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A Bayes algorithm for model compatibility and comparison
of ARMA(p,q) models
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ABSTRACT

The paper presents a Bayes analysis of an autoregressive-moving average model and its com-
ponents based on exact likelihood and weak priors for the parameters where the priors are
defined so that they incorporate stationarity and invertibility restrictions naturally. A Gibbs-
Metropolis hybrid scheme is used to draw posterior-based inferences for the models under
consideration. The compatibility of the models with the data is examined using the Ljung-
Box-Pierce chi-square-based statistic. The paper also compares different compatible models
through the posterior predictive loss criterion in order to recommend the most appropriate
one. For a numerical illustration of the above, data on the Indian gross domestic product
growth rate at constant prices are considered. Differencing the data once prior to conducting
the analysis ensured their stationarity. Retrospective short-term predictions of the data are
provided based on the final recommended model. The considered methodology is expected
to offer an easy and precise method for economic data analysis.

Key words: ARMA model, exact likelihood, Gibbs sampler, Metropolis algorithm, posterior
predictive loss, model compatibility, Ljung-Box-Pierce statistic, GDP growth rate.

1. Introduction

The general form of an autoregressive-moving average (ARMA) model, of order p and
q, is defined as

yt = θ0 +
p

∑
i=1

φiyt−i + εt +
q

∑
j=1

ψ jεt− j (1)

where yt ’s are the time series observations, θ0 is the intercept, φi’s and ψ j’s are auto-
regressive (AR) and moving average (MA) coefficients, respectively, and ε’s are the inde-
pendent and identically distributed (iid) components of the Gaussian white noise distributed
with mean zero and variance σ2. We shall denote the model (1) by ARMA(p,q). There
may be, of course, several choices of p and q but the large choices usually complicate the
models and often lead to intractable solutions. This paper, therefore, considers a few arbi-
trary choices of p and q such that p+ q ≤ 2 and then finally recommends a model that is
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most appropriate for our intended objective. It is to be noted that the choice of p+ q ≤ 2
simplifies the model considerably.

The literature is abundant with some significant references on classical analyses of
ARMA models and its variants. Box and Jenkins (1976) popularized the ARMA model
by simplifying the analysis in the classical framework, especially with reference to order
identification of the model via autocorrelation function (ACF) and partial autocorrelation
function (PACF). Later, Tsay and Tiao (1984, 1985) developed a unified approach for order
identification for both stationary and non-stationary ARMA models. They proposed some
consistent estimates of the auto-regressive parameters, which in turn were utilized to de-
fine an extended sample ACF for determination of the order of an AR model. The method
proposed was mostly appropriate for non-seasonal data. However, in the case of seasonal
data, a number of studies have used filtering approach. Reilly (1980) used an automatic
methodology, similar to that used by Box and Jenkins (1976), to model the macroeconomic
variables, like gross domestic product (GDP). A similar method was developed by Reynolds
et al. (1995), which is more automatic and well illustrated by utilizing the time-series data
for a single variable. Recently, Tripathi et al. (2018) have used Box-Jenkins methodology
on the Integrated form of ARMA model.

The Bayesian analysis of ARMA models has a vast literature and the references to
this context include Zellner (1971), Monahan (1983), Marriot and Smith (1992), Chib and
Greenberg (1994), Marriot et al. (1996), Kleinbergen and Hoek (2000), Fan and Yao (2008)
and Tripathi et al. (2017), etc. Among these, a sophisticated numerical integration technique
was used by Monahan (1983) and that was later extended by Marriot and Smith (1992).
Considered as a breakthrough in the analysis of ARMA models, the study done by Chib and
Greenberg (1994) was the first to use the Markov chain Monte Carlo (MCMC) technique. In
this paper, the authors relied on state space version of the model. Although based on more
realistic assumptions than those used in the preceding works, Chib and Greenberg (1994)
do have the disadvantage of carrying out the analysis on only a subset of the parameter set.
Marriot et al. (1996) is another significant reference where the authors developed sampling-
based approach for the estimation of parameters of ARMA model and its components. They
suggested sampling from the conditional densities of AR and MA coefficients subject to the
restriction of stationarity and invertibility. The present paper provides the full Bayesian
analysis of ARMA models with special focus on model compatibility and comparison. It
is based on a more logical and more computation friendly formulation of the ARMA like-
lihood in comparison with that of Tripathi et al. (2017). More elaborately speaking, the
previous work uses an approximate conditional likelihood. The present work brings an im-
provement in the analysis by considering the joint density of the previous observations in
addition to the conditional likelihood (as suggested by Box et al. (2004)). Thus, this is
a closer approximation to the exact likelihood, which is given by Newbold et al. (1974).
Naturally, the analysis proposed in the present paper appears to be more accurate.

To the best of our belief, none of the papers on ARMA models addresses the problems of
verifying model compatibility as well as model comparison using the tools of the Bayesian
paradigm. Since the idea of prediction is an integral part to any time series analysis, we use
this to verify the compatibility of the considered models. The basic idea is to judge whether
the predicted data are in compliance with the observed data. The discrepancy, if any, is
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quantified by the calculation of the Bayesian p-value, which essentially uses a discrepancy
measure, the Ljung-Box-Pierce statistic in our case. Realising the indispensability of the
idea of prediction, we have further used this notion in comparing the different ARMA sub-
models considered in the paper. It may be noted that the earlier papers mostly considered
the Box-Jenkins methodology to select the models (see, for example, Reilly (1980), Tsay
and Tiao (1984, 1985), Reynolds et al. (1995), Tripathi et al. (2018), etc.). This does not
appear logical in some sense and, in no way, complies with the Bayesian paradigm. On the
other hand, we have used the predictive loss criterion that successfully merges the ideas of
prediction and the loss incurred thereof, making it true to Bayesian sensibilities.

Recently, Tripathi et al. (2017) performed an approximate Bayes analysis of ARMA
model (1) and used the GDP growth rate data of India to illustrate their procedure. In this
paper, the authors resorted to using an approximate form of the likelihood by considering the
values of observations and the subsequent error terms, prior to the very first observation, say
y1, to be zero. Although the approximations were made keeping in mind the computational
ease, it does have a logical lacuna to some extent. If one considers time series processes
such as the GDP growth rate data, one must remember that the dataset considered is actually
a part of a large data series and, in reality, there are non-zero observations before y1. The
present treatment of the problem, therefore, adds a reasonable amount of soundness by
considering a more logical approximation of the likelihood function for the ARMA model
and its components, based on a line of suggestion by Box et al. (2004). As a further
extension of the work done by Tripathi et al. (2017), we used a Gibbs-Metropolis hybrid
scheme to perform the complete Bayesian analysis of ARMA models instead of pure Gibbs
sampler using adaptive-rejection sampling (see Tripathi et al. (2017)).

Undoubtedly, the ARMA model has the capability to model a variety of observations on
time series data probably because of its generality and flexibility. The present paper is no
more an exception and considers a time series data on GDP growth rate of India at constant
prices (considering base year to be 2004-05) collected over a period of 1951-52 to 2013-14
and uses the ARMA model to explain and analyze the data (see also Tripathi et al. (2017)).
The use of ARMA models to explain GDP growth rate data is quite prevalent in the literature
(see, for example, Morley et al. (2003) and Ludlow and Enders (2000)). We can motivate
the model based on two lines of thought. First, GDP growth in one quarter is obviously
affected by the same in other quarters. It is similar to the situation when the current value in
a time series can be considered to depend upon the lagged observations. Second, the GDP
observations at a particular point of time are not only affected by the random shocks at that
time, but also by the shocks (such as a natural disaster) that have taken place earlier. Hence,
an ARMA model that takes care of these two aspects of modelling is quite plausible. It may
be noted that this motivation is general and can be applied to other time series as well.

