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ROBUST SIMULATION METHOD OF COMPLEX TECHNICAL 
TRANSPORT SYSTEMS 

  
Summary. In the optimization of technical systems focused on a specific functional 

purpose (reliability, safety, and availability) with the use of simulation methods, an 
important parameter is the digital simulation time of the research subject. With the 
complexity of the issue, the digital simulation time increases. The aim of the article is to 
present a method (combination of parallel computing and variance reduction techniques) 
of reducing the computer simulation time of the research technical object. An example of 
the application of the developed method was presented as a result of an experiment 
conducted for decision making and control processes aimed at optimizing the process of 
operating overhead cranes in critical conditions. In this paper, selecting parallel batch 
jobs computation and stratified sampling, we exponentially decreased the simulation 
time, finding fast and practical solutions and eliminating the time constraint in the search 
of solutions. 

  
  

1. INTRODUCTION 
  

Monte Carlo methods consist of generating consecutive random samples with computer algorithms 
to obtain numerical results. It is usually applied in three types of problems: optimization, numerical 
integration, and generation of samples from a probability distribution according to Kroese et al [7]. 

Engineering problems sometimes present countless free or unknown variables, making it suitable to 
use Monte Carlo methods to simulate the sensitivity of the system according to the unknown variables. 
Authors like Hubbard and Samuelson [5] highlight that a frequent application in system engineering 
problems is failure predictions based on Monte Carlo simulations. 

According to the law of large numbers and the Central Limit Theorem, the calculation of integrals 
described by the expected value (centre of mass) of some random variable can be approximated to the 
empirical mean (also known as sample mean) of independent samples of the variable, and it is known 
that the dispersion around the expected value is associated with the sample variance and the sample 
length. Therefore, Monte Carlo methods are often used to solve probabilistically oriented problems, 
particularly those involving mixture or compound probability distributions. A frequent application is 
to generate random samples from parameterized probability distributions, commonly known as the 
Markov chain Monte Carlo (MCMC) sampler. 

Examples of practical applications based on the Monte Carlo method are the papers, Monte Carlo 
simulation model to estimate the reliability of logistics and supply chain networks from Ozkan and 
Kilic [11]; Monte Carlo tolerance simulation on a prefabricated construction assembly, showing a 
proactive design tool with several key advantages for prefabricated and offsite construction from 
Rausch et al [12]; Monte Carlo simulation model to analyze and optimize the time interval between 
periodic inspections in cold standby systems considering the required availability and the lowest cost 
possible from Alebrant Mendes and Weber Lorenzoni [1]; and a model to improve cooling load 
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prediction reliability method in which the input variables are calibrated offline with Monte Carlo 
simulations and stochastic treatment before inputting them into the prediction model from Fan et al 
[4]. 

In the references cited before, all of them highlight the advantages of the simulation approach 
showing relevant results, but only a few of them show practical implementations within a reasonable 
CPU time. 

The obvious limitation in the simulation approach is clearly time, and we believe that this is the 
reason why authors sometime just ignore the limitation, as we can observe in the references cited. 

But, on the other hand, references such as Dieker et al [3] and Leahu et al [8], work strongly in 
parallel with methodological solutions on how to allocate time-consuming simulations depending on 
the length of the queues. 

In this paper, we touch on a classical application of Monte Carlo simulation: generating samples 
from probability distributions fitted to historical degradation data. Specially, we estimate by 
convolution the loss capacity (risk indicator) given the stochastics availability (including degradation 
due the operation and maintenance planned) of the analyzed overhead crane system and the minimum 
set of overhead cranes needed to guarantee the production line. The risk indicator obtained is used as a 
criterion to evaluate the quality of the maintenance scheduling. 

More details about the model adopted in this paper can be found in the references Szpytko and 
Salgado Duarte [16, 17]. 

As other applications cited, when the complexity of the simulation increases to assess a scenario, 
the computation time needed to generate a robust estimation can be an issue. 

Knowing the limitation, in this investigation, we discuss two possible improvements to reduce the 
simulation time given a fixed scenario. As a starting point, we analyze the simulation time before and 
after the improvements proposed. 

