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Applicability of the software Security code metrics for Ethereum smart 

contract using Solidity

Abstract. The Ethereum blockchain allows, through software called smart 
contract, to automate the contract execution between multiple parties with-
out requiring a trusted middle party. However, smart contracts are vulner-
able to attacks. Tools and programming practices are available to support 
the development of secure smart contracts. These approaches are effective 
to mitigate the smart contract vulnerabilities, but the unsophisticated eco-
system of the smart contract prevents these approaches from being fool-
proof. Besides, the Blockchain immutability does not allow smart contracts 
deployed in the Blockchain to be updated. Thus, businesses and developers 
would develop new contracts if vulnerabilities were detected in their smart 
contracts deployed in Ethereum, which would imply new costs for the busi-
ness. To support developers and businesses in the smart contract security 
decision makings, we investigate the applicability of the security code met-
ric from non-blockchain into the smart contract domain. We use the Goal 
Question Metric (GQM) approach to analyze the applicability of these met-
rics into the smart contract domain based on metric construct and measure-
ment. As a result, we found 15 security code metrics that can be applied to 
smart contract development. 

Keywords:  Security, Metric, QGM, smart contract, Ethereum, Blockchain 

1 Introduction 

Blockchain technology has started gaining more attention from businesses and 
governments after the introduction of Bitcoin [1]. Defined as a shared public 
ledger that stores transactions in a decentralized peer-to-peer network of comput-
ers, Blockchain guarantees the transaction execution without third-party interven-
tion. Initially limited to peer-to-peer payment-based transactions [1], Blockchain 
now through platforms like Ethereum [2] and Hyperledger [3], can also be applied 
in many other domains[4][5].  

For this study, we focus on the Ethereum Blockchain. The Ethereum Block-
chain enables through computing protocols, known as smart contracts, to verify 
and enforce contract negotiation on the top of the Blockchain. The smart contract 
can be built and deployed by anyone using Solidity – one of the Turing complete 
language provided by Ethereum. However, it is publicly accessible [2]. Therefore, 
the smart contract code is exposed to the attackers, which can lead to attacks on 
the contracts such as the attack on DAO contract [6]. This attack led to a loss of 
3.6m Ether. The growing number of attacks on Ethereum has forced businesses 
and researchers to incorporate the aspect of security during the development pro-
cess of the smart contract. Verification tools [7]–[10] and programming practices 
and patterns [11]–[13] are currently available in the literature to support this pro-
cess. However, these approaches are not effective enough to being foolproof. 
They do not fully cover the security of the smart contract. Thus, given Blockchain 
immutability, identifying critical vulnerabilities in a deployed contract would lead 
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the developer or business to create and deploy a new contract. Therefore, an indi-
cation of smart contract security is necessary to help developers and businesses in 
decision-making before deploying smart contracts. 

In non-blockchain environement, software security metrics are described as 
good indicators for the security of the software. To the best of our knowledge, 
there are no security metrics for the Ethereum smart contract domain. 

We investigate the applicability of the existing security code metric in non-
blockchain environement into Ethereum smart contract domain for contract build 
with Solidity. By using the Goal Question Metric (GQM) approach we analyzed 
the applicability of the security code metric from the non-blockchain into the So-
lidity smart contract domain based on metric construct and measurement. We 
found 15 among the list of 20 security code metrics are applicable for the 
Ethereum smart contract with respect to both construct and measurement. These 
metrics can be used by developers or organizations during smart contract security 
development.  

2 Background 

2.1 Ethereum smart contract and Solidity 

Blockchain is an encrypted transaction-based-ledger running on the top of a 
decentralized peer-to-peer network of computers known as nodes [1]. Guarantee-
ing the transparency, immutability, anonymity of the transaction through Bitcoin 
(first implementation of the Blockchain), Blockchain has been implemented under 
new platforms such as Ethereum. Defined as a second-generation of Blockchain, 
Ethereum implements computing protocols known as smart contract on the top of 
the Blockchain for the transaction flexibility[2]. A smart contract is software run-
ning on top of the Blockchain. It is executed in a virtual machine (EVM) provided 
by Ethereum located in each node [14]. It aims to encode rules to reflect any kind 
of multi-party interactions. Smart contract is represented in the Ethereum envi-
ronment by an account which consists of a unique address and account state with 
the amount of Ether (balance), storage, and code hashes respectively pointing to-
ward storage memory in EVM and the contract code in Blockchain ledger as 
shown Fig 1. Locating in the Blockchain ledger, the smart contract code stays 
immutable, thus preventing a malicious entity from tampering with the code to 
get the control of the smart contract. However, the immutability of the contract 
code does not allow the smart contract to rely on the standard life cycle of soft-
ware. The maintenance of the smart contract is impossible. The developer could 
not update a contract program containing errors unless a new version of the con-
tract is released. 

