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Abstract: Omics techniques have changed the way we depict the molecular fea-
tures of a cell. The integrative and quantitative analysis of omics data raises 
unprecedented expectations for understanding biological systems on a global 
scale. However, its inherently noisy nature, together with limited knowledge of 
potential sources of variation impacting health and disease, require the use of 
proper mathematical and computational methods for its analysis and integration. 
Bayesian inference of probabilistic models allows propagation of the uncertainty 
from the experimental data to our beliefs of the model parameters, allowing us to 
appropriately answer complex biological questions. In this chapter, we build 
probabilistic models of gene expression from RNA-seq data and make inference 
about their parameters using Bayesian methods. We present models of increasing 
complexity, from the quantification of a single gene expression to differential gene 
expression for a whole transcriptome, comparing them to the available tools for 
analysis of gene expression data. We provide Stan scripts that introduce the reader 
into the implementation of Bayesian statistics for omics data. The rationale that 
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we apply for transcriptomics data may be easily extended to model the particulari-
ties of other omics data and to integrate the different regulatory layers. 

Keywords: Bayesian inference; gene expression; omics; probabilistic models; stan

INTRODUCTION

Omics techniques have allowed us to jump from the quantification of single or 
few molecules to the study of thousands of features at the same time, first through 
cDNA microarrays (1), which were rapidly substituted by Next Generation 
Sequencing (2) and extended to other molecular features, for example,  proteins, 
metabolites, DNA methylation markers, and DNA variants, to name a few. 
However, it  has become clear that omics techniques are prone to systematic and 
random error (3), and that appropriately modeling these errors is  critical for 
success. 

A probabilistic model allows the calculation of the probability of our data 
given a set of parameter values. For example, the probability of obtaining head or 
tails when tossing a coin; if the coin is fair, the parameter that characterizes this 
model, which is the probability of obtaining heads p, is 0.5. However, when 
studying a certain phenomenon, we do not know the actual value of p that gener-
ated the data. Instead, we can use the data to guess the parameter values that best 
explain the obtained data in a process called inference. Thus, if we want to know 
whether the coin is fair, we can make a number of tosses and count the number 
of tails to estimate the actual value of p. 

As experimental data is limited, we can only toss the coin a finite number of 
times, and as it is subject to random variation, we cannot know the exact underly-
ing parameter value, but have an idea of the range of parameter values in which 
the real value may be. Characterization of this variability and how it is related to 
the data is essential to draw conclusions from experiments. Bayesian inference 
approaches this problem by calculating the probability of the parameter given by 
the data (posterior probability). Thus, rather than providing a fixed estimate of 
the true value of the parameters that generated the data, we obtain a probability 
distribution of those parameters characterizing the uncertainty in our estimations. 
Using this posterior distribution, we can calculate the probability of our hypoth-
esis; for example, what is the probability that the difference in the expression of a 
single gene is greater than a certain threshold?

Despite the conceptual suitability of Bayesian inference, even relatively simple 
models often result in complex posterior distributions, lacking an analytical solu-
tion for calculating the probabilities of our hypotheses. Monte Carlo methods 
allow computing these probabilities through sampling from the distribution of 
interest: one just needs to count the number of samples matching the condition of 
interest; for example, we may sample from the posterior distribution of gene 
expression values and count how many of those samples are beyond a certain 
threshold. Markov Chain Monte Carlo (MCMC) algorithms have enabled sampling 
of complex posterior distributions, allowing the development of probabilistic pro-
gramming frameworks such as OpenBUGS (4), JAGS (5) or Stan (6). The latter 
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implements a version of the Hamiltonian Monte Carlo (HMC) method (7), the 
No-U Turn Sampler (NUTS), which allows efficient sampling from high dimen-
sional posterior distributions for approximate Bayesian inference on models with 
a large number of parameters. The NUTS algorithm is also available in other soft-
ware packages than Stan (6), like pymc3 (8) or tf-probability (9). Stan has a large 
community behind it, along with detailed documentation and examples, which 
has been key to its success and development. 

In this chapter, we review the building blocks of probabilistic models and 
Bayesian inference. We explain how to build a simple probabilistic model for the 
inference of the expression level of a single gene in a single sample from scratch, 
and examples of how to use well-known and characterized probability distribu-
tions to model our data of interest. We build models of increasing complexity by 
simultaneously inferring the expression of every gene in the transcriptome and 
how to deal with some of the particularities of RNA-seq data, like ambiguous 
assignment of sequenced fragments, to more than a single gene. Finally, we pres-
ent in detail the model proposed to estimate differences in gene expression across 
different samples and conditions, considering variability within groups. For this 
application, we provide Stan code for its implementation. 

BUILDING BLOCKS OF BAYESIAN INFERENCE

The aim of Bayesian inference is to update our knowledge about the parameters 
of a random process using the experimental information available. Let us think 
about the parameter θ, that is the log-2 normalized expression of gene Pparγ. Let 
us say, based on some previous experiments or on theoretical considerations, that 
we know that its expression should be around 1 in the log2 scale in steady-state 
conditions for a given sample and library depth. We perform an RNA-Seq experi-
ment and measure the expression of Pparγ in three biological specimens at steady-
state. Using this data, we want to update our knowledge about the expression of 
Pparγ. For that, we need to define the following:

1.	 Prior: P(θ = t) is the probability a priori that the unobserved parameter of 
interest θ takes a value t, based only on our knowledge before performing the 
experiment. For the example above, the prior probability distribution should 
be centered around 1. Bayesian statistics allows us to tune this expectation: If 
we are confident that the expression of Pparγ is 1, we will suggest as prior a 
distribution with almost no dispersion around the expected value (Figure 1A). 
That would be a strong prior. On the other hand, if our experiments were 
unclear, we would propose a non-informative or weak prior with a lot of dis-
persion around the expected value (Figure 1B).