It is our understanding that the choice of a particular model cannot be completely pre-
specified by theoretical consideration alone, rather it should be selected from many com-
peting models using some model selection criteria. In most of the studies using the ARMA
model, the particular model is selected using the Box-Jenkins methodology, that is, with
the help of autocorrelation and partial autocorrelation functions (see, for example, Tsay and
Tiao (1984, 1985) and Pankratz (1983)). Forecasting or predicting is an indispensable ele-
ment of time series. Gelfand and Ghosh (1998) suggested a criterion based on minimization
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of posterior predictive loss (PPL) arising due to a model. Going by this criterion, models
are rewarded not only for their predictive capabilities, but also for their fidelity to the ob-
served data. Since in time series analysis prediction is the ultimate objective, the proposed
model selection criterion seems to be quite appealing while keeping in mind the criterion of
prediction. We finally look into retrospective prediction because of the general belief that a
model which predicts well retrospectively is expected to do well at least for the short term
prospective prediction (see, for example, Tripathi et al. (2017, 2018)) in majority of cases,
although not always.

The outline of the paper is as follows. The next section provides the stationarity and
invertibility conditions for the various components of the considered ARMA model. Section
3 provides the Bayesian formulation of the ARMA model for its possible posterior analysis.
The analysis is extended for AR and MA components as well, although the developments
are routine once the general formulation for the ARMA model is obtained. Vague priors
are used for the model parameters and posterior analysis is performed using Gibbs sampler
algorithm after imposing the necessary conditions for stationarity and invertibility. The
algorithm is actually a hybrid scheme with Metropolis algorithm within the Gibbs sampler
as some of the full conditionals are not available for routine sample generation. Finally, an
explanation is given for getting predictive samples once the posterior samples are obtained.
Section 4 discusses the model compatibility issues based on Ljung-Box-Pierce statistic. The
section also comments briefly on the PPL criterion of Gelfand and Ghosh (1998) as a tool for
comparison of the compatible models. Section 5 considers the Indian GDP growth rate data
and analyses the same using the formulation given in the previous sections. The analysis is
done for a number of combinations of p and q such that p+q≤ 2 and finally the entertained
models are compared using the PPL criterion. Some numeric evidences for the adequacy
of the models are given and, also, the short term retrospective prediction based on the final
selected model is considered. The last section is a brief conclusion that summarizes our
general findings. The paper also has an appendix with some supplementary developments
required for the completeness.

2. Stationarity and Invertibility conditions

In order that a time series model becomes reasonable, two vital conditions, namely
the stationarity and the invertibility, need to be verified. The stationarity and invertibility
conditions in the ARMA(p,q) (p+q≤ 2) model can be defined separately in terms of its AR
and MA components, respectively. The exact forms have been extensively worked out in
the literature (see, for example, Pankratz (1983) and Box et al. (2004)). Without going into
the various aspects of deriving these conditions, we can directly state them as follows. For
AR(1) or ARMA(1,0), the condition of stationarity is simply, |φ1| < 1 whereas for AR(2)
or ARMA(2,0), these conditions are

|φ2|< 1, (2)

φ1 +φ2 < 1, (3)
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and φ2−φ1 < 1. (4)

Similarly for MA(1) or ARMA(0,1), the condition of invertibility is simply |ψ1|< 1 whereas
for MA(2) or ARMA(0,2), these conditions are

|ψ2|< 1, (5)

−ψ1−ψ2 < 1, (6)

and ψ1−ψ2 < 1. (7)

Also, for the ARMA(1, 1) model the conditions of stationarity as well as invertibility are
applied simultaneously and these are simply,

|φ1|< 1 and |ψ1|< 1. (8)

We shall denote the stationarity and invertibility regions for AR(p) and MA(q) mod-
els by Cp and Cq, respectively. Non-stationarity in a time series can occur in several ways
and should be handled accordingly. Say, for instance, non-stationarity in the variance can
be checked by considering some appropriate transformations on the variates whereas non-
stationarity in the location can be checked by using differenced data instead (see, for exam-
ple, Shumway and Stoffer (2011)). It has been observed that the stationarity and invertibility
conditions are very complicated for higher order (p> 2 and q> 2) ARMA models (see Mar-
riot et al. (1996)) and this is perhaps the reason that higher order is often avoided in a true
sense. Exception includes Okereke et al. (2015), where the authors derived and illustrated
the consequences of the invertibility conditions on the parameters of MA process of order
three. We shall not go into the details of such situations although the interested readers may
refer to Fan and Yao (2008), Box et al. (2004), etc.

Several tests have been proposed to check the stationarity of a time series. Among
them, two are commonly used in the time series literature. These are augmented Dickey-
Fuller (ADF) test (see, for example, Dickey and Fuller (1979)) and Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) test (see, for example, Kwiatkowski et al. (1992)). ADF test is a unit
root test and it is based on t-test of the coefficients of a generalized AR process. KPSS test,
on the other hand, tests the stationarity of the process and assumes that the time series can
be represented as the sum of a deterministic trend, a random walk and a stationarity error.
The final conclusion in both the tests is normally drawn on the basis of p-values. For more
details on the two tests, one may refer to Dickey and Fuller (1979) and Kwiatkowski et al.
(1992).

3. Bayesian Model Formulation and Posterior Simulation

Let y : y1,y2, ...,yT be the time series observations from the assumed ARMA(p,q) model.
The exact likelihood function corresponding to ARMA(p,q) model is always difficult to
write since the observation at any stage depends on its p lagged observations and we may
not have lagged observations corresponding to the first p observed time series data sets.
Newbold (1974) gave the exact form of likelihood for the general ARMA(p,q) model that
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is certainly pragmatic but quite difficult at least computationally except in the case of very
small sample sizes. Tools such as those based on Monte Carlo or other sample-based
approaches also do not support much if employed directly on the likelihood suggested
by Newbold (1974). As an alternative, Marriot et al. (1996) suggested a computational
friendly form of the likelihood function for ARMA model by introducing the latent vari-
ables, y0 = (y0,y−1, ...,y1−p) and ε0 = (ε0,ε−1, ...,ε1−q) into the existing set of unknowns.
This form was certainly easy to implement but resulted in the increase of dimensionality of
(unknowns) parameter space.

Tripathi et al. (2017) recently used an approximate form of the likelihood function of
a general ARMA (p,q) model. This approximation, although easy to implement, has a
limitation in the sense that it assumes all the components of y0 and ε0 as zero, providing
no contribution of these components in the likelihood function. An alternative strategy was
suggested by Box et al. (2004) although the strategy provided an approximation to the exact
likelihood. Since the latent variables y0 and ε0 are unknowns, Box et al. (2004) suggested
to consider likelihood as the product of two terms where the first term is the joint density
of first p observations (y1,y2, ...,yp) and the second term may be considered as the product
of conditional density of remaining observations with each observation conditioned on its p
lagged observations. This approach is certainly an approximation but makes sense when T
is large but p is comparatively small. Moreover, the components of ε0 can be easily taken
to be zero. Obviously, the resulting likelihood function can be written as

L(y1,y2, ...,yT |θ0,Φ,Ψ)= f (y1,y2, ...,yp|θ0,Φ,Ψ)×
T

∏
t=p+1

f (yt |yt−1,yt−2, ...,yt−p;θ0,Φ,Ψ),

(9)

where Φ = (φ1, ...,φp) and Ψ = (ψ1, ...,ψq). The likelihood in (9) can be considered as
an extension of the likelihood proposed by Tripathi et al. (2017) and it can be obtained, up
to proportionality, as (see Appendix)

L(y1,y2, ...,yT |θ0,Φ,Ψ) ∝

(
1

σ2

)T/2

×|Vφ ,ψ |−1/2×

exp

(
− 1

2σ2 {(Yp−µp)
′Vφ ,ψ

−1(Yp−µp)+
T

∑
t=p+1

(yt −θ0−
p

∑
i=1

φiyt−i−
q

∑
j=1

ψ jεt− j)
2}

)
.