For the contract development, the developer can refer to Solidity – a Turing-
complete programming language provided by Ethereum. Solidity’s syntax is quite 
similar to JavaScript and Java language. Solidity as the Java and Javascript lan-
guage supports some Objected oriented constructs and procedural constructs 
[15].It also supports coupling, cohesion and inheritance of the contracts. Solidity 
based-contracts are executed through the EVM bytecode generated by a Solidity 
compiler, which bytecode is interpreted by the EVM. 
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2.2 Smart contract security 

Smart contracts are increasingly being adopted to implement applications in many 
sectors such as financia [16], health [4] and IoT [5]. Smart contracts enable the 
development of potential new business models but also introduces computing in-
frastructures capable of defect, error, and failure.  

According to Delmolino et al. [17], after analysing various smart contract 
application source codes developed by students, they identified smart contract 
source codes are victim to common pitfalls such contracts prone to logical errors, 
fail to use cryptography, they do not incentive user to the expected behaviour, and 
not aware Ethereum specific bug such as Call-stack bug.  

Similarly, Luu et al. [7] highlighted gaps in the understanding of the dis-
tributed semantics of the Ethereum platform, which favours smart contract at-
tacks. They introduce new security vulnerabilities in smart contracts and show 
possible attacks based on these vulnerabilities. Atzei et al. [18] provide a system-
atic classification of smart contract vulnerabilities according to the vulnerability 
source. They show Ethereum Blockchain, EVM and Solidity are sources of smart 
contract vulnerability. Similarly, Chen et al. [19]show that Ethereum blockchain, 
Solidity and EVM are the sources of vulnerability by providing a taxonomy of 
smart contract vulnerability after analysing 44 vulnerabilities which 19 of those 
vulnerabilities are caused by Solidity language and the misunderstanding of the 
programming with Solidity. They suggest the development of more secure pro-
gramming languages and more secure supporting tools for smart contract security. 

The security which is becoming a critical aspect of the smart contract de-
velopment remains the prerogative of stakeholders to verify the correctness and 
fairness of the smart contract. Thus, research works provide tools to analyse the 
smart contract vulnerabilities. Luu et al. [7] provide an OYENTE - static analysis 
tool using symbolic execution for detecting bugs at the bytecode level of the smart 
contract. However, this tool does not offer sufficient enough to detect most vul-
nerabilities identifies in a smart contract such as integer overflow/underflow [10]. 
Tsankov et al. [8] developed a static analysis tool, called SECURIFY, using both 
symbolic execution and filter of predefined compliance and violation patterns to 
explore all the contract behaviours (avoiding false negatives) and also to avoid 
false positives. However, this tool has limitations. For instance, SECURIFY is 
based on properties that do not capture all the violations that might be exploited 
by attackers, leading to certain vulnerabilities remaining in smart contracts. 

Another approach for analysing the program is to apply formal verification 
which incorporates mathematical models to make sure that the code is free of er-
rors. Bhargavan et al. [20] conducted a study on smart contracts using this ap-
proach. They outline a framework able to parse the Solidity source and EVM byte 
code into a functional programming language F*, to proceed to the smart contract 
verification. Similarly, Amani et al. [9] presented a verification tool of the smart 
contract based on Isabelle/HOL proof assistant. However, these formal verifica-
tion tools do not take into account all the EVM semantics. For instance, the prop-
erties based on inter-message calls of contracts are not supported by the tool pro-
vided by Amani et al. [9] leading the related vulnerabilities to remain in smart 
contracts. 

