

UWS Academic Portal

Balancer genetic algorithm-a novel task scheduling optimization approach in cloud
computing
Gulbaz, Rohail; Siddiqui, Abdul Basit; Anjum, Nadeem; Alotaibi, Abdullah Alhumaidi;
Althobaiti, Turke; Ramzan, Naeem
Published in:
Applied Sciences (Switzerland)

DOI:
10.3390/app11146244

Published: 06/07/2021

Document Version
Publisher's PDF, also known as Version of record

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Gulbaz, R., Siddiqui, A. B., Anjum, N., Alotaibi, A. A., Althobaiti, T., & Ramzan, N. (2021). Balancer genetic
algorithm-a novel task scheduling optimization approach in cloud computing. Applied Sciences (Switzerland),
11(14), [6244]. https://doi.org/10.3390/app11146244

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 27 Nov 2022

https://doi.org/10.3390/app11146244
https://uws.pure.elsevier.com/en/publications/f0feea3c-cd4a-47d2-a58f-355bf101761b
https://doi.org/10.3390/app11146244

applied
sciences

Article

Balancer Genetic Algorithm—A Novel Task Scheduling
Optimization Approach in Cloud Computing

Rohail Gulbaz 1, Abdul Basit Siddiqui 2,*, Nadeem Anjum 2 , Abdullah Alhumaidi Alotaibi 3,
Turke Althobaiti 4 and Naeem Ramzan 5

����������
�������

Citation: Gulbaz, R.; Siddiqui, A.B.;

Anjum, N.; Alotaibi, A.A.; Althobaiti,

T.; Ramzan, N. Balancer Genetic

Algorithm—A Novel Task Scheduling

Optimization Approach in Cloud

Computing. Appl. Sci. 2021, 11, 6244.

https://doi.org/10.3390/app

11146244

Received: 11 May 2021

Accepted: 9 June 2021

Published: 6 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, National University of Computer and Emerging Sciences,
Islamabad 44000, Pakistan; rohail.gulbaz@nu.edu.pk

2 Department of Computer Science, Capital University of Science and Technology, Islamabad 44000, Pakistan;
nadeem.anjum@cust.edu.pk

3 Department of Science and Technology, College of Ranyah, Taif University, Taif 11099, Saudi Arabia;
a.alhumaidi@tu.edu.sa

4 Faculty of Science, Northern Border University, Arar 1321, Saudi Arabia; turke.althobaiti@nbu.edu.sa
5 School of Computing, Engineering and Physical Sciences, University of the West of Scotland,

Paisley PA1 2BE, UK; naeem.ramzan@uws.ac.uk
* Correspondence: abasit.siddiqui@cust.edu.pk

Abstract: Task scheduling is one of the core issues in cloud computing. Tasks are heterogeneous, and
they have intensive computational requirements. Tasks need to be scheduled on Virtual Machines
(VMs), which are resources in a cloud environment. Due to the immensity of search space for
possible mappings of tasks to VMs, meta-heuristics are introduced for task scheduling. In scheduling
makespan and load balancing, Quality of Service (QoS) parameters are crucial. This research
contributes a novel load balancing scheduler, namely Balancer Genetic Algorithm (BGA), which
is presented to improve makespan and load balancing. Insufficient load balancing can cause an
overhead of utilization of resources, as some of the resources remain idle. BGA inculcates a load
balancing mechanism, where the actual load in terms of million instructions assigned to VMs is
considered. A need to opt for multi-objective optimization for improvement in load balancing and
makespan is also emphasized. Skewed, normal and uniform distributions of workload and different
batch sizes are used in experimentation. BGA has exhibited significant improvement compared with
various state-of-the-art approaches for makespan, throughput and load balancing.

Keywords: task scheduling; cloud computing; Virtual Machines; load balancing; optimization

1. Introduction

In this modern age, the use of the internet has increased, and demands of users are
growing significantly. To accommodate the needs of a large number of users, substantial
computational resources are required [1]. In cloud computing, resources are provisioned
to users as a service, through outsourcing [2]. The cloud resources are distributed and
scalable, by which users get seamless services. Virtual Machines (VMs) are virtualized
shared resources [3], and they provide insulated application and hardware by imitating
a physical server. Cloud service providers and consumers are two main stake-holding
entities, and service providers endeavor to have maximum satisfaction of consumers by
providing on-demand [4] services. Maximization of profit is the ultimate objective, which
service providers strive to achieve through different categories of services [5].

Requests of users are considered as tasks that need to be scheduled to appropriate
VM. Therefore, task scheduling is one of the core issues in cloud computing. Different
Quality of Service (QoS) parameters [1] are considered to evaluate the degree of optimal
scheduling. Minimum makespan, maximum resource utilization and high throughput
are computational QoS parameters that can have a noteworthy impact on task scheduling.
Improvement in these metrics helps to achieve optimal task scheduling. Better resource

Appl. Sci. 2021, 11, 6244. https://doi.org/10.3390/app11146244 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6470-075X
https://orcid.org/0000-0002-6674-7890
https://doi.org/10.3390/app11146244
https://doi.org/10.3390/app11146244
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11146244
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11146244?type=check_update&version=1

Appl. Sci. 2021, 11, 6244 2 of 24

utilization is achieved through load balancing in which the workload is distributed among
resources [3,6]. The notion of load balancing is deployed to eradicate the over-utilization
and under-utilization of cloud resources. Insufficient load balancing leads the cloud system
to lose computational power as some resources remain idle [3,7] for some time. Idle
resources are responsible for the rise in carbon dioxide emissions [7–9] and financial loss
to cloud service providers. It is observed that better load balancing can also contribute to
improvement in makespan and throughput.

Schedulers in cloud computing define mapping of heterogeneous tasks arriving in
distributed data centers. Tasks have varying computational requirements, and optimal
mapping is one that maps the tasks to the best suitable machine. VMs are also hetero-
geneous; therefore, there are many possible mappings [10] making the problem of task
scheduling an NP-hard problem. In service-oriented clouds the services are negotiated
between service providers and consumers through Service Level Agreements (SLAs) [11].
In such a scenario static schedulers [12] can play their role well because the requirements
are known in advance. Heuristic [3,11] and meta-heuristic [1,5,13–15] schedulers are de-
ployed in this area to find optimal scheduling. Since there are many possible solutions,
meta-heuristics can better serve the purpose of reaching to a better solution while exploring
a large search space of possible solutions. Meta-heuristics iteratively search the solution,
and there are chances of improvement over the iterations; therefore, they are regarded as
optimization approaches [14–16]. On the other hand, heuristics have a tendency of rushing
to a quick conclusion with minimal exploration. To explore and exploit the search space of
possible mappings, meta-heuristic schedulers are frequently utilized. Some of the most
popular choices of meta-heuristics for task scheduling are Genetic Algorithm (GA), Particle
Swarm Optimization (PSO), Ant Colony Algorithm (ACO) and Symbiotic Organism Search
(SOS). GA-based schedulers have been applied [13,17–19] for task scheduling due to its
strong search capabilities.

