, we created a second modality that 
uses both eyes and the jaw; this modality is similar 
to the first proposed command, but we changed the 
command activities from those utilized in the previous 
command. We used the jaw to control the forward 
movement with normal chewing and used eye winking 
for turning left and right. For backward commands, we 
used the winking of both eyes, as shown in Figure 6.

Experimental results and discussions

Experiment I

Eight healthy participants (five men and three 
women, mean age 29 ± 5.3 years), all without any BCI 
experience, participated in the experiments. We used 
the proposed algorithms to automatically generate 
commands and calculate the resulting accuracy 
rates. In total, each participant performed two trials 
(24 commands). Before testing, each participant 
completed a training session for 15 min, and then the 
participant performed the experiment. The command 
sequence was defined as in Table 2.

Table 3 shows that the maximum accuracy 
achieved using the first proposed modality was 
95.8%, while the maximum accuracy yielded using 
the second control modality was 100%. The average 
accuracy produced using the first control modality 
was 92.2%, and the average accuracy obtained 
using the second control modality was 96.9%; the 
second control modality can yield a higher accuracy 
rate than the first control modality. Low accuracy may 
have occurred because some participants could not 
separate left and right chewing. The performance of 
the EEG neuroheadset for a face-machine interface 
system similar to that used in previous work using 
EMG signals measured from facial muscles by 
directly placed surface electrodes was 99.3% as 
measured by an algorithm evaluation (Jang et al., 
2016). Therefore, the EEG artifacts from the Emotiv 
neuroheadset can be extracted by the proposed 
algorithm for simulated wheelchair control.

Experiment II

Normally, the user’s confidence level has a relation-
ship with the result. Before starting Experiment II, 

Proposed modality #1 Proposed modality #2

Figure 6: The proposed modalities for 
simulated wheelchair control.
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we tried to control the participant’s confidence by 
achieving a greater than 85% accuracy in Experiment 
I and allotted 20 min for a training session. We also 
recorded the time of each participant for steering the 
simulated power wheelchair using a joystick for the 
user and system evaluations.

Each participant was tested with three modalities 
to freely control a virtual wheelchair, as shown in 
Figure 7a. Each route was performed three times for 
each modality. The times taken from start to stop 
were recorded to evaluate the proposed control 
modalities and the resulting user performances. An 
example of the experiment is illustrated in Figure 7b.

Figures 8 and 9 present efficiency comparisons 
between the proposed control modalities and a 
joystick based on the time required to steer the 
simulated power wheelchair along route 1 and route 
2, respectively. For route 1, the average time required 
by the joystick (conventional control modality) was 
55 sec, the average time required by the first control 
modality was 156 sec, and time required by the 
second control modality was 122 sec. The least 
amount of time taken using the first control modality 
was 118 sec, that using the second control modality 
was 107 sec, and that using joystick control took only 
47 sec. For route 2, the average time taken by the 
joystick control modality was 57 sec, the average time 
required by the first control modality was 160 sec, and 
the time required by the second control modality was 
127 sec. The least amount of time taken using the 
first control modality was 102 sec, that using the first 
control modality was 63 sec, and that using joystick 
control took only 47 sec.

Comparing all modalities, we found that the 
second control modality could achieve a higher 
efficiency than that of the first control modality for 
all tested routes but lower efficiency than that of 
the joystick. The difference between the average 
times taken by the second control modality and the 
joystick on route 1 was 67 sec, and that on route 2 
was 70 sec. Participants 1 and 2 with BCI experience 
demonstrated a high efficiency when using the 
second control modality; the efficiency was close to 
that achieved using joystick control. However, some 
participants may have difficulty performing and may 
need more time for training. Efficiency comparisons 
with previous works in real-time discontinuous control 
(Jang et al., 2016) showed that the proposed system 
can produce an elapsed time and command transfer 
rate similar to those of previous works. According to 

Table 2. The command sequence for testing the 
performance of the proposed system.

Sequence No. Commands Sequence No. Commands

1 Turn Left 7 Turn Right

2 Turn Right 8 Turn Left

3 Turn Right 9 Backward

4 Turn Left 10 Turn Left

5 Forward 11 Turn Right

6 Backward 12 Forward

Table 3. Results of the proposed control 
modalities.

Average accuracy (%)

Participants
Proposed 

modality #1
Proposed 

modality #2

1 95.8 100

2 95.8 100

3 91.7 95.8

4 87.5 95.8

5 91.7 100

6 87.5 91.7

7 95.8 95.8

8 91.7 95.8

Mean ± SD 92.2 ± 3.46 96.9 ± 2.94
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Figure 7: (a) The testing route (total distance: 30 m). (b) A sample scenario encountered by the 
simulated power wheelchair during testing.
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the results, the proposed face-machine interface can 
be further implemented in a real-power wheelchair.

Conclusion

In this work, we proposed utilizing EEG artifacts 
obtained from an Emotiv neuroheadset for human-
machine interface system-based practical machine 
control. The advantages of the EEG neuroheadset 
are that it is flexible and easy to install for signal 
acquisition. For the proposed control modalities, we 
employed eye winking and jaw chewing to create 
seven command channels. The two control modalities 
were demonstrated via simulated wheelchair control. 
Incorporating eye winking and jaw chewing into the 
system can result in high efficiency, and this approach 
can be developed to increase the efficiency further until 
it is close to that of using joystick control. Nevertheless, 
some limitations of the use of the proposed real-
time face-machine interface system to control a 
simulated wheelchair are as follows. (i) The system 
required the training of some users who had difficulty 
controlling only the left or right sides of the eye and jaw 
movements to generate clear features for achieving 
high user and system performances. (ii) Over a long 
period of time, the system required adaptive threshold 
calibration and detection of the fatigue period to avoid 
a high error rate. (iii) Following the initial verification of 
the proposed system with only the directional control 
of the simulated wheelchair, we aimed to further enable 
additional speed control. We expect that the face-
machine interface system can achieve performance 
equivalent to using a joystick and hands-free control. 
For future applications, we will employ the proposed 
system to control real-power wheelchairs or electric 
devices for serving people with quadriplegia.
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