Some research works have been conducted to help the developers to adopt 
security practices and patterns for securing the smart contracts. Security practices 
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and patterns refer to realistic and enforceable actions that address the most com-
mon software security issues. Whorer and Zdun [11] identified six security design 
patterns based on the grounded theory techniques for the smart contract with So-
lidity. Mavridou et al. [12] proposed two security patterns that can be imple-
mented as plugins to facilitate their application. Regarding the security program-
ming practices, N’Da et al [13] conducted a study for characterizing the cost of 
the security programming practices in the smart contract. As a result, they identi-
fied a list of 30 security programming practices from JAVA and C++ that can be 
used for smart contract security.  

2.3 Metrics for measuring software security 

In the non-Blockchain environement, the use of metrics has received a lot 
of attention. Metrics provide information on the software which can be analysed 
and utilised in business decisions. A software metric is defined as a quantitative 
measure of a given software property, which differs from a measurement used in 
some literature to represent a metric[21],[22]. Research studies assessed the effi-
ciency of the software metric in security vulnerability prediction. Nguyen and 
Tran[23] evaluated the semantic complexity of the software in vulnerability de-
tection through complexity metrics. They extracted semantic complexity metrics 
from dependency graph on Mozilla JSE software. By using classification AI tech-
niques(Naïve Bayesian, Random Forest, Neural Network and Bayesuian Net-
work) for these complexity metrics evaluation, their result showed the false neg-
ative(FN) rate can be reduced of 89% for nesting metrics to 40%.[24]et al inves-
tigated the usefulness of metrics such us complexity, code churn and developer 
activity for vulnerability prediction. By using three prediction model of each 
group and a model combining these metrics based on discriminant analysis and 
Bayesain network, they showed these models were able to predict about 70% of 
vulnerable files from two open sources projects (Mozilla Firefox, and Linux Ker-
nel) with accuracy lower than 5%. Moshtari et al[25] replicated the shin et al study 
by considering more complete vulnerabilities and cross-project vulnerability that 
were not considered by Shin et al. They evaluated complexity metrics in the pre-
diction of vulnerability. Their result showed about 92% of the vulnerable files 
with false positive (FP) of 0.12% are detected in the Mozilla Firefox project. And 
complexity metrics could detect about 70% of vulnerable files with tolerable false 
positive (FP) rate of 26% for cross-project vulnerability prediction on five open 
source projects. Chowdhury and Zulkernie[38]used Coupling, cohesion, and com-
plexity metric to predict vulnerability. They performed the experiment on 52 re-
leases on the Mozilla Firefox and through the use of C4.5 Decision tree, Random 
Forest, Logistic regression and Naives Bayes, the Coupling and Cohesion metric 
were able to predict correctly 75% of the vulnerable files with false-positive rate 
less than 30%. 

 Besides, security metrics were also proposed and used to assess security 
at the early stage of software development. Sultan et al. [26] provided a catalog 
of metrics for assessing security risks of the software through the Software De-
velopment Life Cycle (SDLC). They defined metrics for requirement, design, im-
plementation, and maintenance phases by using the GQM approach. Metrics are 
also defined to characterise the security vulnerabilities of software systems. Based 
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on Common Vulnerability Scoring System (CVSS) research [27],[28] provided 
security metrics to assess software system vulnerability.  

2.4 Metric in smart contract domain 

In this section, we provided an overview of the reported researches based on the 
metrics for the smart contract context. 

There are few researches works using metrics in the smart contract do-
main. Hegedus [29] proposes a set of metrics derived from non-blockchain met-
rics to help developers during the Solidity smart contract development. The author 
also provides a tool called Solmet to collect them. The study was able to provide 
an overview of the structure of smart contracts in terms of size, complexity, cou-
pling, and inheritance properties. The result of his study shows these metrics in 
the context of smart contracts have lower values compared with the context non-
blockchain programs.  

Similarly, Perio et al. [30] propose a fully web-based tool called PASO, 
which is able to compute smart contract metrics. They discussed a few numbers 
of software code metrics derived from OO metrics in non-blockchain envi-
ronement and also metrics specifics to Solidity language. Some of their OO met-
rics have been already discussed by Hegedus [29].  