(10)

It may be noted that for Bayesian implementation, we do not require the exact likeli-
hood, but rather the likelihood defined up to proportionality is sufficient. Moreover, the
two-component AR(p) and MA(q) models can be obtained from the general ARMA(p,q)
model just by ignoring the MA and AR terms, respectively. The likelihood for AR(p) model
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can be obtained, up to proportionality, as

LAR(y1,y2, ...,yT |θ0,Φ) ∝

(
1

σ2

)T/2

×|Vφ |−1/2×

exp

(
− 1

2σ2 {(Yp−µp)
′Vφ
−1(Yp−µp)+

T

∑
t=p+1

(yt −θ0−
p

∑
i=1

φiyt−i)
2}

)
,

(11)

where Vφ denotes a p× p matrix involving the terms of φ ’s that may be determined by the
relationship Σp =σ2Vφ . Similarly, the likelihood function for MA(q) model can be obtained
as the joint distribution of the observations and it can be obtained, up to proportionality, as

LMA(y1,y2, ...,yT |θ0,Ψ)∝
(
σ

2)−T
2 ×|Vψ |−1/2×exp

(
− 1

2σ2 (YT −µT )
′Vψ
−1(YT −µT )

)
,

(12)

where Vψ is obtained from the relation ΣT = σ2Vψ (see also Appendix for other relevant
details).

3.1. Priors

Besides the likelihood function, another important component in any Bayesian analysis
is the specification of prior distribution. If one has enough a priori information, it is advis-
able to go with the informative prior. The prior distribution in that case will have a dominant
role in posterior-based inferences. If enough details on a priori evidence is not available to
go for informative prior, it is often suggested that one should instead use a vague prior or
a weakly informative prior. It is to be noted that a weakly informative prior can be very
well described by a proper prior density with large to very large scatteredness. Obviously, if
the considered prior is weak, the posterior will be completely dominated by the likelihood
function and the inferences can be said to depend exclusively on the data-based informa-
tion. Such a consideration will of course remove the possibility of any negative impact that
inappropriately chosen strong a priori belief could have had on the analysis. Keeping this
in mind, we have considered the following non-informative priors similar to those proposed
by Tripathi et al. (2017) and defined under stationarity and/or invertibility restrictions as
detailed in Section 2. The considered priors are

π1(σ
2) ∝

1
σ2 ; σ

2 ≥ 0, (13)

π2(θ0) ∝ U [−M,M]; M > 0, (14)
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π3(φi) ∝ U [−N1,N1]; N1 > 0, i = 1,2, ..., p, (15)

and

π4(ψ j) ∝ U [−N2,N2]; N2 > 0, j = 1,2, ...,q, (16)

where the constants M and Ni, i= 1,2, used in the priors are the hyperparameters and U [a,b]
is the uniform distribution over the interval [a,b]. The prior distribution (13) is obviously a
Jeffreys’ type of prior for the scale parameter and it has often been suggested in the literature
by a number of authors (see, for example, Marriot et al. (1996) and Kleinbergen and Hoek
(2000)). The ranges of uniform distributions can, in general, be recommended large enough
in order that the priors remain vague over the corresponding intervals. Moreover, since
stationarity and invertibility conditions are essential requirements, it is necessary that we
restrict our parameters φi and ψ j in (15) and (16) to lie in the regions of stationarity and
invertibility, that is, Cp and Cq, respectively, as defined in Section 2. We thus consider
the priors for φi and ψ j to be uniform distributions defined over the regions Cp and Cq.
That is the value of the hyperparameters N1 and N2 are so chosen that the stationarity and
invertibility conditions are satisfied. We must also keep in mind that the restrictions were
calculated only for models satisfying the condition p+q≤ 2.

3.2. Posterior Distributions

Updating the prior distributions (13) to (16) with the likelihood (10) via Bayes theorem
yields the joint posterior distribution for the parameters of an ARMA(p,q) model which, up
to proportionality, can be written as

p(θ0,Φ,Ψ,σ2|y) ∝

(
1

σ2

) T
2 +1

×|Vφ ,ψ |−1/2×

exp

(
− 1

2σ2 {(Yp−µp)
′Vφ ,ψ

−1(Yp−µp)+
T

∑
t=p+1

(yt −θ0−
p

∑
i=1

φiyt−i−
q

∑
j=1

ψ jεt− j)
2}

)

× I[−M,M](θ0)×
p

∏
i=1

I[−N1,N1](φi)×
q

∏
j=1

I[−N2,N2](ψ j),

(17)

where I[ν1,ν2](.) is the indicator function that takes value unity if (.) belongs to [ν1,ν2] and
zero otherwise.

Next, combining the prior distributions (13) to (15) with the likelihood (11) via Bayes
theorem yields the joint posterior distribution for the parameters of an AR(p) model, which
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can be written, up to proportionality, as

pAR(θ0,Φ,σ2|y) ∝

(
1

σ2

) T
2 +1

×|Vφ |−1/2×

exp

(
− 1

2σ2 {(Yp−µp)
′Vφ
−1(Yp−µp)+

T

∑
t=p+1

(yt −θ0−
p

∑
i=1

φiyt−i)
2}

)

× I[−M,M](θ0)×
p

∏
i=1

I[−N1,N1](φi).

(18)

Similarly, the posterior distribution for the parameters of a MA(q) model can be obtained
up to proportionality as

pMA(θ0,Ψ,σ2|y) ∝

(
1

σ2

) T
2 +1

×|Vψ |−1/2× exp
(
− 1

2σ2 {(YT −µT )
′Vψ
−1(YT −µT )}

)
× I[−M,M](θ0)×

q

∏
i=1

I[−N2,N2](ψi).

(19)

Obviously, this posterior is the result of updating of prior distributions (13), (14) and (16)
through the likelihood (12) via the Bayes theorem.

The posteriors (17), (18) and (19) are analytically intractable and cannot be obtained in
nice closed forms. We, therefore, do not have many options except going for sample-based
approaches and then drawing the corresponding inferences based on the simulated samples
from the corresponding posteriors. In the next subsection, we shall discuss briefly the im-
plementation of our proposed MCMC scheme and model estimation.