The investigation carried out in this paper is organized as follows: first, a full discussion of the 
proposed methodological and technical improvements, then the analyzed model adopted is discussed, 
and then the experiment performed to evaluate the time improvements is described. Finally, some 
conclusions are drawn to highlight possible outcomes in this research area. 

  
  

2. MATERIALS AND METHODS 
  

In this investigation, to reduce the Monte Carlo simulation time, the selected improvements are 
variance reduction (methodological) and parallel computing (technical). Each of them has a wide 
family of possibilities and definitions; therefore, we specify the selection later with a brief discussion 
about, starting with the variance reduction. 

  
2.1. Variance reduction 

  
Within Monte Carlo methods, variance reduction is a strategy (by referring to how the random 

sample is generated or by using some known features of the sampled distribution) applied to increase 
the accuracy of estimates (e.g., the expected value, in our case) that can be obtained from a computer 
simulation as highlighted by Botev and Ridder [2]. 

Each random variable generated from a computer simulation has an associated variance or 
variability, commonly speaking, that determines the accuracy of the result. To achieve a statistically 
efficient simulation, that is, to obtain an estimate with smaller confidence intervals for the random 
variable analyzed, variance reduction techniques can be used. 

The main techniques are common random numbers, antithetic variates, control variates, importance 
sampling, and stratified sampling according to the authors Botev and Ridder [2]. 

Variance reduction techniques can be commonly separated into groups. First, we have antithetic 
sampling (for each generated uniform random number defined between [0, 1], its complement is used 
to compensate large deviations from the mean), stratification (the generated sample is strategically 
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divided into groups), and common random numbers (usually used when it is necessary to compare two 
different distributions, for a given common random sample). All these methods improve the variance 
by sampling the values strategically. 

On the contrary, we have conditioning and control variates. These methods use information from 
the sampler to bound the generated outputs. 

Finally, the importance sampling method. This method changes where we take the sample values 
from, i.e. it intentionally over samples from some regions and then corrects this distortion by re-
weighting. 

All the techniques are well defined in the literature and possible to implement, but given the model 
specificities, easy implementation and understanding, the case selected is stratified sampling. 

In statistics, stratified sampling is a technique for sampling a population whose essence is to divide 
the population into subpopulations. 

The precision of the estimation of a population statistic from pseudo-random samples, for example 
the mean, likewise the sample size, depends on the variability between the generated population 
samples. Consequently, in addition to increasing the sample size, another possible way to increase the 
precision of the estimate could be by dividing the generated pseudo-random samples into groups, so 
that the variability within groups is minimal and the variability between groups is maximum. In this 
way, smaller samples can be selected from each of the groups formed. The groups formed are called 
strata and the process of stratum formation is known as stratification according to Singh and Singh 
Mangat [14]. 

When we are in the presence of simple stratified random sampling, under the assumption that 
samples from different strata are selected independently, each stratum can be treated as an independent 
population. The estimation of the stratified mean will be more efficient than the usual simple random 
sample mean if the variation between the stratum means is large enough in relation to the variation 
within the stratum. However, the gain in precision also depends on the method used to create the 
strata. According to Singh and Singh Mangat [14], other points that need to be considered are as 
follows: 

- Determining the number of strata to be constructed (for this point the characteristics of the 
population guide the decision). 

- Allocation of total sample size to different strata (usually all the strata have the same size, but 
the technique allows for strata with different sizes). 

- The choice of strata (the selection is mainly guided by the modelled problem). 
This method introduces a challenge, the optimum allocation (or disproportionate allocation). As we 

can deduce, the allocation depends on the problem to be modelled, therefore, in next sections we 
discuss the topic by computational experiments after the evaluated scenario is fully described. 

Relevant in this investigation is the expected value and the variance of the expected value, because 
the first reflects the risk value estimation of the system evaluated, and the second define the number of 
simulations needed to get a robust estimation, both redefined later in the following sections according 
to the model formulation. 