2.	 Likelihood: P(y | θ = t), how plausible it is to have observed the data y if we 
are in certain scenario, that is, if θ was to take a value of t. In our example, we 
know that the measurements of the gene expression using RNA-Seq after 
normalization and in the log2 scale follow approximately a normal distribu-
tion, centered around its expected actual expression 1:

P(y | θ) ~ N(θ, σ)
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3.	 Posterior: P(θ = t|y) is the probability that the parameter θ takes a value t, 
knowing now that we have observed the data y. Given the data and the a priori 
distribution of the parameter of interest, we want to infer the probability of 
the different possible values of the parameters of interest. Using the Bayes 
Theorem:

( ) ( )
( ) ( ) ( )( ) ( )θ =
θ θ

∝ θ θ|
|

| ,P y
p y p

p y
P y ·P since P y is constant

	 In general, to report our findings we will use some summarization of the 
posterior distribution such as the posterior mean, median or mode. 
Another important concept that emerges from the posterior distribution 
that we will use through the chapter is the credibility interval: the interval 
within which the unobserved parameter lies with a given probability. 
There are many credibility intervals for a parameter; in general, we will try 
to choose one that contains the most likely values for the parameter of 
interest.

4.	 In complex models with many parameters, the relationships between the data 
and the parameters, and among parameters, can be represented in Directed 
Acyclic Graphs (DAGs), which are useful representations of complex proba-
bilistic models and show their modular structure (10). Figure 2 shows the 
DAG for the Bayesian inference problem of trying to infer differences in gene 
expression across two conditions. In particular, DAGs help us to decompose 
the joint priors and posterior distributions through the chain rule, paying 
attention only to the parents of each parameter:

,..., |1 n
1

P P parentsi i
i

n

∏ ( )( )( )θ θ = θ θ
=

For parentless parameters an a priori distribution needs to be set.

Figure 1.  Prior distributions for the gene expression level of Pparg. A. In a strong prior, most of 
the probability density is concentrated around its center of mass. B. In a weak prior, the 
probability density is more homogeneously distributed across the whole parameter space.
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PROBABILISTIC MODELS FOR SINGLE GENE EXPRESSION

From all techniques used to quantify gene expression, RNA-Seq is the most widely 
used nowadays. To propose a proper probabilistic model, it is crucial to under-
stand in depth the process that generates the data. In RNA-Seq, mRNA from the 
cell culture, tissue or sample of interest is reverse-transcribed into cDNA, which 
is then cut into smaller fragments. Some of these fragments are then sequenced 
using smaller overlapping reads that cover the transcriptome. Depending on the 
sequencing conditions, that is, number of cycles and paired-end or single-end 

Figure 2.  Directed Acyclic Graph (DAG) and probabilistic model for the identification of 
differentially expressed genes. The DAG represents all the parameters that describe the model 
and the dependence relationships among them. Parameters and hyperparameters are 
depicted in blue whereas the data are shown in red boxes. We are modeling expression 
counts with an NB model. The logarithm of the expected counts for each gene depends on 
an average gene expression value α, the expression change β among the different conditions 
defined in the design matrix, the normalization factors of each sample and on each gene 
effective length. The variability of the NB model described by the parameter Φ.
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sequencing, we obtain a certain number of bases covered from one or both ends 
of each fragment. Assuming that there are no unknown positions in the transcrip-
tome sequence and that the reads are long enough to unambiguously map them 
into their correct position in the transcriptome, the outcome of the sequencing 
experiment will be the number of reads covering each position of the transcrip-
tome. In this section, we propose different probability models and state the explicit 
assumptions made about parameters and data to infer the expression (θg) of a 
single gene in a single sample from an RNA-seq experiment.

Binomial distribution

Each cell simultaneously expresses thousands of genes. The expression of a gene 
may be understood as the proportion of the fragments that may arise from this 
gene out of the total amount of sequenced fragments. According to this idea, each 
fragment that we obtain is equivalent to throwing a coin, and the probability of 
obtaining heads is equivalent to the probability of that read mapping into a given 
gene, for example, the expression of that gene (θ), which naturally follows a 
Bernoulli distribution with parameter θ.

p(F = 1|θ) = Bernoulli(F = 1|θ) = θ

If the initial amount of RNA is so high that sampling with replacement can be 
assumed so that fragments are sampled independently from each other, we can 
calculate the probability of obtaining k fragments from our gene of interest from a 
total of n sequenced fragments in the experiment. This can be done by simply 
dividing the total number of individual events that may lead to obtain k fragments 
by the total number of possible outcomes. The resulting distribution is known as 
the binomial distribution:

| , | , 1p k n Binomical k n n
k k n k( )( ) ( ) ( )θ = θ = θ − θ −

To perform Bayesian inference under this simple model, we need to specify a 
prior distribution for the only parameter θ. We know that, in a complex sample, 
several thousand genes may be simultaneously expressed, such that the probabil-
ity of sampling a fragment from a particular gene is expected to be very low. It is 
virtually impossible that 50% of the sequenced fragments arise from a single gene. 
A more reasonable assumption may be that every gene is expressed at similar lev-
els, such that the expected θ will depend on the number of expressed genes in the 
sample N. Thus, 1/N may be the expected value of our desired prior distribution. 
Next, we need to think about the uncertainty that we have around this value: how 
sure are we that every gene is expressed exactly the same? We can imagine that 
some genes may be expressed at higher levels, by 1 or 2 orders of magnitude, but 
hardly more. Thus, we can search for a distribution that can represent this prior 
belief: the beta distribution.