3.3. MCMC Implementation and Model Estimation

Markov chain Monte Carlo procedures basically construct a Markov chain such that sim-
ulating from its stationary distribution renders samples from the target posterior. The Gibbs
sampler requires that the target posterior may be reduced into full conditionals correspond-
ing to every variate. The algorithm progresses by simulating from, often unidimensional,
full conditionals in a cyclic fashion. Since the implementation of Gibbs sampler requires
simulation from various full conditionals, it is indispensable that all the full conditionals are
routinely available for sample generation. We may check that this latter requirement may
not be easily ensured for all the full conditionals through any standard sample generating
schemes. We, therefore, make use of the Metropolis algorithm for such full condition-
als although procedures are there where indirect strategies can be always developed. The
Metropolis algorithm implemented separately on some of the full conditionals works by
generating a probable variate value from a proposal density. The resulting variate value is
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accepted if it has the large posterior probability. This is decided with the help of an accep-
tance probability. Choosing the mean and variance of the proposal density is a vital decision.
The mean of the proposal is usually taken as the maximum likelihood (ML) estimate and its
variance can be taken as the inverse of observed Fisher‘s information. Moreover, as far as
the variance is concerned, it must be noted that if the variance is too large, some of the gen-
erated variate values will be quite far away from the current value leading to rejection. On
the other hand, if the variance is too small, the chain will take more time to cover the entire
support of the density with slightly low probability regions being under-sampled. Hence,
a properly centered and dispersed kernel is highly essential. We often use a tuning con-
stant ’c’ to make this adjustment. We skip further discussions on the Gibbs sampler and the
Metropolis algorithms for want of space and refer Gelfand and Smith (1991) and Upadhyay
and Smith (1994) for details.

For the posterior corresponding to the ARMA(p,q) model given in (17), the full condi-
tionals up to proportionality for different parameters can be written as

p1(θ0|σ2,Φ,Ψ,y) ∝

exp

(
− 1

2σ2 {(Yp−µp)
′Vφ ,ψ

−1(Yp−µp)+
T

∑
t=p+1

(yt −θ0−
p

∑
i=1

φiyt−i−
q

∑
j=1

ψ jεt− j)
2}

)
,

(20)

p2(φi|σ2,θ0,Ψ,y) ∝ |Vφ ,ψ |−1/2×

exp

(
− 1

2σ2 {(Yp−µp)
′Vφ ,ψ

−1(Yp−µp)+
T

∑
t=p+1

(yt −θ0−
p

∑
i=1

φiyt−i−
q

∑
j=1

ψ jεt− j)
2}

)
;

i = 1,2, ..., p, (21)

p3(ψ j|σ2,θ0,Φ,y) ∝ |Vφ ,ψ |−1/2×

exp

(
− 1

2σ2 {(Yp−µp)
′Vφ ,ψ

−1(Yp−µp)+
T

∑
t=p+1

(yt −θ0−
p

∑
i=1

φiyt−i−
q

∑
j=1

ψ jεt− j)
2}

)
;

j = 1,2, ...,q, (22)

and

p4(σ
2|θ0,Φ,Ψ,y) ∝

(
1

σ2

) T
2 +1

×

exp

(
− 1

2σ2 {(Yp−µp)
′Vφ ,ψ

−1(Yp−µp)+
T

∑
t=p+1

(yt −θ0−
p

∑
i=1

φiyt−i−
q

∑
j=1

ψ jεt− j)
2}

)
.

(23)
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On the other hand, if we consider the posterior (18) corresponding to a particular case of
AR(p) model, the corresponding full conditionals are

p5(θ0|σ2,Φ,y) ∝

exp

(
− 1

2σ2 {(Yp−µp)
′Vφ
−1(Yp−µp)+

T

∑
t=p+1

(yt −θ0−
p

∑
i=1

φiyt−i)
2}

)
, (24)

p6(φi|σ2,θ0,y) ∝ |Vφ |−1/2×

exp

(
− 1

2σ2 {(Yp−µp)
′Vφ
−1(Yp−µp)+

T

∑
t=p+1

(yt −θ0−
p

∑
i=1

φiyt−i)
2}

)
;

i = 1,2, ..., p (25)

and

p7(σ
2|θ0,Φ,y) ∝

(
1

σ2

) T
2 +1

×

exp

(
− 1

2σ2 {(Yp−µp)
′Vφ
−1(Yp−µp)+

T

∑
t=p+1

(yt −θ0−
p

∑
i=1

φiyt−i)
2}

)
. (26)

Similarly, MA(q) model results in the full conditionals up to proportionality obtained from
the posterior (19) as

p8
(
θ0|σ2,Ψ,y

)
∝ exp

(
− 1

2σ2 {(YT −µT )
′Vψ
−1(YT −µT )}

)
, (27)

p9(ψ j|σ2,θ0,y) ∝ |Vψ |−1/2× exp
(
− 1

2σ2 {(YT −µT )
′Vψ
−1(YT −µT )}

)
;

j = 1,2, ...,q (28)

and

p10(σ
2|θ0,Ψ,y) ∝

(
1

σ2

) T
2 +1

× exp
(
− 1

2σ2 {(YT −µT )
′Vψ
−1(YT −µT )}

)
. (29)

Obviously, we have a total of (p+ q+ 2) full conditionals corresponding to a general
ARMA(p,q) model given by (1). Similarly, a total of (p+2) full conditionals corresponding
to a general AR(p) model and a total of (q+2) full conditionals corresponding to a general
MA(q) model are obtained. Among the various full conditionals, samples from (23), (26)
and (29) corresponding to the posterior distributions of σ2 can be obtained using a gamma
generating routine after making the transformation τ = 1/σ2. It can be noted that the gamma
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distribution, with shape and scale parameters α > 0 and β > 0, respectively, for a random
variable X is defined as;

g(x) =
β α

Γα
xα−1e−βx; 0 < x < ∞, (30)

where
Γα =

∫
∞

0
e−xxα−1dx.

Thus, it can be seen that the transformed variate τ follows a gamma density with shape

parameter α = T
2 and scale parameter β = 1

2{(Yp−µp)
′Vφ ,ψ

−1(Yp−µp)+
T
∑

t=p+1
(yt −θ0−

p
∑

i=1
φiyt−i−

q
∑
j=1

ψ jεt− j)
2} in the case of ARMA(p,q) model. In the case of AR(p) model,

τ follows a gamma density with shape parameter α = T
2 and scale parameter β = 1

2{(Yp−

µp)
′Vφ
−1(Yp−µp)+

T
∑

t=p+1
(yt−θ0−

p
∑

i=1
φiyt−i)

2}. Similarly, in the case of MA(q) model, τ

follows a gamma density with shape parameter α = T
2 and the scale parameter β = 1

2{(YT −
µT )

′Vψ
−1(YT −µT )}.

The full conditionals (20) to (22), for each i and j, are not available from the point of
view of sample generation although they may be managed easily by using the Metropolis
algorithm. Our final scheme can, therefore, be a kind of hybrid (Metropolis within Gibbs)
because of these full conditionals and the same can be referred to as the Gibbs-Metropolis
hybrid sampler. Similar hybrid schemes can be thought of for generating samples from (24)
to (25), for each i, corresponding to AR(p) model and from (27) to (28), for each j, cor-
responding to MA(q) model. For Metropolis implementation separately on each of these
full conditionals, one can use univariate normal candidate generating density with mean
taken as the current realization and standard deviation to be approximated on the basis of
the particular element of the Hessian matrix obtained at ML estimates. It is important to
mention that although the candidate generating density is univariate and the corresponding
full conditionals are each univariate, the ML estimates and the corresponding Hessian-based
approximations are obtained for a multi-parameter likelihood function. Moreover, as men-
tioned earlier, the value of the standard deviation so obtained is adjusted by multiplying with
a scaling constant c, taken in the range 0.5 and 1.0 (see, for example, Upadhyay and Smith
(1994)) for reducing the number of rejections in the Metropolis step. The other important
thing in the implementation of the Metropolis algorithm is the choice of initial values for
running the chain. One can, of course, use any standard classical estimates to begin run-
ning the chain. We have used the ML estimates in particular. For relevant details on the
Metropolis algorithm and issues on its convergence diagnostics, one can refer to Smith and
Roberts (1993) and Upadhyay et al. (2001), among others.