In this work, Balancer Genetic Algorithm (BGA) is presented as an optimization
approach to schedule tasks. BGA receives a number of tasks in a batch and then maps
them to VMs. Recently there have been hybrid schedulers introduced in task scheduling
to meet the objectives of better makespan, load balancing and throughput. Schedulers
can be hybridized in many possible ways [12,20–23], and one of the ways is to guide
the optimization process as adopted in the Modified Genetic Algorithm combined with
Greedy Strategy (MGGS) [13]. Scheduler can also be a pure meta-heuristic like [24]. BGA
has a mechanism of load balancing, and the amount of load balancing is also computed
as fitness criteria. Load balancing can benefit the cloud service provider, and a better
makespan with high throughput can benefit both the cloud service provider and consumer.
Therefore, these objectives need to be met through an optimization approach to solve
High-Performance Computing (HPC) problems. Both load balancing and better makespan
cannot be achieved without multi-objective optimization. Hence, BGA takes into account
multi-objective optimization with the load balancing mechanism influenced by GA. The
main contributions made through this research are as follows:

1. Devising and inculcating a novel load balancing mechanism in addition to makespan
in BGA without disturbing the behavioral working of Genetic Algorithm.

2. Evaluation of BGA with other state-of-the-art heuristic and meta-heuristic schedulers
for the metrics of makespan, resource utilization and throughput.

3. Rationale of opting two conflicting objectives for better task scheduling is also provided.

The rest of this paper is organized as follows. A review of literature is provided in
Section 2. A description of the problem and working of BGA is provided in Section 3.
Performance evaluation metrics are listed in Section 4. Experimental results are compiled
in Section 5. Section 6 draws the conclusions.

2. Related Work

A variety of techniques have been proposed to address different task scheduling
issues in cloud computing. Both heuristics and meta-heuristics are applied in this area, and

Appl. Sci. 2021, 11, 6244 3 of 24

some have considered load balancing, while the majority have focused on makespan alone.
These scheduling techniques can be segmented as heuristic, GA-based meta-heuristic and
other meta-heuristics.

2.1. Cloud Scheduling Heuristics

Heuristic algorithms are designed specifically for a problem. Optimization problems
usually have a large search space of possible solutions, but heuristics do not explore all or
a subset of possible solutions. A solution extracted by a heuristic is usually based on some
mathematical formulation; hence, heuristics are intensively used for optimization. This
section provides the study of some relevant literature where heuristics are applied on the
problem at hand.

Load Balanced Min-Min Algorithm (LBMM) was proposed in [20] to balance the
workload distribution among VMs. It uses a traditional min-min algorithm where a
task having minimum completion time on any particular VM is mapped to that VM.
After traditional min-min, the second phase of LBMM remaps tasks of overloaded VM to
underloaded VM. The decision of over and underloaded VM is taken by considering the
completion time of the individual VM. The smallest task in overloaded VM is shifted to the
VM where it has a minimum execution time. However, the actual load in terms of million
instructions is not considered to decide the overloaded VM; therefore, there is further room
for improvement in load balancing.

Traveling Salesman Approach for Cloudlet Scheduling (TSACS) based on the renowned
travelling salesman approach was proposed in [25] consisting of three phases. The first
phase of clustering reduces the large size problem to a small size by making clusters for
each available VM. Each cluster receives cloudlets less than or equal to the maximum
capacity of the cluster. In the second phase the problem is converted to the domain of Trav-
elling Salesman Problem (TSP). The third phase applies the nearest neighbor approach to
assign cloudlets to VMs based on Cluster Execution Time. As in nearest neighbor, all nodes
are visited; therefore, TSACS is more suitable when there are potentially few numbers
of clusters.

A heuristic named Energy-efficient Task Scheduling Algorithm (ETSA) to improve
the energy consumption and makespan was presented in [26]. The resource utilization is
deemed as an important constraint to enhance the energy consumption. ETSA consists
of three phases, where the first phase computes the expected time to complete and busy
time of resources. The second phase selects the best VM based on timings calculated in
the previous phase, and then in the final phase the tasks are mapped to VMs. However,
the resource utilization is computed merely based on time, which cannot significantly
contribute to optimal resource utilization.

A probabilistic load balancing scheduler was proposed in [8] consisting of two phases.
Tasks are sorted in non-decreasing order of their sizes. The second phase is for assignment
of tasks to VMs. The successive tasks are mapped to VM having minimum initial load, and
initial load is updated accordingly after the assignment.

Resource-Aware Load Balancing Algorithm (RALBA) [3] computes the share of VM
based on the total available processing power and assigns tasks according to the share of
any VM. It comprises two phases, namely fill and spill schedulers. Phase one makes a pool
of possible tasks that can be assigned to any VM considering the share of VM. The largest
task is mapped to VM with maximum VM share. Remaining sets of tasks are mapped
based on earliest finishing time in the second phase of RALBA.

2.2. Cloud Scheduling Meta-Heuristics

Meta-heuristics are optimization approaches used to explore a large search space of
possible solutions in NP problems. Meta-heuristics are problem-independent but are tuned
or modified for application to optimization problems.

An efficient GA was proposed in [14] that merged Longest Cloudlet to Fastest Proces-
sor (LCFP), Shortest Cloudlet to Fastest Processor (SCFP) and random number assignment

Appl. Sci. 2021, 11, 6244 4 of 24

in the phase of population initialization. Properties of heuristics and randomness in the
population are added to make the population more diversified and to find a better solution
with minimal makespan.

Load Balance Aware Genetic Algorithm (LAGA) [17] attempted to improve load
balance by merging Min-Min and Max-Min in GA. Unlike [14], LAGA generates only one
chromosome with both Min-Min and Max-Min heuristics. The main idea behind merging
Min-Min and Max-Min is to add advantages of both techniques where one can improve
the makespan and other response time. However, to improve load balancing, the total time
taken by resources is considered in the fitness function.

In [27], a modified GA was proposed having enhanced Max-Min. The VM with the
smallest computational power receives the largest task through enhanced Max-Min. How-
ever, the criteria for selection of largest task are based on average execution time. Enhanced
Max-Min is applied in the population initialization phase to improve makespan. Tourna-
ment Selection Genetic Algorithm (TS-GA) was proposed in [16] to improve makespan, and
TS-GA showed better resource utilization and makespan than the round robin heuristic.

Random Make Genetic Optimizer (RMGO) was proposed in [15] to improve load bal-
ancing. Three heuristics, namely Min-Min, Max-Min and Suffrage, are used for population
initialization in RMGO. Although, the fitness function does not involve load balancing, but
RMGO indicates improvement in load balancing and makespan.

In [5] Adaptive Incremental Genetic Algorithm (AIGA) was proposed, having adaptive
probability of crossover and mutation. The probability is based on the number of iterations,
fitness of best chromosome and population size. AIGA has improved the performance as
compared to standard GA.

Idle resources are monitored in Improved Genetic Algorithm (IGA) [28] to improve
resource utilization. Tasks are assigned to idle resources until there are no more idle
resources. The remaining sets of tasks are mapped to resources based on minimum
expected completion time. Fitness is computed based on resource utilization in IGA.

A hybrid GA was proposed, namely Modified Genetic Algorithm combined with
Greedy Strategy (MGGS) [13], to improve makespan and load balancing. MGGS considers
makespan as the fitness criteria of a chromosome, but a load balancing operation called
greedy strategy is triggered on chromosomes to reduce over-utilization of resources. Load
balancing is considered by sorting VMs based on their execution time. The smallest task
assigned to a VM, having maximum execution time, is mapped to a VM with minimum ex-
ecution time to trigger load balancing. This process continues until a VM having minimum
execution time becomes a VM with maximum execution time. Although MGGS improves
load balancing, the greedy strategy is computationally expensive.