p(θ) = Beta(α, β)

Assuming about N = 104 expressed genes in a given biological condition, for 
α = 0.01 and β = 99.99
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| 0.01, 99.99
1

10 4E
N

( )θ α = β = =
α

α + β
= = −

P(θ > 0.01|α = 0.01, β = 99.99) = 0.002

Here, as the beta and the binomial are conjugate distributions, the posterior dis-
tribution of p is also a beta distribution. From this known posterior distribution, 
we may easily calculate the expected value, uncertainty, and probabilities for any 
hypothesis.

| ,
| ,

, 0.01 , 99.99p k n
p p p p

p k
Beta k n k Beta k n k

( ) ( ) ( )( ) ( ) ( )θ =
θ n

= α + β+ − = + + −

For example, if we sequence a total of 20 million fragments for a given sample 
and find a total of 500 fragments from a particular gene, we can compute the 
posterior expectation E(θ|k = 500, n = 2 × 107) = 2.5 * 10−5 and 95% credibility 
intervals ([2.29,2.72] × 10−5).

Poisson distribution

Under large n and low θ scenarios, as we generally have by sequencing millions of 
cDNA fragments, the binomial distribution can be approximated by the Poisson 
distribution with parameter λ = nθ according to the Poisson limit theorem, also 
known as law of rare events:

( )( )θ λ = θ
→∞

| , |lim Binomial k n Poisson k n
n

�

Moreover, the number of fragments that can be generated from a gene does not 
only depend on its expression, but also on its length and the fragment size. A 1 kb 
long gene may generate up to 800 different 200 bp fragments, while a 500 bp 
gene will only produce 300 different fragments. We may define effective transcript 
length lg as the number of different fragments that can be generated from gene g. 
Thus, the expectation of the resulting distribution is not the gene expression λg 
but its value scaled by *l : lg g g g( )λ = λ :

| | |* *p k Poisson k Poisson k lg g g g g g g( ) ( ) ( )λ = λ = λ

For doing Bayesian inference of λg, as previously done for θ, we need to specify 
a prior distribution describing our prior beliefs on the potential values that λg may 
take. Again, if we vaguely expect every gene to be expressed at similar levels, and 
hence, every position in the transcriptome to be able to give raise to a fragment 
with the same probability, we expect an average of n/T expression of each gene, 
being T the total transcriptome effective length.

E
n

T

n

l
g

ii

N∑( )λ = =
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∑( ) =E k
l n
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Assuming a total of n = 2 × 107 sequenced fragments from N = 104 genes, an 
effective transcript length of 200 bp lg = 700 and a transcriptome length of T = 107, 
the expected number of fragments from gene g is E(kg) = 1,400. If we assume again 
that there is a 0.2% probability of obtaining over 1% of total expression from gene 
g, and we assume that the total expression is approximately Nn/T, then we need 

to specify a prior distribution with only 0.2% of being higher than 0.01 400l
Nn

Tg = . 

We can choose the conjugate distribution of the Poisson (Gamma distribution) 
trying to match the 2 conditions.

( ) ( ) ( )λ α β = λ α β = λ α = β = × −| , | , 0.011, 2.8 10* * * 5p Gamma Gammag g g

As the Gamma distribution is the conjugate of the Poisson, the resulting pos-
terior distribution is also a Gamma:

| , ,
| | ,

, 1*

* *

p k
p k p

p k
Gamma kg

g g( ) ( ) ( ) ( )( )λ α β =
λ λ α β

= α + β +

Thus, under the previous conditions with kg = 500, the posterior expectation 
of the expected number of fragments is E(λ*|k, α, β) ≃ 500, with a 95% credible 
interval of [457.13,544.77]. If we divide this interval by n = 2 × 107, we end up 
with an interval of [2.28,2.72] × 10−5, which is almost identical to the estimated 
under the Binomial model as anticipated. We derive the actual gene expression by 
dividing by the effective transcript length lg:

*

lg
g

λ = λ

E(λg|lg = 200, kg = 500) = 2.5

BAYESIAN INFERENCE OF WHOLE TRANSCRIPTOME 
EXPRESSION

Until now, we have focused on the study of the expression of a single gene. 
However, with transcriptomics we aim to study the expression of every gene in 
the genome at the same time. Hence, our probabilistic model should include the 
expression of every gene as a parameter of interest. In this section, we focus on 
modeling the expression of multiple genes. We will generalize our previous mod-
els for inference of multiple genes and explain how to handle sequence fragments 
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that are ambiguously assigned to different genes. We will also explain how we can 
use hierarchical models for shrinking extreme and unlikely values towards aver-
age gene behavior. Finally, we will contextualize how k-mer mapping methods can 
be easily accommodated into our Bayesian Framework.