Thus, the Gibbs-Metropolis hybrid sampler strategy can be easily implemented on the
posteriors given in (17), (18) and (19) corresponding to ARMA, AR and MA models, re-
spectively. The Gibbs-Metropolis hybrid strategy is being referred to simply because some
of the full conditionals do not ascribe to any standard form of distributions and, as such,
the generations are difficult. We, therefore, implement intermediate Metropolis steps for
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generating variate values from the same and base our decision on a single long run of the
chain. Obviously, the implementation of the algorithm results in a long sequence of iterating
chains. After sufficiently large number of iterations, the generating sequence converges in
distribution to random samples from the target joint posterior and the generated components
to the corresponding marginal posteriors (see, for example, Smith and Roberts (1993)). In
order to get the final samples, one has to discard the initial burn-in samples and then pick
up the variate values at equidistant intervals to minimize serial correlation among the gen-
erating variates (see, for example, Upadhyay et al. (2012)). These final samples can be used
in a variety of ways to draw the desired posterior-based inferences. Say, for instance, one
can use sample-based posterior estimates for the model parameters or one can estimate the
entire posterior densities by means of some nonparametric density estimates. Other desired
features of the posteriors can also be likewise obtained once the posterior samples are made
available (see also Upadhyay et al. (2012)).

3.4. Prediction

As mentioned, an important part of our analysis includes predicting the unobserved
future data yT+1 given the informative data y = y1,y2, ...,yT . Now, one can easily confirm
from (1) that for the given set of observations y, the future observation yT+1 follows normal
distribution with mean

µT+1 = θ0 +
p

∑
i=1

φiyt+1−i +
q

∑
j=1

ψ jεt+1− j (31)

and variance σ2. Thus, the future observation yT+1 can be easily simulated from this nor-
mal distribution after replacing the corresponding parameters by their appropriately chosen
posterior estimates (say, for example, estimated posterior modes) obtained on the basis of
final posterior simulated samples. The εt ’s in (1) can be simulated from the normal den-
sity with mean zero and variance equal to the corresponding posterior estimate of σ2. This
strategy can be easily applied to get the predictive samples of yT+1 from which any de-
sired sample-based predictive characteristic can be assessed. It is essential to mention here
that the posterior mode is the highest probable value and, therefore, it makes sense if the
resulting posterior distribution is non-symmetric. On the other hand, if the resulting poste-
rior distribution is symmetric, it is immaterial whether one uses mean or median or mode.
Moreover, in the case of AR and MA models, one can simply ignore the MA and AR com-
ponents, respectively, in the general form of the ARMA model (1) and proceed to obtain the
corresponding predictive samples. It may, however, be noted that one requires the posterior
samples corresponding to AR and MA models.

4. Model Compatibility

A model compatibility study can be performed using a variety of tools. An important
one among these may utilize the idea of predictive simulation where the predictive observa-
tions are obtained from the model under consideration and then compared with the observed
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data y. Obviously, a model may be considered compatible with the observed data if its pre-
dictive output compliances with the former. In the case of no or poor resemblance of the
two data sets, the considered model creates a suspicion and cannot be recommended for
the data in hand. Among other things, this resemblance can often be measured by means
of a quantitative summary in the form of p-value that can be obtained using an appropriate
model discriminating statistic. Informally, graphical tools are also suggested in the literature
where some characteristics based on the two data sets may be shown on the same graphical
scale (see, for example, Gelman et al. (1996), Bayarri and Berger (1998), Upadhyay and
Peshwani (2003), etc.).

The present study, however, begins with an informal approach where simple time series
plots for the observed and the predicted data from the model(s) are shown graphically in
a way that the plots corresponding to the latter are superimposed over that corresponding
to the former. For p-value based study of model compatibility, we advocate for a Bayesian
version of the same based on an appropriately chosen statistic. Obviously, if the calculated
p-value happens to be large, the considered model may be regarded compatible with the
data.

The Ljung-Box-Pierce statistic that follows a chi-square distribution if the null hypoth-
esis is true, is commonly used in autoregressive integrated moving average (ARIMA) mod-
elling to test the overall randomness behaviour based on a number of lags. It may be noted
that the test is applied on the residuals of a fitted ARIMA model and not on the original
series. Thus, the hypothesis actually being tested in this case is that the residuals from the
ARIMA model have no autocorrelation and that the model is adequate. When testing the
residuals of an estimated ARIMA model, the degrees of freedom need to be adjusted to re-
flect the parameter estimation. For example, for an ARIMA(p,0,q) or ARMA(p,q) model,
the degrees of freedom should be set to (l− p−q), where l is the number of lags, that is, the
order of autocorrelation being tested and the correction due to p and q is because of the fact
that the degrees of freedom must account for the estimated model parameters. The statistic,
used to test for uncorrelated residuals, is then calculated by

Q(l) = T (T +2)
l

∑
j=1

r2
j (ε̂t)

T − j
, (32)

where

r2
j (ε̂t) =

T− j
∑

t=1
ε̂t ε̂t+ j

T
∑

t=1
ε̂2

t

, (33)

ε̂t = yt − ŷt and the statistic Q(l) follows chi-square distribution with (l− p−q) degrees of
freedom. Here ŷt is the predicted value of yt that can be obtained from (1) in a way described
in subsection 3.4, T is the number of residuals computed for the model and ε̂t is the residual
at time t. This statistic was advocated by Ljung and Box (1978) and is often referred to as
the Ljung-Box statistic or the Ljung-Box-Pierce statistic. The Bayesian p-value can then
be calculated by the probability Ppost (based on the posterior samples) of acceptance of the
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null hypothesis and it is given by

pval = Ppost [Q(l)< χ
2
(l−p−q),(1−α)], (34)

where χ2
(l−p−q),(1−α) is the tabulated value of chi-square at (l− p− q) degrees of freedom

and the level of significance α . The model is adequate if this probability is large, that is, at
least larger than the assumed significance level (usually 0.05). There is, however, very little
practical advice on how to choose the number of lags for the test. A recommendation based
on power considerations is to consider l = 10 for non-seasonal data and l = 2k for seasonal
data where k is the period of seasonality (see, for example, Hyndman and Athanasopoulos
(2018)). Needless to mention that we want to ensure that l is large enough to capture any
meaningful and troublesome correlations. So for our data set, we prefer to choose l = 10 to
increase the power of the test.

4.1. Model Comparison: A PPL Approach

After the compatibility of a model is ascertained, we go for its comparison with other
compatible models. Model comparison is intuitively based on two major criteria - its fitting
to the observed data and its inherent complexity. Most of the model comparison tools,
Bayesian or otherwise, are based on a weighted trade-off between the two criteria, the
weights being decided according to some specific needs. One such criterion, known as
PPL criterion, was initially given by Gelfand and Ghosh (1998). Based on predictive sim-
ulation, this criterion parallels to standard utility ideas and partitions the total loss into loss
due to fit and loss due to complexity (see also Upadhyay and Mukherjee (2008)). A sim-
plified version of this criterion was given by Sahu and Dey (2000) (see also Upadhyay et
al. (2012)). This criterion recommends a model m that minimizes the joint effect of two
measures, namely, the closeness of observed and predictive data sets and variability of the
prediction. The criterion can be defined as

D(m) = G(m)+P(m) (35)

where G(m) =
T
∑

t=1
(µ

(m)
t − yt)

2, P(m) =
T
∑

t=1
σ

2(m)
t , µ

(m)
t = E(zt |yt ,m), σ

2(m)
t = Var(zt |yt ,m)

and zt denotes the tth component of predictive data, t = 1,2,3, ...,T . Obviously, the term
µ
(m)
t represents the predictive mean and the term σ

2(m)
t represents the predictive variance of

tth component under the model m.