Genetic Algorithm based Efficient Task Allocation (ETA-GA) [18], a pure GA-based
scheduler, was proposed to improve makespan and reduce failure in network delay. The pa-
rameters of GA are reflected to be tuned for improvement in objective function. However,
the probability of selection of best chromosome is maximum in ETA-GA, which may lead
to imbalance between exploration and exploitation.

HGA-ACO [29], a Hybrid Genetic Algorithm with Ant Colony Optimization, was
proposed in which two meta-heuristics were merged. In this approach a utility scheduler
maintains a queue of arranged tasks based on memory and execution time. Best chromo-
somes selected through utility scheduler are passed to ACO, and afterwards crossover and
mutation are applied to the resultant chromosomes. This technique has overhead of two
fully functional meta-heuristics.

In [30], a Hybrid Particle Swarm Optimization (H-PSO) was proposed. Differential
Evolution is used as a mechanism to update the velocity in PSO. A multi-objective fitness
function comprising makespan and resource utilization is defined in Hybrid PSO.

In [22], Shortest Job to Fastest Processor (SJFP) heuristic was merged in PSO to im-
prove the performance of PSO. SJFP is applied to the population initialization phase only.
The proposed technique is demonstrated to perform better than standard GA and PSO
for makespan.

Appl. Sci. 2021, 11, 6244 5 of 24

An improved PSO was proposed in [31] with the objective of improving resource
utilization. According to the author, Simulated Annealing (SA) in combination with
PSO can enhance the convergence speed of standard PSO for achieving better resource
utilization. In the improved version the personal worst is introduced, similar to traditional
personal best in PSO. However, the global best is found using SA in PSO. Improvement in
the objective of better resource utilization is observed by merging SA in standard PSO.

Integer-PSO was proposed in [32] to improve load balancing. The continuous nature of
PSO is converted to integers to enhance PSO. Likewise, a mechanism to convert continuous
values to discrete was used in [24].

In [10], the honeybee model is merged in PSO to achieve better load balancing. A sta-
tistical measure of standard deviation is used to compute the degree of load balance among
VMs. Getting honey from an empty source is paralleled to overloading in this technique.
Then, the load of overloaded VMs is shifted to underloaded VMs. Bees Life Algorithm
(BLA) [33] was proposed to improve makespan in comparison to GA. For local search,
a greedy search strategy was introduced in BLA.

DSOS [24], a Discrete Symbiotic Organism search technique, was presented to enhance
the makespan. It consists of three operations, namely mutualism, commensalism and para-
sitism, to exhibit the symbiotic relationship of animals. The performance is compared with
different variants of PSO, and the DSOS shows improvement over them.

A Load Balancing Mutation Particle Swarm Optimization (LBMPSO) was proposed
in [34] to balance load among resources. Load on VMs is considered, and the VM load
is adjusted on particles produced through PSO. Actual share of VMs is not considered
in LBMPSO.

A Deep Reinforcement Learning with Long Short Term Memory (DRL-LSTM) was
proposed in [35] to learn an optimal scheduling policy based on feedback. In this strategy,
execution of tasks is analyzed, and then the model is trained to achieve better resource uti-
lization. DRL-LSTM shows improvement in accuracy of prediction and resource utilization
as compared to other techniques where time-dependent tasks are considered.

Supervised Artificial Neural Network based task scheduler [36] was proposed to
improve energy consumption, which can result in better resource utilization. In this
approach the training set is generated using GA. Finishing time of tasks and energy
consumed are normalized using a back propagation neural network to decide the mapping.
The scheduler shows improvement in accuracy based on the training information.

3. Balancer Genetic Algorithm (BGA)

In this section, the architecture of BGA and main components consisting of problem
encoding, fitness function, crossover, mutation and balancer operator are described. The
rationale for the fusion of heuristics to achieve better load balancing is also highlighted.

3.1. Task Scheduling

Tasks arrive in data centers, and then the scheduler defines a mapping scheme. A
mapping scheme is handed over to a cloud broker, and afterwards tasks are assigned
to VMs. Figure 1 shows an abstract representation of a cloud environment where the
scheduler finds a suitable mapping for incoming tasks.

Appl. Sci. 2021, 11, 6244 6 of 24

Figure 1. Abstract representation of the cloud environment.

3.2. Architecture of BGA

BGA is an enhanced GA for task scheduling, so the main structure has all major
components of GA, as shown in Figure 2. BGA needs Size of Jobs in million instructions
(mi) and computational Power of VMs in million instructions per second (mips). BGA
begins with population initialization, and then the fitness against each chromosome is
computed. Until stopping criteria are met, BGA keeps generating new chromosomes using
crossover operators, which are then mutated, and a balancer operation is triggered after
mutation. These components of BGA are explained one by one in detail. Table 1 provides
the parameter settings of BGA, and Algorithm 1 presents the pseudocode of BGA.

Table 1. Parameter settings of BGA.

Parameters Values

Population size 120

Iterations 1000

α 0.18–0.22

β 0.75–0.85

ε 1.98–2.22

Mutation rate 0.0047

Appl. Sci. 2021, 11, 6244 7 of 24

Figure 2. Flow diagram of the Balancer Genetic Algorithm (BGA).

3.2.1. Encoding

In batch mode, the scheduler receives a number of tasks as an input, and then they
have to be mapped. GA has chromosomes, and they need proper encoding to represent
the task scheduling problem. There are multiple ways of encoding GA in task scheduling.
BGA has discrete encoding, also known as real number encoding. Discrete encoding makes
a vector of 1× n dimension, where n is the number of tasks. It shows that for each task
there is a corresponding value of genes representing the VM number. Genes have only one
allele and whose range is the total number of VMs m.

Suppose there are six tasks that can be denoted as T1, T2, T3, T4, T5, T6. Tasks have to
be mapped to three VMs represented as R1, R2, R3. Let chromosomes be v = 3, 2, 3, 1, 2, 2.
This implies that the T1 is assigned to R3. Similarly, T2, T3, T4, T5 and T6 are mapped
to R2, R3, R1, R2 and R2, respectively. As there are three VMs, there are three pools of
tasks. Here in the mapping defined for chromosome v, R1 gets only one task, so the
pool R1 = {T4}, R2 = {T2, T5, T6} and R3 = {T1, T3}. The agenda of BGA is to find a
chromosome representing a suitable mapping to meet the objectives of better makespan
and load balancing.

Appl. Sci. 2021, 11, 6244 8 of 24

Algorithm 1 BGA.
Input: Size of Jobs, Power of VMs
Output: Mapping of Jobs to VMs

1: Population[]← random(Num_o f _VMs)
2: for i← 0 to n do

3: load_balancer[]← LoadBalanceAlgorithm(Population[xi])
4: end for

5: SizePopulation← size(Population[])

6: s← Hal f (SizePopulation− ε)

7: SinglePoint← s × α

8: MultiPoint← s × β

9: while GA does not converge do

10: newPopulation← 0

11: p← ε + 1

12: Parent1 ← 1

13: Parent2 ← 1

14: while newPopulation < s do

15: while Parent1 == Parent2 do

16: Parent1 ← SelectionAlgorithm(load_balancer[])

17: Parent2 ← SelectionAlgorithm(load_balancer[])

18: end while

19: if SinglePoint > 1 then

20: f lag← 1

21: Population[] ← CrossoverAlgorithm(Population[Parent1],
Population[Parent2], f lag, p)

22: else

23: f lag← 2

24: Population[] ← CrossoverAlgorithm(Population[Parent1],
Population[Parent2], f lag, p)