From the Binomial to the Multinomial and Poisson distributions

In whole transcriptome analysis, the outcome of interest is no longer whether a 
sequenced fragment belongs to a given gene or not, which is accurately described 
by the Bernoulli distribution, but from which gene the sequenced fragment origi-
nated. This is equivalent to throwing a die instead of a coin: for each toss there are 
N possible outcomes, being N the number of sides of the die, or, in general, the 
number of possible and mutually exclusive outcomes. If we consider a sequenced 
fragment, the outcome may be from which of the N genes it was generated. This 
phenomenon naturally follows a categorical distribution. The categorical distribution 
is a generalization of the Bernoulli for more than 2 possible and mutually exclusive 
categorical outcomes and has N parameters ,...,1 N

�
( )θ = θ θ . In this case, θg corre-

sponds to the probability of gene g to generate a fragment, that is, its expression 
level. As ∑θi = 1, there are effectively N − 1 free parameters.

| |p F i Categorical F i i

� �
( ) ( )= θ = = θ = θ

Where i = 1,…,N. Hence, the number of reads mapping into every gene k


 will 
follow a multinomial distribution, with parameters 

�
θ  as the actual expression of 

each gene: 

| |p k Multinomial k
� � � �( ) ( )θ = θ

The multinomial also has a conjugate distribution: the Dirichlet, which is itself 
a generalization of the Beta for N dimensions. We can conveniently use it to for-
malize our prior knowledge on gene expression values and to obtain a closed form 
for the posterior distribution. Let’s assume for simplicity that we sequenced a total 
of n = 500 fragments from N = 5 genes in our experiment. We do not know the 
expression of each gene or whether one is expected to be expressed at higher lev-
els. However, we may vaguely expect relatively similar gene expression levels, that 
is, the probability of generating a fragment from each gene is the same. Since we 
expect every gene to generate about 20% of the fragments, with a 5% probability 
that over 40% of fragments are originated from one of them, we set a Dirichlet 
prior with αi = α = 2.5:

2.5p Dirichlet Dirichlet( ) ( ) ( )θ = α =

Using this prior distribution, the resulting posterior is also a Dirichlet distribu-
tion with the following parameters:

|
|

2.5p k =
p k

p k
Dirichlet k Dirichlet k( ) ( )

( )
p( ) ( ) ( )θ

θ θ
= α + = +
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If out of the 500 sequenced fragments, we observed k


 = (150,25,40,60,225) 
originated from each gene, the posterior expectation of the expression of gene 1 
would be E[θ1] = 0.30, with a 95% credible interval of [0.26, 0.34]; while for 
gene 5 it would be E[θ5] = 0.44, with a 95% credible interval of [0.40, 0.49].

BitSeq models the gene expression as a Dirichlet distribution and takes each 
sequenced fragment as an independent outcome that depends on the expression 
of the gene from which it was originated and taking into account a certain prob-
ability of mapping error and a known fragment size distribution. (11)

As in the single gene case, the Multinomial distribution may also be approxi-
mated by a multidimensional Poisson distribution when θi is very small and the 
number of fragments generated by each gene becomes nearly independent, as in 
N independent Poisson distributions. In the Poisson approximation, for every 
gene there is a parameter that describes the mean and variance of the distribution 
of the number of counts observed for that gene. This parameter *

gλ  is related to the 
effective length and the expression levels of that gene * lg g gλ = λ , as in the single 
gene case. 

Handling multi-mapping reads 

Until now, we have assumed that genes are completely unrelated, and that cDNA 
fragments can be unambiguously assigned to each of them. However, in a real 
genome, we find transcript isoforms generated by alternative splicing of the same 
pre-mRNA, gene duplicates retaining a large degree of sequence similarity or 
highly conserved domain sequences. Thus, these transcripts may produce identi-
cal fragment sequences. Additionally, if we sequence few bases of the fragment 
ends, we may even find sequences that match by chance somewhere else in the 
genome and hinder the identification of the origin of that fragment. While these 
multimapping fragments may be discarded from the analysis, they carry addi-
tional information that may contribute to a better estimation of gene expression 
levels. 

To tackle this issue, we can model the number of fragments at each transcrip-
tome position instead of the counts per transcript. To do so, we define a T sized 
vector k



 as the number of times a fragment from a given position in the tran-
scriptome was sequenced, together with a matrix M of size T × N that relates 
each position in the transcriptome with the gene from which it may be 
generated.

	
{= 0
1

otherwise
if position belongs to geneMij

i j

�
(eq. 1)

We can also define an N-sized vector µ  representing the gene expression 
across every gene in the transcriptome and a T-sized vector λ  representing the 
expected number of fragments sequenced from a position in the transcriptome, 
such that Mλ = µ . Under this assumption, the expected number of fragments at 
each position is a sum of the expression levels of every gene possibly generating 
that fragment.

| , |p k Poisson kM M( ) ( )µ = µ
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So far, the Boolean matrix M has only a 1 per row (per fragment) as frag-
ments are unambiguously assigned to a certain transcript. If, for example, a 
fragment can map to two different genes, the corresponding row for that frag-
ment must have two ones, one for each column corresponding to the two genes 
where it maps. In this situation, the expected number of reads per gene would 
result from adding the expression of every transcript from which it may be gen-
erated. As long as there are no duplicated rows in M, that is, as long as there are 
no transcripts that produce the exact same fragments thus rendering them 
completely indistinguishable, we should be able to infer the expression of each 
transcript from the data even if they share a large number of potential frag-
ments. This problem has been often tackled using optimization algorithms, for 
example, Expectation-Maximization (EM) (12–14). In particular, Bray et al. (13) 
makes use of bootstrapping by subsampling a number of reads, providing an 
idea about the sensitivity of the gene expression estimates to a specific form of 
variation in the input data. However, it still does not provide a main estimate of 
the uncertainty over the parameters given the observed number of counts for 
each fragment in our samples. Full Bayesian inference of the model parameters, 
in contrast, would allow direct estimation of such uncertainty and show the 
degree of knowledge that we have about the gene expression levels after observ-
ing the data.