Therefore, as starting point according to Singh and Singh Mangat [14], we can define the mean 
(Equation 1) and variance (Equation 2) of stratified random sampling as follows: 

                                                              (1) 

                                                    (2) 

where: Nh = total number of units in the stratum h;  
- fh = nh / N = sampling portion for the stratum h; 
- nh = number of units selected in the sample from the stratum h; 
- wh = Nh / N = proportion of the population units falling in the stratum h; 
- Yhi = the value of study variable for the i-th unit in the stratum, i = 1, 2, …, Nh; 

-  = stratum total for the estimation variable based on Nh units; 
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-  = mean for the estimation variable in the stratum; 

-  = stratum sample mean for the estimation variable; 

-  = stratum variance based on Nh units; 

-  = stratum mean square based on Nh units; 

 = sample mean square based on nh sample units drawn from the stratum. 

  
 

2.2. Parallel computing 
  

Once the proposal for methodological improvement has been defined, we jump to the technological 
improvement in this section. 

Nowadays, parallel computing is relevant to solve complex problems in science and engineering in 
practical times. Parallelism is a technological strategy to speed up calculations that require a lot of 
time and memory. According to the Keyes [6], historically, parallelism had acceleration as its main 
objective, which was characterized by Amdahl's law. 

Gustafson-Barsis' law is another perspective of the same idea according to Keyes [6]; in this case, 
the idea is to measure how to keep time constant when the complexity of the problem increases. This 
definition is described by scalability. This new law leads the concept of designing systems with an 
increasing number of processors, a law applied and followed conceptually in this research. 

As we know, a system design with these features is expensive when the required number of 
processors is relatively high, and sometimes the profitability of the software does not exploit all the 
available power. For this reason, the trend of parallelism is moving toward the era of clusters. For 
example, networked desktop computer labs can be configured as clusters. Regardless, it is well known 
that progress continues, at the microprocessor level, parallelism is found in multicores and many cores 
as highlighted by Trobec et al [18]. 

At the tip of the iceberg, with the idea of raising parallelism to its maximum expression, are the 
ideas of Grid and Cloud. These structures centralize computing power and provide access through the 
network, while also minimizing power consumption. In addition, on the somewhat more distant 
horizon, there are paradigms such as quantum computing, optical computing, and chips working on 
biological structures, which have a potential for future parallel computing according to Trobec et al 
[18]. 

All the advances described before walk at the same time with the development of methods and 
algorithms for these systems. It is well known that without effort in the field of software, it is 
impossible to exploit the computational power of the super modern computers that exist and are 
available. 

The design of efficient and robust algorithms is essential to efficiently solve complex scientific 
problems where parallelism is in principle necessary. 

The continuous trend over time is to increase the number of cores on a single chip. Now a simple 
conventional desktop computer can have 16 cores. To take full advantage of available capabilities, 
new tools, new algorithms, and a new way of looking at the programming will be required. 

Today, a standard operating system can run different tasks in parallel depending on the available 
cores. However, in cases of serial software programme, the program or code needs to be restructured 
and parallelized to take full advantage of the multi-core architecture. 
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Following the paradigm of parallel computing, the simulation model adopted in this paper (defined 
later in the following sections), is implemented in MATLAB [10], parallelized, and tested assessing 
the simulation times. 

The reason we selected MATLAB to implement the model is because it allows us, given a well-
defined parallel code sequence, to run the simulations using batch jobs and parallel loops at the same 
time, as shows Fig. 1. 

 
Fig. 1. Adopted MATLAB parallel jobs configuration (based on MathWorks online help) 

  
The MATLAB architecture for parallel computing is frequently used by authors from different 

fields and is well accepted standard software for research purposes in the academy. The literature is 
full of applications with this tool. 

According to the MATLAB online help, using batch jobs allows offloading the execution of long-
running calculations in the background, increasing the efficiency of calculation time. 

Additionally, Parallel Computing Toolbox of MATLAB enables interactive parallel computing and 
allows us to speed up independent calculations by running them on multiple workers at the same time. 
The idea is to use the parfor routines to run for-loop iterations in parallel on independent workers, as 
the online help describes. 

The combined use of batch jobs and parallel loops exponentially increases the performance 
efficiency of the code and allows us to use all the computation resources on the computer to perform a 
task, as shown in Fig. 1. 

When working interactively in a MATLAB session, we can download the job to a MATLAB work 
session to run as a batch job, which means we can create a group of workers for their batch job. 