25: end if

26: SinglePoint← SinglePoint− 1

27: newPopulation← newPopulation + 1

28: end while

29: for i← 1 to SizePopulation do

30: if Population[xi] not Best1 or Best2 then

31: MutationAlgorithm(Population[xi])

32: end if

33: end for

34: for i← 1 to SizePopulation do

35: Population[xi]← BalancerAlgorithm(Population[xi])

36: end for

37: end while

Appl. Sci. 2021, 11, 6244 9 of 24

3.2.2. Fitness Function

BGA is a multi-objective technique to improve makespan and load balancing. Load
balancing is achieved through a balancer operation described later. However, fitness
function should measure the degree of improvement in both objectives. Hence, a multi-
objective relation is unified to combine the effects of two separate inversely proportional
objectives. Different mechanisms are opted to balance the load. In balancer GA a load
balancing mechanism is inculcated, and the same becomes the basis for measuring the
level of load balancing. The fitness function in which makespan and load balancing are
combined is defined as:

L(x) = makespan + AvgPSU (1)

where 0 ≤ AvgPSU ≤ 1 is an average of all percentage of shares used by all VMs for a
specific chromosome and is calculated as follows:

AvgPSU = 1−
Σn

j=1PSUj

n
(2)

The value of PSU is computed to find the share used by any VM; it depends on
number of tasks assigned to any VM, and this assignment is represented through the genes
of chromosome. PSUj is calculated for each VM, and ShareUsedj is the sum of the sizes of
tasks assigned to VMj. VMSharej is the maximum share in terms of million instructions
that should be mapped to that VM ideally. PSUj is calculated as:

PSUj =
ShareUsedj

VMSharej
× 100 (3)

In order to keep PSUj within 100%, we use:

i f (PSUj > 100)

PSUj =
100− (PSUj − 100)

100
i f (PSUj < 0)

PSUj = 0

else

PSUj =
PSUj

100

(4)

Equation (5) presents the formulation of ShareUsedj by any VM, and it is based on
accumulated size of tasks assigned to that particular VM.

ShareUsedj = Σn
i=1(tasksizei ×Map[i, j]), (5)

where Map[i, j] is a binary matrix that reflects the mapping of task ‘i’ to VM ‘j’, with 1
shows mapping and 0 shows no mapping.

Ideally a VM should obtain the size of tasks based on the computational power of
VM in mips, i.e., VMj.mips as compared to other VMs. Furthermore, ShareRatio(vmj)

is a
ratio that is used in the computation of maximum size of tasks in million instructions to be
mapped to that VMj. The following equations have been used to calculate these ratios:

VMSharej = Σm
i=1(taski)× ShareRatio(vmj)

(6)

ShareRatio(vmj)
=

VMj.mips
Σn

j=1(VMj.mips)
(7)

Appl. Sci. 2021, 11, 6244 10 of 24

Power of all available VMs is summed, and then the individual power of VM is
divided by the sum of power to compute ShareRatio(vmj). The fitness function in BGA,
namely “LoadBalance”, is a minimization function, as makespan is a minimization value,
and AvgPSU is also converted accordingly as expressed already. The value of AvgPSU is
added to makespan, and it helps to find a solution where both objectives are improved.
However, there is no advantage of better load balancing when makespan is not so good.
To address this, additional information of load balancing is added to the value of makespan,
and a novel load balancing mechanism is formulated. Algorithm 2 details the LoadBalance
process devised by BGA.

3.2.3. Selection Operator

Proportionate selection operator with a few minor modifications has been incorporated
in BGA. Proportionate selection relates to the spin of a roulette wheel, where the size of
pie is a representation of worth of a specific chromosome among the entire population.
In a normal proportionate selection operator, every chromosome has an opportunity to
be selected. However, the fittest chromosomes have large proportions, and they can be
selected more than others. In BGA, a minor modification is performed to eradicate the
chances of extremely poor chromosomes from being selected repeatedly. Repeated selection
of poor chromosomes does not contribute much to global search, and performance can
also degrade. Therefore, the sum of LoadBalance is calculated, and after summation
the LoadBalance value is converted to maximize only for the selection operation phase.
Using proportionate selection, the chromosome with minimum LoadBalance gets the
maximum proportion according to its fitness.

There are many possible ways to implement a proportionate selection operator.
The steps used to perform proportionate selection in BGA with modification are as follows:

1. Adding LoadBalance of chromosomes to compute the sum.
2. Converting LoadBalance values of chromosome to maximization.
3. Sorting chromosomes in decreasing order based on scaled LoadBalance values.
4. Generating a random number ”r”, where 1 ≤ r ≤ sum.
5. Adding LoadBalance values to ”r” until r ≤ sum.

The last chromosome added is selected through the selection operator, and there are
more chances to select the fittest as compared to others. Two chromosomes are selected
through the selection operator, and then they participate in offspring generation. In the case
when the same two chromosomes are selected as parents, the selection operation is repeated
to select a different chromosome. Algorithm 3 provides the details of the selection process.

3.2.4. Crossover Operator

In BGA both single and multi-point crossover is performed. The probability of choos-
ing a single point crossover “α” is set to 20%, and for two points “β” is 80%. In this way,
the population can have combined representation of single and multi-point crossovers.
Single point crossover is more similar to parents, and two points adds some diversity;
this increases the chances of incorporating a population with different combinations of
best parent chromosomes to reach to a better solution. A random number n is generated,
and if it is less than or equal to 0.2, new chromosomes are generated through single point,
otherwise two-point crossover is performed. Two chromosomes selected through the selec-
tion operator generate two new chromosomes, and then the selection operator is triggered
again until a set number of chromosomes are generated depending on the population size.
The remaining chromosomes are moved as is to the next generation, and they behave as
elite “ε” chromosomes. The top two fittest chromosomes are chosen as elites. The details of
crossover are given in Algorithm 4.

Appl. Sci. 2021, 11, 6244 11 of 24

Algorithm 2 LoadBalance.
Input: Population[xi]
Output: load_balancer[xi]

1: procedure LOADBALANCEALGORITHM

2: SizePopulation← size(Population[])

3: JOBsum← 0

4: VMsum← 0

5: AvgPSU ← 0

6: for i← 1 to Job[] do

7: JOBsum← JOBsum + Job[xi]

8: end for

9: for i← 1 to VM[] do

10: VMsum← VMsum + VM[xi]

11: end for

12: for i← 1 to VM[] do

13: VMShare← VM[xi]/VMsum× JOBsum

14: end for

15: for i← 1 to SizePopulation do

16: VMmakespan[]← 0

17: for j← 1 to Gene[] do

18: VMmakespan[Gene[xj]]← VMmakespan[Gene[xj]] + jobsize[xj]

19: end for

20: for k← 1 to VM[] do

21: value← VMmakespan[k]/VMShare[k]× 100

22: if value <= 100 then

23: PSU[k]← value/100

24: else

25: PSU[k]← (100− (value− 100))/100

26: end if

27: AvgPSU ← AvgPSU + PSU[k]

28: VMmakespan[k]← VMmakespan[k]/Power_o f _VM[k]

29: end for

30: AvgPSU ← 1− AvgPSU

31: load_balancer[xi]← Max(VMmakespan[]) + AvgPSU

32: end for

33: return load_balancer[xi]

34: end procedure

Appl. Sci. 2021, 11, 6244 12 of 24

Algorithm 3 Selection.
Input: load_balancer[]
Output: Population[xi]

1: procedure SELECTIONALGORITHM

2: SizePopulation← size(Population[])

3: Sum← sum(load_balancer[])

4: r ← random(Sum)

5: load_balancer[]← scale(load_balancer[])

6: load_balancer[]← sort(load_balancer[])

7: j← 1

8: while r < Sum do

9: r ← r + load_balancer[xj]

10: j← j + 1

11: end while

12: return Population[xj]

13: end procedure

3.2.5. Mutation Operator

Random resetting is used in BGA, and the mutation rate is set to 0.0047. This mu-
tation rate is set experimentally by analyzing the standard deviation of the fitness value.
The formulation of standard deviation is expressed as follows:

σ =

√
Σn

i=1(f (xi)− f (x))2

k
(8)

where k is the size of the population. High standard deviation of fitness value shows that
the population is too diversified, and the chance of focusing on a specific solution is very
low. It is very hard to reach an optimal solution when deviation is high. On the other hand,
when standard deviation is too low, it means that chromosomes are almost the same, and
there is a need to introduce more diversity. With the help of standard deviation, a static
mutation rate is selected that can better suit the need of the problem at hand.