In (35), G(m) represents the goodness of fit term and it increases when the entertained
model provides poor fitting at the observed data points. Similarly, the second term P(m)

represents the penalty term and it increases with the increasing complexity in the model. A
model m that provides least value of D(m) when compared with all other models, is finally
recommended. We are not going into details of its formulation rather refer to Sahu and Dey
(2000) (see also Upadhyay et al. (2012) and Tripathi et al. (2017)).
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5. Real Data Illustration

For numerical illustration, we consider a real data set on GDP growth rate of India at
constant prices. The data set given in Table 5 (see Appendix) is collected over a period of
sixty three years, 1951-52 to 2013-14, and is taken from the publication of Central Statistical
Organization (CSO) (2014) (see http://planningcommission.nic.in/data/
datatable/0814/comp_databook.pdf). This data set has been used by a number
of authors, a recent reference being Tripathi et al. (2017).
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Figure 1: Time series plot showing the GDP growth rate of India (straight line shows the
mean level).

Before we begin the intended numerical illustration with GDP growth rate data, let us
draw the simple time series plot corresponding to the given GDP observations to see if there
is stationarity behaviour in the series. The corresponding time series plot is shown in Figure
1. It can be seen that the series exhibits non-stationarity behaviour indicated by its growth
(see Figure 1) and, therefore, it is essential to perform an appropriate transformation (see
also Clement (2014)) on the data to remove its non-stationarity behaviour. To resolve this
issue, we took first difference of the data and the corresponding time series plot for the
transformed data, as shown in Figure 2. Obviously, the figure shows stationarity behaviour.
Some outliers at intermediate stages can also be seen, which cause some abrupt hikes in
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the first half of the series. Since the study of outliers is beyond the scope of our work, we
continue our study up to this level of stationarity only. We further strengthen our claim
using some numerical evidences. We assess stationarity of data (or its absence) using the
ADF and KPSS tests, first on non-differenced data and then on differenced data. The two
tests for stationarity are found to be significant at 5% level and, therefore, provide enough
evidence against stationarity of actual data. The p-value in the ADF test is found to be 0.1
and that in the KPSS test is 0.02, which evidently refuse the presence of stationarity in the
data. Moreover, after differencing the data, the p-values are found to be 0.01 for the ADF
test and 0.1 for the KPSS test, which now ensure the stationarity in the data. Hence, this
transformed data can be used for the final analysis.
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Figure 2: Time series plot corresponding to the first difference of GDP growth rate data
(straight line shows the mean level).

Our analysis of ARMA(p,q) was restricted to p+ q ≤ 2 and, therefore, we considered
five different ARMA modelling combinations by taking (p,q) as (0, 1), (0, 2), (1, 0), (1,
1) and (2, 0), respectively. These restrictions on the values of p and q were imposed for
the ease of performing the analysis and also for the ease of implementation of invertibility
conditions as mentioned in Section 2. It is to be noted that for higher values of p and q, as
mentioned in Section 2, the invertibility conditions are not available in analytically closed
forms and the situation might be difficult to ensure these numerically too.
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To perform the complete posterior analysis, we first obtained the ML estimates of the
corresponding parameters of the considered models by maximizing the log likelihood func-
tion in each case. These ML estimates were utilized as the initial values for the necessary
MCMC implementation. The complete posterior analysis was done for each considered
model as discussed in Section 3. In order to nullify the prior effect and hence to draw ex-
clusively data dependent inferences, the values of prior hyperparameters M and Ni, i = 1,2,
were chosen to be 100 in each case. The priors for AR and/or MA coefficients were chosen
under the restrictions of stationarity and invertibility as discussed in Section 2 and subsec-
tion 3.1.

Under the prior assumptions as mentioned above, we analyzed the posteriors (17), (18)
and (19) using the Gibbs-Metropolis hybrid scheme as discussed in subsection 3.3. It is im-
portant to mention that for the full conditional distributions corresponding to the intercept,
the AR coefficients and/or the MA coefficients, the corresponding generating algorithm was
Metropolis with properly centred and dispersed normal kernel as the proposal density. The
mean value of the kernel was approximated by the ML estimate of the corresponding pa-
rameter (see Table 1). As far as the standard deviation is concerned, the exact value was
difficult to obtain either analytically or numerically. We, therefore, considered its numerical
approximation by evaluating the second derivative numerically at the corresponding ML
estimate. The need for some adjustments occurred probably because of the approximations
that we considered. This adjustment was carried out with the help of a scaling constant,
c = 0.6, that provided a good acceptance probability in each case.

To get the posterior sample by implementing the Gibbs-Metropolis hybrid sampler, we
considered a single long run of the chain. After an initial transient behaviour, convergence
of the chain, based on ergodic averages, was observed at about 40K iterations. This cannot
be considered as a deterrent issue considering the development in high speed computing
that took approximately 3.1423 minutes in 40K iterations. Thus, it can be said that the
algorithm works reasonably well. After successfully monitoring the convergence, we picked
up equally spaced generated values to form the samples from the corresponding posteriors
(see also Upadhyay et al. (2001)). These gaps were taken to be 20 to make the serial
correlation negligibly small.

Some of the important estimated posterior characteristics based on the posterior samples
of size 1K from each model are shown in Table 1. These estimates are shown in the form
of estimated posterior means, medians, modes and 0.95 highest posterior density (HPD)
intervals (HPD interval with coverage probability 0.95). Besides, we have also shown the
ML estimates of different parameters for each of the considered models, which were ac-
tually obtained for defining the initial values for running the proposed Gibbs-Metropolis
hybrid algorithm but can also be used for the purpose of comparison with the corresponding
Bayes estimates. It can be seen that the ML estimates are, in general, close enough to the
corresponding Bayes estimates, a conclusion that is expected for the considered modelling
combination. From the posterior estimates shown in Table 1, one can draw several con-
clusions, the one among these may be to get an overall idea of various estimated posterior
densities. It can be seen that the estimated marginal posterior of σ2 reveals slight positive
skewness. The corresponding estimates for other parameters, however, exhibit almost sym-
metrical behaviour for their posterior densities except for the parameter θ0 for the first two
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models, which reveal negatively skewed posterior densities. It may also be noted that the
degree of skewness, in general, is less for ARMA(0,1) model as compared to all other mod-
els. As a final remark, it can be said that these estimates are obtained under the restrictions
of stationarity and invertibility and, as mentioned earlier, the results are reasonable from that
point of view as well. One can also see the significance of preceding observations in our
reported results. It can be seen that the estimates of φ ’s and ψ’s are, in general, appreciably
larger than the corresponding estimated values for the intercepts. This of course advocates
the usability of the considered model in some sense. Moreover, the estimates of σ2’s also
convey an important message that increasing complexity in the model, in general, decreases
the variability inherent in the model.