The workers can run on the same machine as the client or on a remote cluster machine. With that 
said, the code implemented in MATLAB can also be run on a cluster if needed. 

  
2.3. Improvements proposed 

  
The main outcome of the investigation is to evidence the reduction of the simulation times, given a 

parameterized scenario and a scheduling solution, for the adopted model, through the application of 
the methodological and technological improvements described in the sections 2.1 and 2.2. 

As a general view of the research conducted, Fig. 2 summarizes the idea proposed, leaving clearly 
defined the experiment discussed in the following sections. 
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Fig. 2. Improvements proposed 

  
  

3. MODEL DESCRIPTION 
  

The model definition under study in this paper is taken from Szpytko and Salgado Duarte [16, 17]. 
The first reference describes the connection between the raw information sources and the model 
variables, and the second reference details the optimization model definition and the solution achieved 
given a parameterized scenario (optimal maintenance scheduling). 

As a general description of the model used, we can say that the subject of the mathematical model 
is to manage the logistics-maintenance process of overhead type cranes operated in critical systems. 

A hot rolling mill system in a steel plant, mainly supported by critical overhead cranes operating 
under hazard conditions and running continuously, was selected as a study case. 

The model output (requested as an engineering solution) is an optimal risk-oriented maintenance 
scheduling for critical overhead cranes. 

The model input (created as a formal structured information) is a digital database with historical 
information related to operation, maintenance-logistics, and management processes of the system. 

The optimization model supporting the risk-oriented maintenance scheduling can be defined as 
stochastic, no-linear, with bounded constraints. 

The model inputs are a SCADA (Supervisory Control And Data Acquisition) and SAP (Systems, 
Applications & Products in Data Processing) systems. Once the inputs are in place, the optimization 
algorithm proposes maintenance scheduling scenarios to be evaluated in the model proposed by 
Szpytko and Salgado Duarte [17] (risk oriented) given the corresponding restrictions. The best 
solution is the scenario with lower risk, and at the same time, the final output of the model. 

From the database structure, the proposed optimization model takes the input variables and 
parameters. The model objective is to minimize the conditional expected value of the convolution 
function defined as E[R] (risk indicator Capacity Loss), between the overhead crane capacity 
distribution function of the steel plant affected for the maintenance scheduling defined as X and the 
necessary load capacity distribution function defined as Y (see reference Szpytko and Salgado Duarte 
[17], model description). 

In the model adopted, the time needed to obtain the optimal solution (maintenance scheduling) 
depends on the number of evaluations on the objective function (because a heuristic algorithm is used) 
and within each evaluation, on the number of simulations needed to achieve an accurate estimate of 
the conditional expected value of the convolution function (the variance of the expected value define 
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the accuracy of the estimation, and therefore the number of simulations needed to achieve a desired 
error). 

Saying that, Fig. 3 shows an architecture diagram of the model flow and the improvements layers 
proposed (methodological and technical) to improve the simulation time. 

The variance reduction technique layer impacts the computation of the conditional expected value 
by the Monte Carlo method given a proposed scenario of maintenance scheduling by the optimization 
algorithm. 

In the case of the parallel computing layer, each scenario proposed by the optimization algorithm is 
independent (each maintenance scheduling scenario), therefore, can be evaluated independently. 

Consequentially, the logic of the parallel computing improvement is to evaluate block-by-block 
scenarios depending on the available CPU in the computer. 

 
Fig. 3. Model flow with improvements 

  
  

4. RESULT AND DISCUSSION 
  

Given the starting point, the previous two cited references Szpytko and Salgado Duarte [16, 17] 
and a general overview description of the model, additional definitions are added in this section to 
complete how we improve the simulation times applying the layers proposed in practice. 

The parallel computing layer is mainly oriented to the implementation and has no direct implication 
for the model definition, but the variance reduction technique layer has an impact on the definition of 
the conditional expected value, which is why it is discussed in depth in this section. 