Vandenbogaerde [31] proposes a graph-based framework for computing 
OO design metrics from non-blockchain environement into the smart contract 
context. Their framework allows analysing the design of Solidity smart contract 
through the simple queries which can extract the contract function and design 
metric from a generated graph-based semantic meta-model. After implementing 
this framework to a list of contracts, the authors mentioned that most of the con-
tracts in solidity have some similarity to java practice when creating class, and 
also that contract coupling and inheritance are less utilized in smart contracts. 

Unlike Hedegus and Vandenbogaerde whose study was just oriented smart 
contract structure through metric, [32]investigated OO metrics for smart contract 
structure as well as their correlation with gas consumption in smart contracts. The 
author uses Solmet, Truffle suite [33] to extract respective OO metrics and de-
ployment cost of the list of contacts from a Github project. By using Spearman's 
rank correlation method, the author shows there is a statistically significant corre-
lation between some of the OO metrics and the resources consumed on the 
Ethereum Blockchain network when deploying the contract. 

In contrast to these papers, our study focuses on the security aspect of the 
smart contract by investigating the security code metrics from non-blockchain en-
vironment for the solidity smart contract. 

3 Applicability of software security metrics for Ethereum smart 

contracts 

In this section, we present an investigation of the applicability of security 
metrics for solidity smart contracts. To design our research we exploit the GQM 
approach [34]. This section describes the research method and results. 
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3.1 Method and process 

Our goal is to characterise the applicability of security metrics for Ethereum smart 
contracts written in Solidity. To achieve this, we will evaluate the potential ap-
plicability of the non-blockchain security metrics into the Ethereum smart con-
tracts written in Solidity. Error! Reference source not found. Table 1. GQM 

model for applicability of the security source code metrics in smart contract contextpre-
sents the GQM approach used to design this research [34]. 

Table 1. GQM model for applicability of the security source code metrics in smart contract 
context 

Purpose:  

Analyze  Source code metrics for measuring security in 
non-blockchain software development 

With the purpose of:  Characterizing their applicability in smart con-
tract development 

  

With respect to:  The applicability of Construct: Identification of 
built concepts around the metric and their poten-
tial interpretation in the Blockchain domain 
 
The capability of measurement: getting the metric 
measures based on the measurement process in 
the targeted domain 

Point of view:  Researcher   

In the context of:  The software coding process of smart contracts in 
Solidity for the Ethereum Blockchain platform. 
Subjects are smart contracts obtained from 
Ethereum and published peer-review papers. 

 
We define the following two research questions and their derived metrics 

based on these research needs, developed through the GQM. 
Research Question 1 (Applicability) Is it possible to identify and interpret 

the constructs embedded in the security metrics and interpret them in the Solidity 
smart contract domain? – Metric: Qualitative Judgement and “Yes/No” dictum.  

Research Question 2 (Capability) Is it possible to perform the measure-
ment (defined in the metric) in the Solidity smart contract domain? – Metric: 
Qualitative Judgement, “Yes/No” dictum, and corresponding corroborating evi-
dence 
 
Instrumentation 
To answer Research question 1 (related to the construct), a literature review was 
conducted to gather the candidate security metrics. We used snowballing method 
guidelines proposed by [35] for getting the relevant quality papers related to the 
security code metrics. Hence for the start set we refer to the known datasource 
such as academic literature from online database, conference proceeding, aca-
demic journal. From those sources, we looked for literature respectively according 
the input based on the following string expression: software metric-security met-
ric- security measurement-software security metric-security code metric. As re-
sult, we could identify a list of 16 literature related to the security code metric.  
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Table 2 The start set for snowballing of the research study 

No Paper 
1 K. Sultan, A. En-Nouaary, and A. Hamou-Lhadj, “Catalog of metrics for 

assessing security risks of software throughout the software development 
life cycle,” Proc. 2nd Int. Conf. Inf. Secur. Assur. ISA 2008, pp. 461–465, 
2008 

2 J. A. Wang, H. Wang, M. Guo, and M. Xia, “Security metrics for software 
systems,” Proc. 47th Annu. Southeast Reg. Conf. ACM-SE 47, 2009. 