Full Bayesian inference of the model parameters would require modeling the 
number of fragments observed from each potential position in the transcriptome, 
which may be too large to handle efficiently from a computational point of view. 
We may simplify the model by defining an intermediate entity between individual 
fragments and genes: a gene group. A gene group includes groups of genes that 
share some fragments. Thus, instead of counting the number of sequenced frag-
ments individually, we may count the number of sequence fragments in each gene 
group as read out. Each row of M now links each gene group with the transcripts 
that are included in it. The size of k



 is now the number of gene groups, which is 
at least equal to the number of transcripts, as a gene group should at least include 
a single transcript. 

As we sum fragments over gene groups, we may encounter different numbers 
of fragments from each group depending on the number of transcriptomic posi-
tions that they include. Thus, we need to define an effective gene group length to 
scale the expected number of fragments from the actual transcript expression 
values. Thus, we additionally need a vector l



 with the effective length, such that, 
for each gene group i:

| , , |p k M l Poisson k l Mi i i i i i( ) ( )µ = µ

k-mer counting methods

This model may be further simplified if, instead of counting full length fragments, 
one counts short k-mer sequences in the sequencing data. Counting k-mers can be 
done very efficiently thanks to recently developed algorithms, and computation-
ally expensive mapping steps may be avoided. Now, we know which k-mers may 
be generated by each transcript in the transcriptome, so we can again build a 
matrix M relating k-mers and transcripts and perform the same inferential process. 
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Methods like kallisto (13) and salmon (14) pioneered the use of k-mers for estimat-
ing gene expression with little loss in accuracy of the quantification, but a huge 
leap in computational cost.

Hierarchical model for shrinkage of gene expression estimates

As previously discussed, although not every gene is necessarily expressed at the 
same level, we expect them not to actually be extremely different but drawn from 
a common distribution. Thus, we may model unobserved gene expression values 
µ as following a particular distribution which is characterized by other parameters 
that are usually referred to as hyperparameters. For instance, we can assume that 
µ are drawn from a normal distribution with a certain mean and standard devia-
tion, which would be the hyperparameters in this expanded model. Thus, infor-
mation from individual genes may help identify the global gene expression 
distribution, and, at the same time, the global information is used as prior for bet-
ter estimation of the expression of the individual genes. Under this model, unusual 
gene expression values will be shrunk to better fit the global distribution and cor-
rect potential errors.  

As the expression of a gene is bounded to be positive μg > 0, we may take the 
log transformation and assume that they are drawn from a common normal dis-
tribution, characterized by a mean μ0 and standard deviation σμ:

	 p(μg | μ0, σμ ) = logNormal(μg | μ0, σμ )� (eq. 2)

Now μ0 represents the average expression level across the whole transcriptome 
in a given sample. σμ, on the other hand, informs us about the variability in the 
expression of different genes, for example, how likely it is to find a gene that is 
expressed twice the average gene expression.

Under this whole-transcriptome model, we have a much larger number of 
parameters, including the expression of every gene in the dataset, as well as the 
mean and standard deviation giving rise to such distribution and over-dispersion 
parameter ( , , ,0Θ = µ µ σ τµ ). As always, to completely specify our Bayesian model, 
we need to specify prior distributions for the remaining parameters μ0, σμ, τ.

To specify a prior on the average gene expression μ0, we may follow the same 
reasoning as before. If we expect genes to be expressed at similar levels, then the 
average of those genes may be close to the average number of expected fragments 
per position in the transcriptome nT , with 95% probability of being within 1 orders 
of magnitude. As μ0 represents the average in the log scale, the following prior sets 
95% probability within 0.1 and 10 times n

T .

| , 1.170 0p Normal log
n

T
( )µ = µ 











Regarding variation in expression across genes, we may again expect that a 
single gene would very rarely represent a large proportion of the total gene expres-
sion. As before, we can formalize this belief by setting a 1% probability of reaching 
a standard deviation allowing more than 100 times the average expression for 1% 
of the genes (p(σμ > 2.35) = 0.01). We can reach this condition with the following 
prior distribution:

p(σμ) = Exponential(1.96)
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If we use the same exponential prior for τ as before, we can derive the full 
posterior distribution and use MCMC methods to sample from it and estimate the 
marginal distribution of the parameters, including average expression and stan-
dard deviation, but more importantly, the expression of each gene in the tran-
scriptome µ.

, , |
| , , | ,

0

00
p k

p p p k M p

p k
( ) ( ) ( )( )

( )
( )

µ µ σ =
µ σ µ τ µ µ σ

µ
µµ

MODELING GENE EXPRESSION ACROSS SAMPLES

Up to now, we have dealt with cases where we just have one measurement for 
each gene, with no biological replicates. Let’s now consider the case when we have 
replicates and, therefore, variance in gene expression values for the same gene 
across samples must also be modeled.

Negative binomial distribution: modeling biological variability 
between replicates

So far, we have focused on the inference of gene expression values across the 
whole transcriptome in a single sample. However, we often want to infer the aver-
age expression in a specific group of samples considering the genetic, environ-
mental, or technical variations among them. Thus, rather than observing kg 
fragments from a given gene g, we now define as outcome a variable kg

���
, represent-

ing the total number of fragments observed across the S samples. 
Formally, assuming a different expected number of counts per sample for a 

gene would mean that there is not a common λ for each fragment but that λ can 
vary across samples, generating a different average number of fragments for each 
of them. Practically, this would result in an increased variability among the counts 
obtained for each gene, which according to our previously assumed Poisson-
distributed model, is expected to be equal to the mean. When modeling this 
higher variability, we can assume that whatever the source of variability in λ for 
fragments generated by the same gene, it may follow a Gamma distribution. Why 
a Gamma distributed λ? Mainly because it is mathematically convenient. We can 
integrate over all possible values of λ and calculate the probability of obtaining 
certain number of fragments directly depending on the parameters of the Gamma 
distribution, which results on a Negative Binomial (NB) distribution. In this way, 
we transition from the Poisson model to the Poisson-Gamma model, more com-
monly referred to as Negative Binomial.