To estimate the conditional expected value of the risk function defined on Szpytko and Salgado 
Duarte [16], we must know the system distribution function. In this case the construction is possible 
by sampling random values from individual distribution functions (overhead crane individual 
distribution functions depend on the historical degradation data, fitting process, and the reliability 
block diagram system structure), and then following the definitions described on Szpytko and Salgado 
Duarte [16], the system distribution function can be computed by Monte Carlo method. 

As we declare before, the complexity and dimension of the system analyzed is large. Therefore, the 
simulation time is an issue. 

Equations 3, 3a and 3b state the criteria for robust expected value estimation (optimization target) 
and the clear dependency on number of simulations and the standard deviation of the conditional 
expected value: 

                                                    (3) [ ] [ ]Capacity Loss E R E Rb= ±
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                                          (3a) 

                                                   (3b) 

To compensate for an unnecessary increase in the number of simulations to achieve an accurate 
estimate (time-consuming), variance reduction techniques are a way to reduce the standard deviation 
by sampling strategically. 

Relevant for this investigation and easy to implement in the model proposed by Szpytko and 
Salgado Duarte [16] is stratified sampling, as we declare above. 

When stratified sampling are used, now adapting the definitions to the nomenclature of the model, 
the population mean (4) and variance (5) are given by equations 4 and 5: 

                                                            (4) 

                                                               (5) 

where E[R]k and V[R]k are given by the standard expected value and variance, respectively, for each k 
strata; K = number of strata (in our case, the number depends on the size of the generated sample); N = 
size of stratum k (estimated by experimental calculations). 

Consequently, from previous definition, the Capacity Loss indicator estimated by Monte Carlo 
simulation, and defined in Equation 3, when stratified sampling are used, is defined by equations 6, 6a 
and 6b: 

                                                     (6) 

                                      (6a) 

                                        (6b) 

Visible issues coming when this technique is used, the wk estimation, where wk = N/K is the 
population weight of stratum k. 

To estimate optimal weights, we use an experimental design and heuristic adjustments as a 
calibration (finding the optimal weights for the model) following some principles discussed on 
Mandies et al [9]. 

The experiment conducted is as follows: given a maintenance scheduling solution for the scenario, 
taken from Szpytko and Salgado Duarte [17], we compute by Monte Carlo method the conditional 
expected value (optimization target) and the error β continuously until we achieved the desired robust 
estimation without any stratification, pure Monte Carlo, saving in the end the string of random 
numbers needed, then with the same string of random number saved (for reproducibility reasons), by 
steps, we changed Nk (size of stratum k) and we recalculated the conditional expected value and the 
error β continuously every Nk simulations until we achieved the desired robust estimation. 

Table 1 summarizes the results of the experiment conducted. Table 1 shows the number of 
simulations needed to achieve the same error for each stratum tested. 

Based on Table 1 results and making a conservative decision in order to avoid singularities and be 
aware about the fact that we never know the sampled population size needed when the error β is fixed, 
we decided a size of stratum equal to 5, therefore, during the conditional expected value estimation of 
the following analysis, we grouped every 5 simulations and we estimated the mean, then we estimated 
the expected value (optimization target) and the error β continuously every group of 5 samples until 
we achieved the desired robust estimation. 
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Table 1 clearly shows the decreases in the number of simulations needed (from 1290 to 230 
simulations). 

     Table 1 
Calibration results 

 

Cases Expected 
Value Error Simulations 

Needed 
Without 1042.45 0.009995 1290 
Ni = 2 1046.51 0.009992 650 
Ni = 3 1048.38 0.009998 420 
Ni = 4 1058.69 0.009941 312 
Ni = 5 1059.10 0.009904 230 
Ni = 10 1059.98 0.009452 170 
Ni = 15 1080.42 0.008750 120 
Ni = 20 1080.42 0.009678 120 
Ni = 25 1069.98 0.008906 100 
Ni = 30 1133.33 0.001383 60 
Ni = 35 1087.93 0.009099 70 

  
All the estimations so far are performed with a personal computer i5 5250U 1.6 GHz CPU. The 

solution time of the optimization problem in this investigation depends on the number of samples (Ns) 
needed to ensure the error in each scenario simulated and the number of evaluations (E) in the 
objective function to reach the solution. 

According with results from Szpytko and Salgado Duarte [17], the average time of one Monte 
Carlo simulation is [(1.955813 ± 0.072131)·Ns·E] seconds. 