There are different possible ways of performing the random resetting mutation. BGA
generates a random number c where 0 ≤ c ≤ 1. The mutation probability is checked
against each gene of the chromosome, and genes are mutated only if c is under the range
of mutation rate. The mutation process details are provided in Algorithm 5.

3.2.6. Balancer Operator

After the generation of an entire population, for the next generation the balancer
operation is performed. The goal of the balancer operation is to balance the workload
among VMs. Tasks from overloaded VMs are migrated to underloaded and vice versa.
The decision of over- and under-loaded VMs relies on the percentage of share used by any
VM, just like one computed in the fitness function. Algorithm 6 shows the details of the
balancer operator.

Appl. Sci. 2021, 11, 6244 13 of 24

Algorithm 4 Crossover.
Input: Population[Parent1], Population[Parent2], f lag, p
Output: Population[xi], Population[xi+1]

1: procedure CROSSOVERALGORITHM

2: SizeChromosome← size(Population[xi])

3: CutPoint1 ← random(SizeChromosome)

4: CutPoint2 ← random(SizeChromosome)

5: if f lag == 1 then

6: for j← 1 to Cutpoint1 do

7: Child1[xj]← Population[Parent1]

8: Child2[xj]← Population[Parent2]

9: end for

10: for j← CutPoint1 + 1 to SizeChromosome do

11: Child1[xj]← Population[Parent2]

12: Child2[xj]← Population[Parent1]

13: end for

14: else

15: for j← 1 to Cutpoint1 do

16: Child1[xj]← Population[Parent1]

17: Child2[xj]← Population[Parent2]

18: end for

19: for j← CutPoint1 + 1 to CutPoint2 do

20: Child1[xj]← Population[Parent2]

21: Child2[xj]← Population[Parent1]

22: end for

23: for j← CutPoint2 + 1 to SizeChromosome do

24: Child1[xj]← Population[Parent1]

25: Child2[xj]← Population[Parent2]

26: end for

27: end if

28: Population[p]← Child1[]

29: p← p + 1

30: Population[p]← Child2[]

31: p← p + 1

32: return Population[p− 2], Population[p− 1]

33: end procedure

Appl. Sci. 2021, 11, 6244 14 of 24

Algorithm 5 Mutation.
Input: Population[xi]
Output: Population[xi]

1: procedure MUTATIONALGORITHM

2: SizeChromosome← size(Population[xi])

3: for i← 1 to SizeChromosome do

4: r ← random(1)

5: if r <= probability then

6: r ← random(SizeChromosome)

7: Gene[xi]← r

8: end if

9: end for

10: return

11: end procedure

Algorithm 6 Balancer.
Input: Population[xi]
Output: Population[xi]

1: procedure BALANCERALGORITHM

2: SizeChromosome← size(Population[xi])

3: for i← 1 to SizeChromosome do

4: if VMShare[Gene[xi]] > 0 then

5: VMShare[Gene[xi]]← VMShare[Gene[xi]]− JobSize[xi]

6: if VMShare[Gene[xi]] < 0 then

7: VMShare[Gene[xi]]← VMShare[Gene[xi]] + JobSize[xi]

8: list[]← jobID

9: end if

10: end if

11: end for

12: Jobs[]← sort(Jobs)

13: VMShare← sort(VMShare)

14: while list[] not empty do

15: while VMShare[max] > 0 do

16: VMShare[max]← VMShare[max]− Job[list[xi]]

17: Population[Job[xi]]← VMnumber

18: end while

19: end while

20: return Population[xi]

21: end procedure

Appl. Sci. 2021, 11, 6244 15 of 24

The balancer operation is performed on each chromosome of the population, except for
the elite chromosomes. The major advantage of this balancer operator, as compared to other
techniques, is that it does not totally change the chromosome. Other techniques modify a
significant number of genes, which may not be as helpful because the chromosome loses
its actual characteristics. Other techniques also do not check the VM share information to
recognize the over- and under-loaded VMs.

The chromosome becomes an input of the balancer operator, and genes of the chromo-
some are traversed. The total VM share of each VM is already computed before fitness is
computed, and it is also utilized in the balancer operator. As the value of a gene represents
a VM number corresponding to a task, the VM share is checked against each gene of the
chromosome. Initially, the share of every VM is at maximum according to their VM share.
While traversing the genes of the chromosome, the size of the task is subtracted from the
respective VM. If the VM share is greater than 0, it means that the task can be assigned to
the VM, and the size of the task is subtracted on assignment. Otherwise, if the VM share
is less than or equal to 0, it means that VM is over-loaded and there is no need to assign
any other task to that VM. In such cases, the task being assigned is added to a pool of tasks
known as cloudletpool . After the assignment, if the VM share drops below 0 the respective
task is added to a pool of tasks, which is later used in remapping. After the traversal of
the last gene, VMs are sorted according to their remaining VM share in VMpool . Tasks in
cloudletpool are also sorted in descending order. The maximum sized task in the task pool is
mapped to VM with the maximum remaining VM share. The cloudletpool and vmpool both
are updated accordingly. This process of remapping continues until there are no remaining
tasks in cloudletpool .

3.2.7. Fusion of Heuristic

A load balancing mechanism is embedded in GA to have the tendency of load bal-
ancing in a chromosome. This provides additional guidance to GA. Using a heuristic
just at the initialization phase cannot have a significant impact. The benefit of fusing the
balancer mechanism is that it balances the chromosomes based on their VM share. BGA
explores the large search space where there are many possible solutions. Consequently,
a large number of chromosomes pass through the balancer operation. It is possible to
explore many solutions in which the load balancing is the same, but the fitness value varies
according to their makespan, and this could not be achieved otherwise.

4. Performance Metrics

To evaluate the performance of BGA, we compared it with benchmark techniques.
To this end, the following performance metrics are used:

4.1. Makespan

Makespan is the finishing time of batch of tasks and is calculated as:

makespan = max(CT_VM_j),
j = 1, 2, ..., n

(9)

where CT is the completion time of a specific VM, and the maximum time taken by any
VM is the makespan.

4.2. ARUR

ARUR is the average resource utilization ratio, and it is between 0 and 1, where
0 represents minimum and 1 maximum resource utilization. It is computed through
completion time as:

ARUR =
(∑n

j=1 CTVMj)/n

makespan
(10)

Appl. Sci. 2021, 11, 6244 16 of 24

5. Experimental results and Discussion

This section details the experimental setup and dataset used in the experimentation.
The benchmark techniques are also defined, and then the results are expressed with
necessary discussion.