∫ ( ) ( )( )Θ = λ λ φ φ
µ







λ = µ φ
∞

| | | | ,,
0

p k p k p d NB k

We generally parametrize the NB as a function of its mean μ and over-dispersion 
parameter φ or its inverse α = φ

1, which represents the extra dispersion over the 
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Poisson distribution introduced by the variability on the underlying λ across 
fragments. Thus, when φ → ∞, it assumes no over-dispersion over the Poisson 
distribution with λ as mean and variance.

	 φ φ( )µ = µ +
µ

= µ + αµ| ,
2

2Var k � (eq. 3)

If we want to use this model now to infer the average expression of a given 
gene in a group of samples from the observed k



, we first need to specify a prior 
distribution for the underlying parameters Θ = (μ, α). We may use the same hier-
archical distribution for μg as before. As for φ, we may assume that the increased 
variation is unlikely to increase the variance as much as twice, when compared 
with the Poisson distribution. Using equation (eq. 3) we can see that this happens 
when φ = μ. Thus, we need a prior distribution that allocates little mass probabil-
ity beyond this value, P(φ < μ) = 0.01. To do so, we may define a new parameter 

φτ = µ  and set a prior on τ such that the probability of it being higher than 1 (when 
φ < μ) is 0.01. We may use an exponential distribution, for which we can easily 
derive the parameter value that meets this condition.

p(τ) = Exponmential(τ|4.61)

p(τ > 1) = 0.01

As there are usually few samples to estimate the variability for each gene inde-
pendently, we may assume that τ is common for every gene and pool information 
across genes to infer this parameter. k is expanded to be a matrix, with a column 
for each sample in the dataset. The probability of observing the whole matrix of 
counts is then given by:

( ) ( )µ τ = µ τ µ| , , | ,p k M NB k M M

The NB distribution for the data has been widely applied to model gene expres-
sion variability across different samples in popular tools such as edgeR (15) or 
DESeq2 (16).

Modeling uneven coverage across samples: normalization factors

In addition to the variability within biological replicates, we have an additional 
issue: samples are sequenced at relatively different depths. In other words, the 
total number of sequenced fragments may change across samples and thus the 
expected number of fragments from each position or gene across the whole tran-
scriptome changes. To tackle this issue, we define a new set of S − 1 parameters, 
corresponding to the log transformation of the normalizing factors log( f



).
By adding the corresponding factor log(fs) to the log-expression of each sample 

s, we are effectively scaling the expression of the remaining samples to have the 
same average across the whole transcriptome. 

( ) ( )µ τ = µ τ µ,| , , , | ,p k M f NB k f M f Ms s s s s
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As we expect samples to be relatively equilibrated in terms of total sequencing 
depths, we set a strongly informative prior on log(fs) around 0:

p(log ( fs)) = Normal(τ|0,0.05)

Considering these newly introduced factors arisen by modeling several sam-
ples simultaneously, we can expand our previous posterior distribution for full 
inference of model parameters:

( ) ( ) ( ) ( ) ( )
( )

( )
µ µ σ τ =

µ σ µ τ µ µ σ
µ

µµ
, , , , |

| , , , | ,
0

00
p f k

p p p f p k M f p

p k

BAYESIAN DIFFERENTIAL GENE EXPRESSION: 
A STAN CASE STUDY

Up to now we have introduced relatively simple statistical models of gene expres-
sion for inferring the mean expression of each gene, first independently of the rest 
of the genes and afterwards from a transcriptome-wide perspective by pooling 
information from the rest of the genes. However, our final aim is rarely obtaining 
gene expression estimates for a single sample, but to compare different samples 
among them and draw conclusions from the comparison of gene expression 
between different experimental conditions. This type of question is often referred 
to in the literature as differential expression (15, 17).

We know by now that for any problem of Bayesian inference we need to define 
four main parts: (i) What type of data are we dealing with for our inferences? (ii) 
What are the unknown parameters of interest that I want to infer? (iii) What is my 
current knowledge about the parameters of the model (prior) and how is this data 
distributed (likelihood)? How do we define the relationships between the data 
and the parameters (DAG)? (iv) Do our inferences make sense? We will now walk 
you through this workflow from a theoretical perspective but also with Stan code 
for its implementation. 

What type of data are we dealing with for our inferences?

The first thing to consider when modeling differential gene expression is the type 
of data used for inference. The first thing we need to define in Stan is the data. 
In this case, we need to define: 

•	 The integer G will be the number of genes in the experiment.
•	 The integer S represents the number of samples from which differential expres-

sion will be inferred.
•	 An integer matrix of size G × S containing the expression data, particularly the 

number of counts per gene and per sample obtained in our experimental 
setup.

•	 The design matrices relating each sample to a given condition. Design vectors/
matrices are binary vectors/matrices which associate each sample with the 
experimental condition they belong to, such that traditionally: 
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{= 0
1

otherwise
if sample belongs to conditionDij

i j

This encoding for the design matrix assumes choosing a reference sample 
(condition different from j) to which different priors to the rest of the samples will 
be defined. Although sometimes this may not impact final inference, it is defi-
nitely more appropriate to define equal priors for all samples, unless there are 
specific reasons not to do so. To solve this conundrum, the design matrix can be 
transformed from a D Boolean matrix of 0 and 1 into a D* matrix of −1 and 1 such 
that in a simple scenario with 2 different experimental groups, we can simplify the 
matrix D* to a vector for which: 

	 {= −1
1

otherwise
if sample belongs to conditionD*

ij
i j� (eq. 4)

This matrix D* will be a vector, as only two conditions are studied, named in 
our model as design2, and will allow us to define the same prior distribution for 
every condition.