Visible so far how the number of simulations is reduced by variance reduction (see Table 1). On 
the other hands, in the case of the number of evaluations, when parallel computing is used, in our case, 
four scenarios are evaluated at the same time because the features of the i5 5250U 1.6 GHz CPU allow 
us to run four computations at the same time (see Fig. 3). 

Once the decision of the size of the strata has been made, we run the model by moving sensitive 
variables, in this case the efficiency indicator (see model description in reference Szpytko and Salgado 
Duarte [16]), evaluating the simulation time with and without applying the improvement layers. 

As we declare here, using parallel computing reduces by four the time needed to assess the 
scenario. Once both improvements are described, below we define the experiment to analyze the 
simulation times. The experiment consists of changing the efficiency indicator between 80% to 85% 
and assessing the simulation times needed with, and without variance reduction techniques 
implemented. In the case of parallel computing the combined impact is divided into all the cases 
performed by four (i5 5250U 1.6 GHz CPU, has four CPU). 

The experiment results shown in Table 2 and Table 3 corroborate the hypothesis of this research. 
Visible in Table 2 the reduction of the simulation times, only the variance reduction technique 
decreases the simulation time in almost five times less (depending on the scenario evaluated), and with 
the addition of the parallel computing, the reduction in time will happen to almost twenty times less. 

On the other hand, Table 3 shows for the same scenarios, the estimation of the risk indicator, 
indicating estimations within confidence intervals in all the cases (robust estimation assumed, ε = 
0.01). Of particular interest are the results in Table 2, because when the system is more reliable (loss 
capacity lower, see Table 3 also) the variance reduction technique is more pertinent, therefore the 
improvements behave well on a highly reliable system. 

Fig. 4 adds other results to confirm the reduction of the simulation times (visual impact). Given a 
maintenance scheduling scenario, we simulated by Monte Carlo the evaluation without and with 
stratification, estimating the expected value in both cases. 

In this experiment, the efficiency indicator is 75%. Fig. 4 shows the decreases in the simulations 
needed to achieve a robust estimation when the variance reduction techniques are used. 
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  Table 2 
Simulation time summary 

 
Scenario Time (seconds) 

Efficiency Without variance reduction With variance reduction 
80% 8609.88 1846.05 
81% 7289.31 1571.35 
82% 7977.12 2052.64 
83% 4767.47 896.93 
84% 3531.06 722.11 
85% 2129.12 696.81 

  
  Table 3 

Expected value estimation with and without variance reduction 
 

Scenario Loss capacity (tons) 

Efficiency Without variance reduction With variance reduction 
80% 111.91 111.47 
81% 152.70 151.42 
82% 212.68 214.56 
83% 307.54 313.85 
84% 472.55 477.45 
85% 782.20 788.51 

  

 
Fig. 4. Normalized risk value distribution with and without stratification 
 

On the contrary, the model analyzed is a highly reliable system as we stated above, so if we do not 
apply variance reduction techniques, the number of simulations increases exponentially when the 
system is more reliable. 

Simulation-based approaches are powerful for modelling stochastic processes with complex 
compound functions, but the time to simulate these processes can be a limitation with the current 
computing power. This paper evidence strategies to decrease the impact of the limitation and clearly 
improvements for Monte Carlo simulation approaches. 
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5. CONCLUSION 

  
The paper presents a combination of parallel computing and variance reduction techniques and 

shows how they can help to reduce the computer simulation time in a case study of practical 
importance, the decision-making and control processes of overhead cranes operating optimally under 
critical conditions. 

The paper describes two possible improvements to reduce the simulation times of the risk 
assessment approach, showing consistent results in all the scenarios. The above results confirm, in the 
presented scenarios, the time reductions of a simulation-based approach. The presented improvements 
open the way to keep using simulations approach but in a robust way. 

Through Cloud Computing (Parallel Computing), complex NP problems based on simulations that 
seek solutions in exhaustive and complex decision-making diagrams, designed by humans, Cyber-
Physical Systems can find fast and practical solutions, as the case presented in this paper, eliminating 
the time limitation in the search of solutions. 
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