5.1. Experimental Setup

CloudSim [37] is used to simulate the cloud-based environment for experimentation.
All experiments are performed using the same settings mentioned for the benchmark
techniques. However, the number of iterations are fixed to 1000 for all meta-heuristic
techniques as a stopping criterion. One data center is created in cloudsim. The data center
has 30 host machines and a total of 50 VMs. The RAM of host machines is 16,384 MBs.
Host machines have a Linux Operating System, and 4 machines are dual-core whereas
26 machines are Quad-core. Dual and Quad-core machines have processing power of 4000
MIPS. The space sharing VM scheduling algorithm of CloudSim is used for experimentation.
The processing power of 50 heterogeneous VMs is detailed in Table 2.

Table 2. Power of VMs in experimentation.

VM No. Power (MIPS) VM No. Power (MIPS)

1–7 100 27-32 1250

8–14 500 33-38 1500

15–20 750 39-44 1750

21–26 1000 45-50 4000

5.2. Workload Generation

A synthetic dataset [2,24] is used, and it has four different categories which are defined
as follows:

1. Left Skewed: Large-sized tasks are numerous.
2. Right Skewed: Small-sized tasks are numerous.
3. Normal: Small- and large-sized tasks are almost equal in number.
4. Uniform: Tasks are of almost same sizes.

These four categories can better express the overall behavior of BGA on different
possible workloads. Each category has batches of 100, 200, 300, 400, 500, 600, 700, 800, 900
and 1000 tasks.

5.3. Benchmark Techniques

Table 3 lists the baseline techniques used for the performance evaluation. MGGS [13]
is selected because it has a load balancing mechanism embedded in GA. BGA also has
the same method of fusing the load balancing mechanism, but the working of GA and
the mechanism of load balancing are unique. ETA-GA [18] is compared as it is a pure
GA-based technique. DSOS [24] is a meta-heuristic, and RALBA [3] is a state-of-the-art
heuristic technique. All of these techniques are compared with BGA.

Table 3. Benchmark Techniques.

Techniques Performance Metrics Demonstrated

MGGS [13] Load balancing and makespan

ETA-GA [18] Makespan and network failure

RALBA [3] Load balancing, throughput and makespan

DSOS [24] Load balancing, makespan, response time and convergence

Appl. Sci. 2021, 11, 6244 17 of 24

5.4. Discussion on the Comparison

Figure 3 shows the makespan values on the left—skewed dataset. In almost all
batch sizes BGA performs better. However, MGGS and RALBA are close competitors.
On average, overall, BGA achieved 27.3, 71.9, 40.5 and 4.6% improvement in makespan
compared with MGGS, ETA-GA, DSOS and RALBA, respectively. For a small batch size
of 100, RALBA slightly surpasses BGA in makespan. Still, for large batch sizes, which are
more realistic for cloud systems, BGA outperforms all the benchmark techniques. Figure 4
shows the results of makespan on a right—skewed dataset. BGA has achieved 19.8, 72.2,
42.4 and 3.2% average improvement in makespan compared with MGGS, ETA-GA, DSOS
and RALBA, respectively.

Figure 3. Makespan results on the left—skewed dataset.

Figure 4. Makespan results on the right—skewed dataset.

Similarly, Figure 5 shows makespan value on a normal dataset. BGA has attained
better makespan with average improvement of 23.3, 72.1, 41.6 and 5.9% as compared to

Appl. Sci. 2021, 11, 6244 18 of 24

MGGS, ETA-GA, DSOS and RALBA, respectively. Finally, improvement of BGA on the
uniform dataset is reflected in Figure 6 . BGA performed 19.2, 71.9, 42.1 and 6.7% better in
makespan than MGGS, ETA-GA, DSOS and RALBA, respectively.

It is evident that, overall, on all categories and batch sizes of datasets, BGA outper-
forms. Specifically for the uniform dataset, RALBA was a close competitor and deteriorated
to highest level of 6.7%. Even if MGGS is close at some points, MGGS is more computa-
tionally expensive than other meta-heuristics compared here, so it is not a right choice to
consider, especially where time is concerned.

Figure 5. Makespan results on the normal dataset.

Figure 6. Makespan results on the uniform dataset.

There are different ways to measure load balancing, and ARUR is a very popular
one of them. The value of ARUR is between 0 and 1, but it can signify the percent of
workload balance. BGA is a load balancing technique. Therefore, this QoS parameter is
very important for the claim of better load balancing. On left—skewed dataset the load

Appl. Sci. 2021, 11, 6244 19 of 24

balancing achieved is shown in Figure 7. At batch size 500, MGGS performs better; for a
small batch size of 100, RALBA performs better. The average improvement of BGA over
MGGS, ETA-GA, DSOS and RALBA in terms of load balancing is 5.2, 77, 60.6 and 5.4%,
respectively. MGGS, DSOS and RALBA are the techniques that have reported better
load balancing. Out of these, only RALBA and MGGS have deployed a load balancing
mechanism in their approach. Here again, just like makespan, RALBA is a close competitor
of BGA in load balancing. However, the results show that, on average, 5.4% better load
balancing is achieved on left—skewed and likewise other datasets. On the right—skewed
dataset the improvement in ARUR is shown in Figure 8. BGA has attained 12.5, 89.5, 70.1
and 6.1% better ARUR than MGGS, ETA-GA, DSOS and RALBA, respectively. At a batch
size of 400, MGGS performs better, but generally it does not perform better than BGA.
Figure 9 shows results of ARUR on a normal dataset. Here, BGA has achieved 12.5, 82.2,
65.2 and 6% better load balancing as compared to MGGS, ETA-GA, DSOS and RALBA,
respectively. Similarly, on the uniform dataset BGA again performs better than MGGS,
ETA-GA, DSOS and RALBA with the improvement of 12.5, 82.2, 65.2 and 6%, respectively,
as expressed in Figure 10. Load balancing of BGA is highest as compared to RALBA, a
close competitor on the right—skewed dataset. Generally, it is observed that for batch
sizes of 400 and 500, at some places MGGS performs better, but it has the overhead of
too much time for load balancing. Overall, BGA outperforms in load balancing than all
other techniques.

Figure 7. ARUR results on the left—skewed dataset.

Appl. Sci. 2021, 11, 6244 20 of 24

Figure 8. ARUR results on the right—skewed dataset.

Figure 9. ARUR results on the normal dataset.

Appl. Sci. 2021, 11, 6244 21 of 24

Figure 10. ARUR results on the uniform dataset.

Throughput is the number of tasks computed in a unit time, so it depends on the
makespan value. Thus, when makespan is good, it is evident that throughput would also be
good. According to the claim of this research, BGA has better throughput than MGGS, ETA-
GA, DSOS and RALBA. Figures 11–14 show the throughput of BGA and other techniques
on left—skewed, right—skewed, normal and uniform datasets, respectively. On the left—
skewed dataset the improvement is 29.7, 64, 40 and 4.6% over MGGS, ETA-GA, DSOS and
RALBA, respectively. On the right—skewed dataset 24.1, 65.4, 43 and 4% improvement in
throughput is achieved as compared to MGGS, ETA-GA, DSOS and RALBA, respectively.
On the normal dataset 26.1, 64.4, 41.7 and 5.1% improvement is achieved over MGGS,
ETA-GA, DSOS and RALBA, respectively. On the uniform dataset 23.4, 65.5, 42.9 and 6.9%
improvement is achieved over MGGS, ETA-GA, DSOS and RALBA, respectively.