The last element from the data block in our model is the effective gene length, 
lg, of every gene included in the analysis. This element is named ‘eff_length’ in our 
model.

In the transformed data block, we first calculate the specific design matrix 
(design2) from the traditional one (design). After that, we compute a variable 
(expected_gene_mean) that will be used when defining the hyperpriors from a 
hyperparameter in the model, the total mean expression of the sample which will 
be defined as reference for the normalization process (in our model will be the 
first one, as will be explained in the next section). Finally, the effective gene 
lengths introduced in the model as data, are logarithmically transformed so that 
they are easily introduced into the model in the following steps.

data { 
  int<lower=1> G; 
  int<lower=1> S; 
  int<lower=0> expression[G, S]; 
  vector<lower=0, upper=1>[S] design; 
  vector<lower=0>[G] eff_length; 
}

transformed data { 
  �vector<lower=-1, upper=1>[S] design2 = 2 * design - rep_vector(1, S); 

  �real<lower=0> expected_gene_mean = sum(expression[, 1])/sum(eff_length); 
vector<lower=0>[G] log_eff_length = log(eff_length);

}

What are the unknown parameters of interest that I want to infer?

In a differential expression model, we are mainly interested in the effect of an 
experimental condition over the expected counts of the different genes’ expres-
sion. We can define a single parameter per gene, βg, representing the differences 
in the expression level between condition 1 and 2, for each gene. As the gene 
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expression cannot be negative, μ, the expected expression per gene and per sam-
ple, is bounded at zero. For that reason, we can use log(μ) in our regression model. 
The gene expression in sample s can be then obtained as:

( )µ = α +log β Dg, s g g s

where αg is the expected expression levels of gene g in the fictional average sam-
ple, named “alpha” in our model. Using hierarchical modeling, the expected 
expression of every gene, αg, will come from a common distribution that is 
described by two other parameters, μα, σα (mu_alpha and sigma_alpha in our Stan 
model), related to the average expression of all genes and its standard deviation. 
The expected change in expression induced by each experimental condition, βg, 
will depend on a hyperparameter σβ, which will describe expected variability of 
the observed changes in expression, as explained below.

In addition to the biological changes experienced between conditions, we have 
an additional issue: samples are sequenced at relatively different depths, because the 
total number of sequenced fragments may change and thus the expected number of 
fragments from each gene may change. To tackle this issue, we define a new set of 
S − 1 parameters, being S the number of samples, corresponding to the log transfor-
mation of the normalizing factors (log( f



)). By adding the corresponding factor 
log(fg) to the log-expression of each sample s (log(μg, s)), we are effectively scaling the 
expression of the remaining samples to have the same average across genes:

( ) ( )µ = α + β +log D log fg,s g g s s

�

The last parameter to define in our model is the dispersion parameter. Using 
Stan parametrization, we will use φ to model our data as a negative binomial dis-
tribution. This parameter gets infinite values in models where data is equidis-
persed (Poisson-based models). We assume our data is over-dispersed and 
therefore, use a negative binomial model. However, we impose a limit to the pos-
sible values φ can take to avoid computational problems. This limit is so high that 
an inferential result close to it would mean that our date is equidispersed and our 
model should be substituted by a Poisson model.

The model parameters are defined in Stan as follows: 

parameters { 
  real mu_alpha; 
  real<lower=0>  sigma_alpha; 
  vector[G] alpha; 
  vector[G] beta; 
  real<lower=0>  sigma_beta; 
  vector[S-1] log_norm_factors_ref;

  real<lower=0, upper=2000000000> phi; 
}

transformed parameters {

  vector[S] log_norm_factors = append_row(0, log_norm_factors_ref);

}
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What is my current knowledge about the parameters (prior)? How is 
the data distributed under this model (likelihood)?

In this model, αg is equivalent to μg in the single sample model for a fictional aver-
age condition sample (eq. 2), and may assumed to be normally distributed around 
a mean of α0 and σα:

p(α|μα, σα) = Normal(α|μα, σα) The hyperprior of the hyperparameters μα, σα 
can be assumed also normal for simplicity, as described in the previous sections 
about hierarchical modeling. A possible option would be:

( )σ = µ 









β | log ,1.17p Normal

n

To

p(σα) = Normal+ (0,2)

where n
T  has been calculated in the data block from the first sample (used as refer-

ence in the normalization) and has been called ‘expected_gene_mean’ in our 
model.

We expect that the total gene expression will remain constant after any treat-
ment, as differences in total expression are more likely driven by differences in 
sequencing depths among samples. Thus, although the expression of some 
genes may increase after a certain treatment, there may be other genes with 
decreased expression levels such that the total gene expression remains con-
stant. In other words, we expect βg to be normally distributed around zero, with 
a particular standard deviation σβ. Similar assumptions have been implemented 
in DESeq2 (16) for shrinkage of estimated changes under an empirical Bayes 
framework (16). We still need to specify a prior for σβ. As we vaguely expect 
little to no change in overall gene expression, we may set the mode at zero, with 
certain probability of being larger. This can be achieved with a Half-Normal 
distribution centered at 0 and with a standard deviation of 1, placing only 5% 
of the probability mass beyond 1.96, which is an already large standard devia-
tion for βg

p(σβ) = Normal+ (0,1)

About the normalization factors, as we expect samples to be relatively equili-
brated in terms of total sequencing depths, we set a strongly informative prior on 
log( f



) around 0:

p(log( f


)) = Normal+ (0,0.05)

Because of the definition we have chosen for our design matrix, only half of the 
changes in expression βg/2 will be summed to samples in condition j and sub-
stracted from samples in the other condition, being βg the total change induced 
when comparing both conditions.