3 Chowdhury and M. Zulkernine, “Can complexity, coupling, and cohesion 
metrics be used as early indicators of vulnerabilities?,” Proc. ACM Symp. 
Appl. Comput., pp. 1963–1969, 2010. 
 

 
After a deep analysis of the latter, we considered the paper as candidates for in-
clusion, those that focus on source code security, publicly refereed, and which 
metrics presented are well defined and provide evidence that they measure the 
security. For the well-defined metric, we follow the metric pattern below: 
 Metric name: given name of the metric 
 Subject: The type and the description of the entity being measure 
 Attribute: property of the feature from the subject being measure 
 Measurement: process describing how the subject attribute is measured 
 Validation approach: validation process providing to evaluate the reliability 

of the metric base on the attribute being measure 

Thus, we decided to exclude 13 papers because some are out of our scope 
and the others are from the same authors. Therefore we use as candidates for in-
clusion 3 remain paper for the start set as shown in Table 2.Since the use of metrics 
to measure security are lately get attention[36][37], we decided for the time frame 
of the start set to focus on research between 2007 and 2010 as shown the Table 2. 

 From these 3 papers both backward and forward snowballing were con-
ducted. For the backward snowballing, for each paper, we consider their reference 
list which title is related to “the security code metric”, “security code measure-
ment”. Then we examined the full text of the paper seeming relevant in alignment 
with our inclusion criteria mentioned above. For the forward snowballing, for 
each paper, we look at the paper citing it and applied the same approach based on 
the inclusion criteria mentioned above to select the new relevant paper for our 
study. We continue that process until we were not able to find more relevant pa-
pers for our study scope. 

In total, we were able to identify a list of 9 relevant paper focusing on the 
security code metric and which security measurement have been proved with ev-
idence. From these 9 relevant papers, we identified a list of 20 security code met-
rics as the candidates of security code metrics for our study. For each security 
code metric, we applied a judgment and our experience to critically appraise their 
construct. Our judgment is based on the interpretation of the metric constructs in 
the smart contract environment. Hence, we deemed applicable a metric based on 
the construct when its construct can be interpreted in Ethereum smart contract 
environment. 
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To Answer Research question 2 (related to measurement), we analyse the 
measurement process against the smart contract environment for each security 
metric used to answer RQ1 (related to the construct). If the measurement of a 
security code metric can be performed in the context of the smart contract, to 
ensure the consistency of our judgment, we try to collect its measure from two 
testimonial contracts. The applicability of the metric is decided based on its meas-
ure. The two testimonial contracts used in this study are E-voting and Supply 
chain contracts. The E-Voting contract is provided by the Ethereum platform[38]. 
The second one is a module contract for the supply chain that consists of two 
smart contracts developed by another research study [39]. We claim that these two 
smart contracts provide a representative sample of smart contracts in Ethereum. 
Firstly, the E-voting development is independent of this research. This is a single 
smart contract sample having a simple structure design as required by Ethereum 
(compare to traditional software), representing then most of the smart contracts 
that are in Ethereum. Secondly, the supply chain smart contract has been validated 
by the research community and (comparing to the E-voting) provides attack sur-
faces that stem the interaction between contracts. 

3.2 Result 

In this section, we present the results of the analysis deriving from the applicabil-
ity of the security code metric from non-blockchain into the smart contract domain 
with Solidity. 

 RQ1: Analysis of applicability of the security metrics base on the metric construct. 
To determine the applicability of the security code metric based on the construct 
in the smart contract context we proceed to the review of literature through which 
we identified 20 security code metrics as shown in Table 3. The identified metrics 
can be grouped by OO metrics (WMC, DIT, CBO, NOC, RFC, LCOM,), com-
plexity metric (McCabe complexity, Halsted volume, CER), and exception met-
rics (NCBC, Rserr, EHF). For each metric, we identified and compared its con-
struct against the smart contract environment by considering Solidity language 
constructs, Ethereum Blockchain mechanism, and theoretical basis.  Finally, the 
construct of each metric is deemed to be applicable when the construct is repre-
sented (implemented) into the smart contract environment.  

As a result, we found 15 security code metrics, shown in Table 3, for which 
the construct is applicable in the smart contract context.  