Figure 11. Average throughput results on the left—skewed dataset.

Appl. Sci. 2021, 11, 6244 22 of 24

Figure 12. Average throughput results on the right—skewed dataset.

Figure 13. Average throughput results on the normal dataset.

Figure 14. Average throughput results on the uniform dataset.

Appl. Sci. 2021, 11, 6244 23 of 24

6. Conclusions

In this research, state-of-the-art heuristic and meta-heuristic task schedulers are ana-
lyzed in depth, and it is determined that scheduling results in inefficient load balancing of
cloud resources. The need for multi-objective optimization is expressed as a motivation,
where load balancing serves as a significant metric parallel to makespan for efficient task
scheduling. For exploration of a large search space of possible solutions, meta-heuristics
are opted for, and when heuristics are merged, an additional capability to explore more
optimal solutions is complemented.

In this work, a novel task scheduling technique is presented, namely Balancer Genetic
Algorithm (BGA), to improve makespan and load balancing. A load balancing mechanism
is fused in GA with other necessary tuning of parameters to achieve better results. Formu-
lations of multi-objective fitness functions are expressed in detail. CloudSim is used as a
platform for simulating the behavior of presented techniques in a cloud data center, where
resources and tasks to be mapped on resources are heterogeneous. Rigorous experiments
are performed to demonstrate that BGA outperforms state-of-the-art MGGS, ETA-GA,
DSOS and RALBA schedulers for performance measures of makespan, throughput and
load balancing. Heterogeneous distribution of workload with varying batches of tasks is
used to avoid biased dataset-dependent experimentation.

Currently, BGA does not cater to Service Level Agreements to prioritize tasks having
dependency. In the future, BGA can be extended to incorporate Service Level Agreements
where tasks have unequal priorities.

Author Contributions: Conceptualisation: R.G., A.B.S., N.A. and N.R.; Methodology: R.G., A.B.S.,
N.A. and A.A.A.; Software: R.G.; Validation: A.B.S., N.A. and T.A.; Formal analysis: A.B.S., N.A. and
N.R.; Resources: N.A., A.A.A., T.A. and N.R.; Initial draft: R.G. and A.B.S.; Review and editing: N.A.
and A.B.S.; Supervision: A.B.S.; Project administration: N.A. and N.R.; Funding acquisition: A.A.A.,
T.A. and N.R. All authors have read and agreed to the published version of the manuscript.

Funding: This work is partially supported by Taif University Research Support, Taif University, Taif,
Saudi Arabia, Project number TURSP-2020/277.

Data Availability Statement: The dataset used in this research is available at the following link: https:
//journals.plos.org/plosone/article?id=10.1371/journal.pone.0158229#ack, accessed on 27 April 2021.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fang, Y.; Xiao, X.; Ge, J. Cloud Computing Task Scheduling Algorithm Based On Improved Genetic Algorithm. In Proceedings of

the 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu,
China, 15–17 March 2019; pp. 852–856. [CrossRef]

2. Abdullahi, M.; Ngadi, M.A.; Dishing, S.I.; Ahmad, B.I.E. An efficient symbiotic organisms search algorithm with chaotic
optimization strategy for multi-objective task scheduling problems in cloud computing environment. J. Netw. Comput. Appl. 2019,
133, 60–74. [CrossRef]

3. Hussain, A.; Aleem, M.; Khan, A.; Iqbal, M.A.; Islam, M.A. RALBA: A computation-aware load balancing scheduler for cloud
computing. Cluster Comput. 2018, 21, 1667–1680. [CrossRef]

4. Gong, C.; Liu, J.; Zhang, Q.; Chen, H.; Gong, Z. The characteristics of cloud computing. In Proceedings of the 2010 39th
International Conference on Parallel Processing Workshops, San Diego, CA, USA , 13–16 September 2010; pp. 275–279. [CrossRef]

5. Duan, K.; Fong, S.; Siu, S.W.I.; Song, W.; Guan, S.S.-U. Adaptive Incremental Genetic Algorithm for Task Scheduling in Cloud
Environments. Symmetry 2018, 10, 168. [CrossRef]

6. Wang, Y.; Zuo, X. An Effective Cloud Workflow Scheduling Approach Combining PSO and Idle Time Slot-Aware Rules. IEEE/CAA
J. Autom. Sin. 2021, 8, 1079–1094. [CrossRef]

7. Xu, Z.; Xu, X.; Zhao, X. Task scheduling based on multi-objective genetic algorithm in cloud computing. J. Inf. Comput. Sci.
2015, 1429–1438. [CrossRef]

8. Panda, S.K.; Jana, P.K. Load balanced task scheduling for cloud computing: A probabilistic approach. Knowl. Inf. Syst. 2019,
61, 1607–1631. [CrossRef]

9. Mansouri, N.; Zade, B.M.H.; Javidi, M.M. Hybrid task scheduling strategy for cloud computing by modified particle swarm
optimization and fuzzy theory. Comput. Ind. Eng. 2019, 130, 597–633. [CrossRef]

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0158229#ack
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0158229#ack
http://doi.org/10.1109/itnec.2019.8728996
http://dx.doi.org/10.1016/j.jnca.2019.02.005
http://dx.doi.org/10.1007/s10586-018-2414-6
http://dx.doi.org/10.1109/icppw.2010.45
http://dx.doi.org/10.3390/sym10050168
http://dx.doi.org/10.1109/JAS.2021.1003982
http://dx.doi.org/10.12733/jics20105468
http://dx.doi.org/10.1007/s10115-019-01327-4
http://dx.doi.org/10.1016/j.cie.2019.03.006

Appl. Sci. 2021, 11, 6244 24 of 24

10. Ebadifard, F.; Babamir, S.M. A PSO-based task scheduling algorithm improved using a load-balancing technique for the cloud
computing environment. Concurr. Comput. Pract. Exp. 2018, 30, e4368. [CrossRef]

11. Hussain, A.; Aleem, M.; Iqbal, M.A.; Islam, M.A. SLA-RALBA: Cost-efficient and resource-aware load balancing algorithm for
cloud computing. J. Supercomput. 2019, 75, 6777–6803. [CrossRef]

12. Manglani, V.; Jain, A.; Prasad, V. Task scheduling in cloud computing. Inter. J. Adv. Res. Comput. Sci. 2018, 821–825. [CrossRef]
13. Zhou, Z.; Li, F.; Zhu, H.; Xie, H.; Abawajy, J.H.; Chowdhury, M.U. An improved genetic algorithm using greedy strategy toward

task scheduling optimization in cloud environments. Neural Comput. Appl. 2019, 1–11. [CrossRef]
14. Kaur, S.; Verma, A. An efficient approach to genetic algorithm for task scheduling in cloud computing environment. Int. J. Inf.

Technol. Comput. Sci. (IJITCS) 2012, 4, 74. [CrossRef]
15. Mohamad, Z.; Mahmoud, A.A.; Nik, W.N.S.W.; Mohamed, M.A.; Deris, M.M. A genetic algorithm for optimal job scheduling and

load balancing in cloud computing. Inter. J. Eng. Technol. 2018, 290–294. [CrossRef]
16. Hamad, S.A.; Omara, F.A. Genetic-based task scheduling algorithm in cloud computing environment. Int. J. Adv. Comput. Sci.