Table 1. Posterior summaries for different variates of considered ARMA models based on
first difference data

Model Parameter ML Estimates Posterior Means Posterior Medians Posterior Modes 0.95 HPD Interval
ARMA(1,0) θ0 0.054 0.039 0.057 0.099 -0.829 1.084

φ1 -0.558 -0.557 -0.555 -0.550 -0.770 -0.346
σ2 13.079 14.076 13.777 13.667 9.297 19.491

ARMA(2,0) θ0 0.065 0.039 0.059 0.124 -0.701 0.924
φ1 -0.808 -0.791 -0.796 -0.794 -0.981 -0.603
φ2 -0.435 -0.421 -0.424 -0.444 -0.654 -0.218
σ2 10.501 11.374 11.005 10.563 7.178 15.689

ARMA(0,1) θ0 0.071 0.064 0.067 0.068 -0.043 0.201
ψ1 -0.900 -0.884 -0.896 -0.913 -0.998 -0.744
σ2 8.015 9.197 9.023 8.779 6.011 12.838

ARMA(0,2) θ0 0.073 0.053 0.059 0.065 -0.093 0.228
ψ1 -1.230 -0.903 -0.925 -0.969 -0.999 -0.743
ψ2 0.230 0.074 0.072 0.066 -0.106 0.250
σ2 7.595 9.482 9.253 8.745 6.051 13.175

ARMA(1,1) θ0 0.072 0.083 0.086 0.087 -0.044 0.183
φ1 -0.195 -0.226 -0.228 -0.251 -0.476 0.019
ψ1 -0.990 -0.901 -0.916 -0.970 -0.999 -0.738
σ2 7.665 8.738 8.533 8.068 5.876 12.291

We next consider the issue of examining compatibility of the assumed models for the
given time series data. Since the stationarity behaviour is established on the basis of first
difference data, we shall consider the same set of observations for examining compatibility.
Our study is based on some graphical as well as quantitative summaries. Graphically, we
have studied it by plotting the time series of observed first difference data along with the
corresponding predictive differenced data. For this purpose, 10 predictive samples were
generated from each of the considered models using the final posterior samples of size 10
generated using the Gibbs-Metropolis hybrid sampler algorithm (see subsection 3.3). Thus,
each posterior sample resulted in one predictive sample of size equal to that of the observed
data. We next considered obtaining the first difference from each of the predictive samples.
Now, the differenced form of 10 predictive samples are plotted along with the corresponding
observed (differenced) data in the form of time series. One such plot corresponding to
ARMA(0,1) model is shown in Figure 3, where the bold line corresponds to first difference
of observed time series data. The time series plots corresponding to the first differenced
predictive samples are shown by means of dotted lines. It can be seen that the predictive
sample plots and the observed data plot exhibit more or less similar overlapping behaviour
and, therefore, the ARMA(0,1) model can be considered compatible for the observed first
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differenced data. We had a similar message from the plots corresponding to all other models
although the plots are not shown due to space restriction. Thus, all the models can be
regarded compatible with the observed time series data.
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Figure 3: Time series plots for the first difference of observed and predictive data sets from
ARMA(0, 1) model (the bold line corresponds to observed data).

For the study of model compatibility based on quantitative evidence, we considered eval-
uating the Bayesian p-value based on Ljung-Box-Pierce chi-square statistic (see Section 4).
It is to be noted that the values of residuals can be obtained once the predictive observations
corresponding to each of the original observations are made available. To clarify the compu-
tational stages, we first simulated 1K posterior samples as discussed in Section 3.3 and then
obtained 1K predictive samples, each predictive sample of size equal to that of the observed
time series data. Based on these simulated samples, we can have 1K samples of residuals
where each sample of residuals is of size equal to that of the observed data. Finally, each set
of residuals is used to get the predicted value of Q(l) by substituting the values of residuals
in (32). Hence, we calculate a total of 1K values of Q(l). These values can then be used to
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obtain the estimated p-values (see (34)) by counting the number of values of Q(l) which are
less than the tabulated value of χ2

(l−p−q),(1−α) and calculating the corresponding fraction.
The p-values have been calculated for the considered ARMA models and are presented in
Table 2.

Table 2. p-values for the considered ARMA models

Model pval
ARMA(1,0) 0.758
ARMA(2,0) 0.723
ARMA(0,1) 0.739
ARMA(0,2) 0.743
ARMA(1,1) 0.716

Obviously, the values are large enough to support the adequacy of the models. Thus,
our model compatibility study conveys that each of the considered models may be a good
candidate to describe the data in hand. One can, of course, use parsimony principle and
recommend a model that happens to be the simplest among these but we shall compare
these models using the PPL criterion described in subsection 4.1 before recommending a
model.

The values of P(m), G(m) and hence D(m) for all the considered models are given
in Table 3. These values are based on 1K posterior and correspondingly 1K predictive
samples from each of the considered models. It can be seen that the value of D(m) is
least for ARMA(0,1) model mainly because it has the smallest value of loss due to com-
plexity although it provides poor fitting when compared with ARMA(1,0), ARMA(2,0),
ARMA(0,2) and ARMA(1,1) models (see Table 3). Thus, our final recommended model is
ARMA(0,1), a model that has no autoregressive component.

Table 3. Results based on PPL criterion for the considered ARMA models
Model P(m) G(m) D(m)

ARMA(1,0) 1345.309 1206.245 2551.554
ARMA(2,0) 1280.723 1168.402 2449.125
ARMA(0,1) 1022.513 1194.609 2217.123
ARMA(0,2) 1045.388 1182.324 2227.711
ARMA(1,1) 1188.329 1185.996 2374.325

Before we end the section, let us consider the problem of predicting the future observa-
tions based on the finally selected ARMA(0,1) model. We, however, confine ourselves to
short term retrospective prediction so that the scope of predicting the GDP values through
the considered model can be verified based on the comparison of predicted values with the
observed data points. To proceed with the task of retrospective prediction, let us consider
the first 55 observations as the informative data out of a total of 63 entertained observations
(see Table 5) and obtain the predictive estimates for the next 56th observation. We may then
include this predicted observation in the informative data and proceed with 56 informative
observations to develop the prediction for 57th observation. The process may be continued
until all the 63 observations are predicted.
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To explain the implementation, let us consider the informative data size as r. Thus, we
begin with the complete posterior analysis based on these r observations before going for
the actual prediction. The details of running the hybrid strategy on the posterior correspond-
ing to ARMA(0,1) model and hence obtaining the posterior and corresponding predictive
samples are provided in subsections 3.3 and 3.4. The results are shown in terms of point pre-
diction as well as the corresponding predictive interval in Table 4. These results are based
on a posterior sample of size 1K and corresponding predictive observation for the next un-
observed future data ((r+ 1)th) obtained for each value of the simulated posterior sample.
The predictive estimates are then given as the corresponding predictive modes based on
such 1K predictive samples. Similarly, the predictive intervals correspond to highest pre-
dictive density intervals each with coverage probability 0.95 obtained on the basis of such
1K predictive samples.

Table 4. The retrospective predictions of GDP growth rate data for the period 2006-07 to
2013-14

Year yt True value Predictive point estimate 0.95 predictive interval
2006-07 y56 9.57 10.694 1.133 17.665
2007-08 y57 9.32 9.844 0.967 16.924
2008-09 y58 6.72 9.051 1.105 17.099
2009-10 y59 8.59 8.915 1.427 17.770
2010-11 y60 8.91 8.092 0.551 16.684
2011-12 y61 6.69 9.194 1.015 16.721
2012-13 y62 4.47 10.358 0.993 16.773
2013-14 y63 4.74 9.633 2.714 18.467

It can be seen from the results that the predictive point estimates in the form of modal
values are, in general, not too far away from the actual observed data points except for the
situations where there is a high fluctuation in the values from those in the previous years.
Say, for instance, the values corresponding to the years 2011-12 (y61) to 2013-14 (y63)
where the predictive point estimates are too far away from the actual values. It might be
possible that there are structural breaks in the GDP data for these years perhaps because of
global economic recession and, as such, our model fails to reflect the same. The situation is,
however, not too susceptible when we see the estimated predictive intervals with coverage
probability 0.95. All these estimated intervals not only cover the true values but also indicate
that the true values fall in the high probability central regions of the corresponding predictive
density estimates. Although such predictive density estimates are not shown, an idea can be
derived based on the values of estimated predictive intervals. As a word of final remark- in
no way we claim that our model is most appropriate for the situation rather it appears as if
there is always a scope for its improvement. The simplicity of our model and its analysis
are certainly the important features in its favour.
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6. Conclusions