Since space constraints limit our capacity to provide detail on each metric, 
this paragraph presents the type of discussions that lead our judgment. For in-
stance, the constructs of metrics such as DIT and CBO are based on the Object-
Oriented concepts: Coupling, inheritance, cohesion program [40], [41], which can 
be readily interpreted in the development of the smart contract with Solidity given 
those concepts are used in Solidity[15]. Therefore, we accept these metrics to be 
applicable. In contrast, the metric construct of the VBW [22] metric (that stands 
for Vulnerability Based Weakness) cannot be applied in Solidity. Indeed, the 
VBW construct implies standard lists. The first one is CWE [42], which is a list 
of Common Weaknesses related to software. The second one is [43], which is 
Common Vulnerabilities related to software. These two lists are linked by the fact 
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that weakness can imply vulnerability (ies). Therefore, for a specific weakness in 
CWE, the list of vulnerabilities from the CVE can be identified.  However, in the 
smart contract context, currently, there is no standard common weaknesses list 
from which smart contract vulnerabilities are associated. There is a standard com-
mon weakness list implementation for smart contracts named SWC [44] (stand 
for Standard Weakness classification) similar to CWE, but unlike CWE, it does 
not associate vulnerabilities to weaknesses. Therefore, in absence of CWE and 
CVE list in the smart contract context, we claim that this metric construct is not 
applicable in the smart contract. 

Table 3. List Security code metric in the traditional (non-blockchain) environement 

Metric name Applicability of con-
struct? (M1) 

 The capability 
of measurement 
(M2) 

 

VBW[22] (vulnerability based weak-
ness) 

NO  NO  

WMC[21], [41] (Weigthed Method Per 
Class 

YES  YES  

DIT[21], [41](Depth of Inheritance) YES  YES  

NOC[21], [41]Number of Children) YES  YES  

CBO[21], [41](Coupling between ob-
jects class) 

YES  YES  

RFC[21], [41](Response for the Class) YES  YES  

LCOM[21], [41](Lack of Cohesion in 
Method) 

YES  YES  

Stall Ratio[45] YES  YES  

CER[45] YES  YES  

Nerr[26] NO  NO  

Nserr[26] NO  NO  

Rserr[26] NO  NO  

Nex[26] YES  YES  

Noex[26] YES  YES  

Roex[26] YES  YES  

McCabe Complexity(CCM)[24][46]  YES  YES  

Halstead’s volume metric[47], [48] YES  YES  

CCP[45] YES  YES  

NCBC[49] YES  YES  

EHF[49] NO  NO  

RQ2: Analysis of the capability of measurement of the security metrics. -To answer 
this research question, we followed the metric definition to obtain a measurement 
of the smart contracts under study. We were able to obtain the measurement for 
15 metrics from the 20 metrics from Table 3. Therefore, we conclude that smart 
contracts in Solidity are capable of providing the elements to measure these met-
rics.  

As shown the Table 4, we were able to determine the value of the metrics 
for E-voting and Supply chain contracts by following the measurement process of 
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these 15 metrics. Like in the previous section, we cannot provide a detailed ac-
count of how each measurement is taken due to the space concerns. As a repre-
sentative example, the NCBC metric measurement consists to count the number 
of exception handling statements (try-catch) in the program, which can be identi-
fied in the smart contract context by determining the number of exception han-
dling statements used in Solidity. These exception statement are: (revert(), re-
quired(), assert(), etc…). 

The reader will notice from Table 4 that some metric measures resulting in 
a value of 0. We highlight that this does not challenge the answer of our research 
question. The high-level explanation for these results is that the smart contracts 
used here do not provide the complexities (or vulnerabilities) that those metrics 
intend to count. We will discuss this further in the next section.  

Table 4. Measures of applicable security code metrics based on measurement from E-
voting and supply chain contracts 

Metric  E-voting Supply chain(Bid-
ding) 

Supply chain 
value(Track-
ing) 

WMC  12 11 11 

DIT  0 0 0 

NOC  0 0 0 

CBO  0 1 1 

RFC  5 18 23 

LCOM)  0 0 0 

Stall Ratio  0 0 0 

CER  1 0.78  0.9 

Nex  0 13 14 

Noex  7 5 8 

Roex  1 0.28 22 

McCabe 
Complex-
ity 

 3 1.58 1.38 

Halstead’s 
volume 
metric 

 1850.15 
 

3134.25  2589.4  

CCP  0 0 6 

NCBC  0 0.72 0.64  

4 Discussion 

In this section, we present some points that stem from our research results. 
 