Appl. 2016, 7, 550–556. [CrossRef]
17. Zhan, Z.H.; Zhang, G.Y.; Gong, Y.J.; Zhang, J. Load balance aware genetic algorithm for task scheduling in cloud computing. In

Proceedings of the Asia-Pacific Conference on Simulated Evolution and Learning, Dunedin, New Zealand, 15–18 December 2014;
pp. 644–655. [CrossRef]

18. Rekha, P.M.; Dakshayini, M. Efficient task allocation approach using genetic algorithm for cloud environment. Clust. Comput.
2019, 22, 1241–1251. [CrossRef]

19. Javanmardi, S.; Shojafar, M.; Amendola, D.; Cordeschi, N.; Liu, H.; Abraham, A. Hybrid job scheduling algorithm for cloud
computing environment. In Proceedings of the Fifth International Conference on Innovations in Bio-Inspired Computing and
Applications IBICA 2014, Ostrava, Czech Republic, 23–25 June 2014; pp. 43–52. [CrossRef]

20. Kokilavani, T.; Amalarethinam, D.G. Load balanced min-min algorithm for static meta-task scheduling in grid computing. Int. J.
Comput. Appl. 2011, 20, 43–49. [CrossRef]

21. Alnusairi, T.S.; Shahin, A.A.; Daadaa, Y. Binary PSOGSA for Load Balancing Task Scheduling in Cloud Environment. Int. J. Adv.
Comput. Sci. Appl. 2018. [CrossRef]

22. Abdi, S.; Motamedi, S.A.; Sharifian, S. Task scheduling using modified PSO algorithm in cloud computing environment. In
Proceedings of the International Conference on Machine Learning, Electrical and Mechanical Engineering, Tomsk, Russia, 16–18
October 2014; Volume 4, pp. 8–12.

23. Cao, Y.; Zhang, H.; Li, W.; Zhou, M.; Zhang, Y.; Chaovalitwongse, W.A. Comprehensive learning particle swarm optimization
algorithm with local search for multimodal functions. IEEE Trans. Evol. Comput. 2018, 23, 718–731. [CrossRef]

24. Abdullahi, M.; Ngadi, M.A. Symbiotic Organism Search optimization based task scheduling in cloud computing environment.
Future Gener. Comput. Syst. 2016, 56, 640–650. [CrossRef]

25. Nasr, A.A.; El-Bahnasawy, N.A.; Attiya, G.; El-Sayed, A. Using the TSP solution strategy for cloudlet scheduling in cloud
computing. J. Netw. Syst. Manag. 2019, 27, 366–387. [CrossRef]

26. Panda, S.K.; Jana, P.K. An energy-efficient task scheduling algorithm for heterogeneous cloud computing systems. Clust. Comput.
2019, 22, 509–527. [CrossRef]

27. Singh, S.; Kalra, M. Scheduling of independent tasks in cloud computing using modified genetic algorithm. In Proceedings of the
2014 International Conference on Computational Intelligence and Communication Networks, Bhopal, India, 14–16 November
2014; pp. 565–569. [CrossRef]

28. Kaur, S.; Sengupta, J. Load Balancing using Improved Genetic Algorithm (IGA) in Cloud computing. Int. J. Adv. Res. Comput.
Eng. Technol. (IJARCET) 2017, 6, ISSN 2278-1323.

29. Kumar, A.S.; Venkatesan, M. Multi-Objective Task Scheduling Using Hybrid Genetic-Ant Colony Optimization Algorithm in
Cloud Environment. Wirel. Pers. Commun. 2019, 107, 1835–1848. [CrossRef]

30. Krishnasamy, K. Task scheduling algorithm based on hybrid particle swarm optimization in cloud computing environment. J.
Theor. Appl. Inf. Technol. 2013, 55, 33–38.

31. Kaur, G.; Sharma, E.S. Optimized utilization of resources using improved particle swarm optimization based task scheduling
algorithms in cloud computing. Int. J. Emerg. Technol. Adv. Eng. 2014, 4, 110–115. [CrossRef]

32. Beegom, A.A.; Rajasree, M.S. Integer-PSO: A discrete PSO algorithm for task scheduling in cloud computing systems. Evol. Intell.
2019, 12, 227–239. [CrossRef]

33. Bitam, S. Bees life algorithm for job scheduling in cloud computing. In Proceedings of the Third International Conference on
Communications and Information Technology, Coimbatore, India, 26–28 July 2012; pp. 186–191. [CrossRef]

34. Awad, A.I.; El-Hefnawy, N.A.; Abdel_kader, H.M. Enhanced particle swarm optimization for task scheduling in cloud computing
environments. Procedia Comput. Sci. 2015, 65, 920–929. [CrossRef]

35. Rjoub, G.; Bentahar, J.; Abdel Wahab, O.; Saleh, Bataineh, A. Deep and reinforcement learning for automated task scheduling in
large-scale cloud computing systems. Concurr. Comput. Pract. Exp. 2020, e5919. [CrossRef]

36. Sharma, M.; Garg, R. An artificial neural network based approach for energy efficient task scheduling in cloud data centers.
Sustain. Comput. Informatics Syst. 2020, 26, 100373. [CrossRef]

37. Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.; Buyya, R. CloudSim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 2011, 41, 23–50. [CrossRef]

http://dx.doi.org/10.1002/cpe.4368
http://dx.doi.org/10.1007/s11227-019-02916-4
http://dx.doi.org/10.26483/ijarcs.v8i3.3106
http://dx.doi.org/10.1007/s00521-019-04119-7
http://dx.doi.org/10.5815/ijitcs.2012.10.09
http://dx.doi.org/10.14419/ijet.v7i3.28.23462
http://dx.doi.org/10.14569/ijacsa.2016.070471
http://dx.doi.org/10.1007/978-3-319-13563-2-54
http://dx.doi.org/10.1007/s10586-019-02909-1
http://dx.doi.org/10.1007/978-3-319-08156-4-5
http://dx.doi.org/10.5120/2403-3197
http://dx.doi.org/10.14569/IJACSA.2018.090535
http://dx.doi.org/10.1109/TEVC.2018.2885075
http://dx.doi.org/10.1016/j.future.2015.08.006
http://dx.doi.org/10.1007/s10922-018-9469-9
http://dx.doi.org/10.1007/s10586-018-2858-8
http://dx.doi.org/10.1109/cicn.2014.128
http://dx.doi.org/10.1007/s11277-019-06360-8
http://dx.doi.org/10.1.1.640.8685
http://dx.doi.org/10.1007/s12065-019-00216-7
http://dx.doi.org/10.4018/978-1-4666-1830-5.ch003
http://dx.doi.org/10.1016/j.procs.2015.09.064
http://dx.doi.org/10.1002/cpe.5919
http://dx.doi.org/10.1016/j.suscom.2020.100373
http://dx.doi.org/10.1002/spe.995

	Introduction
	Related Work
	Cloud Scheduling Heuristics
	Cloud Scheduling Meta-Heuristics

	Balancer Genetic Algorithm (BGA)
	Task Scheduling
	Architecture of BGA
	Encoding
	Fitness Function
	Selection Operator
	 Crossover Operator
	Mutation Operator
	 Balancer Operator
	Fusion of Heuristic

	Performance Metrics
	Makespan
	ARUR

	Experimental results and Discussion
	Experimental Setup
	Workload Generation
	Benchmark Techniques
	Discussion on the Comparison

	Conclusions
	References