Finally, to model our count data we will use a negative binomial that accounts 
for the over-dispersion generated by the technical and biological variability. In the 
previous sections, we have reparametrized the model to use an over-dispersion 
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parameter τ, however, in our model, for simplicity, we will restrict ourselves to 
using Stan parametrization φ, defining a non-informative uniform prior over it, 
but imposing a limit over which an increase would have no impacts in our infer-
ences (high values of φ would mean no over-dispersion and those results would 
point to a Poisson model).

	 p(φ) = Uniform(0,2000000000)� (eq. 5)

Finally, using the information given by the DAG (Figure 2) we can derive the 
full posterior distribution for the complete model for differential expression:

=

φ )( )(α β α σ σ | ,α β k D, , , ,, log , ,0p f l

φ)) (( ) )( )) ( (( )( ) )( ( )(
)(

α β τ α α σ β σ α σ σα α α βk D

k

, , , , , | , | 0, p p00p l log f p p p p p log f

p

|

The Stan code to implement such model is:

model { 
  mu_alpha ~ normal(log(expected_gene_mean), 1.17) ; 
  sigma_alpha ~ normal(0, 2); 
  alpha ~ normal(mu_alpha, sigma_alpha); 
  sigma_beta ~ std_normal(); 
  beta ~ normal(0, sigma_beta); 
   
  log_norm_factors_ref ~ normal(0, 0.05);

  phi ~ uniform(0, 2000000000); 
   
  for (i in 1:G) { 
    for (j in 1:S) { 
      expression[i, j] ~ neg_binomial_2_log (alpha[i] + beta[i] * 
design2[j] + log_eff_length[i] + log_norm_factors[j], phi); 
    } 
  } 
}

As we already pointed out, Stan makes use of a programmatically more effi-
cient computational MCMC algorithm, the Hamiltonian Monte Carlo. A very 
interesting introduction to HMC has been written by McElreath (18) and 
others (7, 19).

Do our inferences make sense? Testing our model inference

After inferences are performed using Stan, it is important to check that chains 
have properly mixed and a high enough effective sample size is obtained for each 
parameter (warning messages appear if these conditions are not met), otherwise 
the model must be reparametrized. Once we can computationally trust our 
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inferences, we must consider if our results are sensible. This part of Bayesian 
modeling is more an art than a science and there is no defined strategy for it. We 
can draw  inspiration from previously defined Bayesian workflows such as (20).

One option is to use leave-one-out cross-validation algorithms such as the loo 
R package to look for influential observations that may be distorting our infer-
ences. To do so, the log likelihood (log_lik in our model) of each iteration in the 
model has to be computed. For that, the last block of Stan models can be used, 
the generated quantities block, where the variable log_lik is defined to be com-
puted every iteration.

Another possibility is using posterior predictive checks: generating new 
expression samples for each value of the parameters inferred. This can be done in 
the generated quantities block of our Stan model, where a new variable ‘expres-
sion_rep’ has been defined. If the model works properly, our data (expression) 
must be in the range of our simulated data ‘expression_rep’.

Our final generated quantities block would look like this:

generated quantities {
  matrix[G, S] log_lik;
  int expression_rep[G, S]; 
  for (i in 1:G) {
    for (j in 1:S) {
      log_lik[i, j] = neg_binomial_2_log_lpmf(expression[i, j] | alpha[i] 
+ beta[i] * design[j] + log_norm_factors[j] + log_eff_length[i], phi);
      expression_rep[i, j] = neg_binomial_2_log_rng(alpha[i] + beta[i] 
* design[j] + log_norm_factors[j] + log_eff_length[i],phi);

}
}

}

With this, our model is complete. Before relying on its inferences, an impor-
tant aspect must be tested: its computational faithfulness; for example, the ability 
of the model to infer the values of parameters from data that has been generated 
from known parameters. This can be done by simulating new samples by sam-
pling from the prior distribution of our model and performing inference upon 
those values. If our model is well calibrated, approximately 95% of the simulated 
parameters will be contained within a 95% credibility interval. Figure 3 shows the 
results obtained with this model for just one simulation from the prior. The code 
for the model and for sampling from a Stan model and running Stan from R using 
rstan is included in the supplementary materials and in a github account: https://
github.com/vjimenezj/BayesBook

If this same process is performed multiple times, we are performing a simu-
lated-based calibration (21): if we compute the rank of each simulation from the 
prior within all our posterior samples, these quantities must be uniformly distrib-
uted. These final checks ensure that if the data is configured as defined in the 
prior, the inference will be faithful. Unfortunately, nothing is certain about data 
that is behaving differently as described in our prior.

https://github.com/vjimenezj/BayesBook
https://github.com/vjimenezj/BayesBook
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CONCLUSION

The definition of new methods for differential gene expression using Bayesian 
(22, 23) and non-Bayesian (15, 16, 17) methods has been an active research ques-
tion in recent years, However, this chapter is not aimed at providing yet another 
method but, on the contrary, to show the reader how Bayesian inference is a flex-
ible framework that can be used to make inference on the parameters of a model 
of increasing complexity and to provide with basic notions of Stan for its imple-
mentation. We believe that the rigorous, yet simple and systematic nature of 
Bayesian inference coupled with the latest advances in technology might strongly 
contribute to pushing the frontiers of knowledge. 
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