Applicability of the security code metric construct into smart contract-We 
analysed a list of 20 security code metrics from a review of the literature and found 
that 15 of these metric constructs are applicable to the smart contract domain. 
These applicable security metrics based on construct are generally related to the 



Applicability of the software Security 
code metrics for Ethereum smart 
contract using Solidity 

IC DEEP-BDB 21, Rome, Italy, Aug  23, 
2021 

 

 

complexity, coupling and cohesion, inheritance, and exception handling of the 
program code. These elements of the source code have been empirically shown to 
be suitable proxies for measuring source code security [21][49]–[51]. Regarding 
the smart contract context, though there is little (or none) empirical evidence, it is 
reasonable to expect that the relationship between security and these aspects is 
kept. For instance, a smart contract with high complexity in code structure might 
lead to security vulnerabilities. So, with this information, the smart contract de-
velopment team will take proactive steps to deal with the complexity of the smart 
contract code to keep the contract secure before it is deployed.  
 
Measuring capacity and automation in smart contracts-The result from the 
analysis of the measurement of the non-blockchain security code metric reveals 
that the measurements of 15 metrics are applicable to smart contracts. Regarding 
automation, the only WMC, DIT, CBO and McCabe complexity can be collected 
automatically using Solmet tool [29]. However, for the rest of the metrics in Table 

3, to the best of our knowledge, there is not yet any automated tool to collect them 
in the smart contract context. They can currently be collected through a manual 
process as shown in 1 and 2.This is a laborious task for developers. For instance, 
the Halstead volume measurement which is applied manually to an Ethreum smart 
contract requires identifying all operators and operands of the program code. 
Thus, the higher the program size will be, the harder the measure collection of the 
Halstead volume is going to be. The automation of these security metrics is 
needed to help the developer and businesses to manage the security of the smart 
contract more effectively before deploying them.  
 
Consistency of the metric measurements-Table 4  shows the measures of the 
DIT, NOC, stall ratio and LCOM equal 0 for all the testimonial contracts. In fact, 
the reason for the measures of the DIT and NOC being equal to 0 is that these 
metrics use inheritance as a proxy for security. None of the testimonial contracts 
used inheritance. Therefore, the measures resulted in 0. It is expected that, for a 
smart contract involving inheritance, applying this measurement will provide a 
non-zero measure. Similarly, Stall ratio and LCOM have 0 as value for both tes-
timonial contracts. The Stall ratio looks at the statements in the loop which can 
delay the program (i.e log functions), but the codes for the both testimonial con-
tracts do not contain loop statements which can enforce tardiness. Hence the 
measure of this metric for the testimonial contracts is equal to 0. Similarly, it can 
be expected that for a smart contract code involving a statement leading to the 
tardiness of contract execution, the measurement of this metric will be non-zero.  

 
1https://github.com/ndaangekevin/security-code-metric-collection-for-smart-contract.-E-

voting-casae-study 
 
2 https://github.com/ndaangekevin/security-code-metric-collection-for-smart-contract.-

Supply-chain-casae-study- 
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5 Conclusion 

We investigated the applicability of the non-blockchain security code metric into 
Solidity smart contract to help Ethereum developers and organizations to deal 
with the security decisions of the smart contracts. We used the QGM approach to 
design our research case study to achieve this goal. Our study reveals that 15 se-
curity code metrics from both construct and measurement are applicable in the 
smart contract context we provided evidence of their measurement. Therefore, we 
claim that these 15 metrics can be used by developers and organizations to manage 
smart contract security. Moreover, the study suggests that complexity, cohesion, 
coupling, and exception handling might impact the security of the smart contract.  

The use of the proposed metrics from our study also presents a real chal-
lenge for developers. Most of the measurement processes of these metrics have to 
be performed manually. We, therefore, incentivize the research community to pro-
vide automated tools to collect these security code metrics to help developers and 
organizations to manage security issues during the development of smart con-
tracts. 
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