The paper emphasizes the analysis of a general ARMA model along with its components
in a fully Bayesian framework, although a few classical tools, such as evaluation of the ML
estimates and the observed information, are employed to support our analysis. The analysis
finally proceeds for five particular cases of the considered general form under stationarity
and invertibility restrictions. A sample-based approach based on the Gibbs-Metropolis hy-
brid sampler appears to provide routine posterior implementation on the considered ARMA
model and its particular forms. The paper then considers model compatibility and com-
parison, the former using predictive simulation ideas and the latter using predictive loss
criterion. A real data illustration of GDP growth rate data of India at constant prices con-
veys that ARMA(0,1) model appears to be the most appropriate, although other components
also provide good compatibility with the data in hand. A short-term retrospective prediction
based on the final chosen model conveys that the proposed model can be used, in general,
except when there is abrupt fluctuation in the data from those of previous years.
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Appendix

Table 5. GDP growth rate of India at constant prices for the period 1951-52 to 2013-14
(from left to right)

2.33 2.84 6.09 4.25 2.56 5.69 -1.21 7.59 2.19
7.08 3.10 2.12 5.06 7.58 -3.65 1.02 8.14 2.61
6.52 5.01 1.01 -0.32 4.55 1.16 9.00 1.25 7.47
5.5 -5.2 7.17 5.63 2.92 7.85 3.96 4.16 4.31

3.53 10.16 6.13 5.29 1.43 5.36 5.68 6.39 7.29
7.97 4.30 6.68 8.00 4.15 5.39 3.88 7.97 7.05
9.48 9.57 9.32 6.72 8.59 8.91 6.69 4.47 4.74

Likelihood for ARMA(p,q) model:

Let us consider the likelihood of ARMA(p,q) model as given in (9) and let Yp =(y1,y2, ...,yp)
′
p×1

be the vector of first p observations in the sample of size T . Then Yp follows a p-variate
normal distribution with mean vector µp =(µ,µ, ...,µ)′p×1 of dimension p×1 and variance-
covariance matrix Σp of dimension p× p. It may be noted that µ = θ0/(1−φ1−φ2− ...−φp)

and the elements of Σp can be obtained by solving the Yule-Walker equations of autocor-
relation in terms of AR parameters (see, for example, Box et al. (2004)). Thus, the joint
distribution of Yp can be written as

f (y1,y2, ...,yp|θ0,Φ,Ψ) ∝
(
σ

2)−p
2 ×|Vφ ,ψ |−1/2×

exp
(
− 1

2σ2 (Yp−µp)
′Vφ ,ψ

−1(Yp−µp)

)
, (36)

where Vφ ,ψ is a p× p matrix involving terms of φ ’s and ψ’s and it may be determined by
using the relationship Σp = σ2Vφ ,ψ .

The second term on the right-hand side of (9) is the product of conditional densities of yt

with conditioning variates (yt−1,yt−2, ...,yt−p), t = (p+ 1), ...,T . This conditional density

can be shown to follow N((θ0+
p
∑

i=1
φiyt−i+

q
∑
j=1

ψ jεt− j),σ
2) and the same can be written as,

f (yt |yt−1,yt−2, ...,yt−p;θ0,Φ,Ψ) ∝

(
1

σ2

)
×

exp

(
− 1

2σ2 (yt −θ0−
p

∑
i=1

φiyt−i−
q

∑
j=1

ψ jεt− j)
2

)
. (37)
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Obviously, the conditional likelihood function (the second term in the right-hand side of
(9)) reduces to,

fc ∝

(
1

σ2

)(T−p)/2

× exp

(
− 1

2σ2

T

∑
t=p+1

(yt −θ0−
p

∑
i=1

φiyt−i−
q

∑
j=1

ψ jεt− j)
2

)
. (38)

Now, combining (9) and (38), the likelihood for ARMA(p,q) model in (9) can be written as
in (10).

The ARMA(p,q) model is generally difficult to implement in practice due to the fact that
stationarity and invertibility conditions are not easily encountered for higher values of p and
q beyond, say, 2 in each case. This is perhaps the reason that we restrict to p+ q ≤ 2 in
our present study. Moreover, for ARMA(1,1) model, the things are comparatively easier.

In this case, we have Y1 = y1 ∼ N(µ1,Σ1), where µ1 =
θ0

1−φ1
and Σ1 =

σ2(1+ψ2
1+2ψ1φ1)

1−φ2
1

.

Exact likelihood for AR(p) model:

The AR(p) model corresponds to ARMA(p,0) and, therefore, the corresponding likelihood
function can be obtained by putting zero in the place of MA component q in the likelihood
(10) and the same can be written as in (11).

Moreover, as mentioned earlier for ARMA process, the AR(p) process is also not easy
to implement in practice for values of p beyond 2. For AR(1) model, we have Y1 = y1

∼N(µ1,Σ1) where µ1 =
θ0

1−φ1
and Σ1 =

σ2

1−φ2
1

and for AR(2) model, we have Y2 = (y1,y2)
′ ∼

N(µ2,Σ2) with µ = θ0
1−φ1−φ2

and

Σ2 =

[
Σ11 Σ12

Σ21 Σ22

]
,

where Σ11 = Σ22 =
σ2(φ2−1)

(φ2−1)(1−φ2
1−φ2

2 )+2φ2
1 φ2

and Σ12 = Σ21 =
−σ2φ1

(φ2−1)(1−φ2
1−φ2

2 )+2φ2
1 φ2

.

Exact likelihood for MA(q) model:

The MA(q) model corresponds to ARMA(0,q) and, therefore, MA(q) process can be easily
written from (1) as

yt = θ0 +
q

∑
j=1

ψ jεt− j + εt . (39)
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The likelihood function corresponding to MA(q) model cannot be obtained directly by
putting zero in the place of AR component p in the likelihood (10). This may be because of
the fact that the process (1) will not have any component of lagged time series observation
in its right-hand side and the components of ε0 are already taken to be zero while writing the
likelihood corresponding to ARMA(p,q) model. One can, however, write a computationally
friendly form of the exact likelihood for MA(q) model by an alternative argument.

Let the vector of complete sample observations be given by YT = (y1,y2, ...,yT )
′
T×1 and

correspondingly the mean vector be given by µT = (µ,µ, ...,µ)′T×1 where µ = θ0. The
variance-covariance matrix ΣT is a T ×T matrix and the same can be obtained as

ΣT =



Σ11 Σ12 ... Σ1T

Σ21 Σ22 ... Σ2T

. . .

. . .

. . .

ΣT 1 ΣT 2 ... ΣT T


,

where

Σ11 = Σ22 = ...= ΣT T = σ
2(1+ψ

2
1 +ψ

2
2 + ...+ψ

2
q ); for t = 1,2, ...,T (40)

and

Σt,t−k = Σt−k,t =

{
σ2(ψk +ψk+1ψ1 + ...+ψqψq−k), for k = 1,2, ...,q

0, for k > q.
(41)

The exact likelihood for the MA(q) model is, therefore, given by the T -variate normal dis-
tribution with mean vector µT and variance-covariance matrix ΣT and it can be written up
to proportionality as in (12).


