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Abstract: Cardiovascular diseases (CVD) remain the leading cause of death in men and women.
Biological sex plays a major role in cardiovascular physiology and pathological cardiovascular remod-
eling. Traditionally, pathological remodeling of cardiovascular system refers to the molecular, cellular,
and morphological changes that result from insults, such as myocardial infarction or hypertension.
Regular exercise training is known to induce physiological cardiovascular remodeling and beneficial
functional adaptation of the cardiovascular apparatus. However, impact of exercise-induced cardio-
vascular remodeling and functional adaptation varies between males and females. This review aims
to compare and contrast sex-specific manifestations of exercise-induced cardiovascular remodeling
and functional adaptation. Specifically, we review (1) sex disparities in cardiovascular function, (2)
influence of biological sex on exercise-induced cardiovascular remodeling and functional adapta-
tion, and (3) sex-specific impacts of various types, intensities, and durations of exercise training
on cardiovascular apparatus. The review highlights both animal and human studies in order to
give an all-encompassing view of the exercise-induced sex differences in cardiovascular system and
addresses the gaps in knowledge in the field.

Keywords: sex differences; exercise; cardiac remodeling; vascular remodeling; exercise-induced
cardiovascular remodeling (EICR)

1. Introduction

A topic of great interest over the past two decades has been the impact of exercise on
the cardiovascular structure and function [1,2]. Exercise-induced cardiovascular remod-
eling (EICR) is often a result of adaptive, structural, functional, and molecular changes
caused by exercise training. Although the term EICR is more recent, its study dates origi-
nated to over a century ago when researchers noted enlarged hearts in Nordic skiers and
American university rowers [3,4]. Since then, several forms of EICR have been reported.
Documented forms of EICR include chamber dilation, ventricular hypertrophy, increased
coronary reserve [5], and enhanced diastolic filling [6]. Unlike the adverse outcomes of
pathological cardiovascular remodeling, EICR often results in improved cardiovascular
functions, including increased cardiac output and decreased resting heart rate. Further-
more, EICR has been shown to lower the risk of cardiovascular diseases (CVD), one of the
leading causes of death worldwide [7], such as arrhythmias, heart failure, and ischemic
conditions [8,9].

Another emerging area less well studied in cardiovascular remodeling is the impact
of sex-specific exercise-induced alteration of cardiac and vascular structure [9]. It is known
that cardiovascular structure and function differ between men and women. These dif-
ferences in cardiovascular physiology are partly programmed by variation in male and
female sex hormones [10]. For instance, stroke, hypertension, and atherosclerosis [11] are
less common in healthy premenopausal women compared with age-matched men, but
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these differences disappear in the postmenopausal years [12]. Furthermore, the decline in
sex hormones with aging adversely remodels the cardiovascular system in a sex-specific
manner [13].

The purpose of this review is to highlight sex disparities in the cardiovascular system
and the sex-specific impacts of exercise in cardiovascular remodeling from both animal
and human studies. We summarize potential sex-specific mechanisms underlying cardio-
vascular remodeling, shed light on the gaps in knowledge in the field, and propose future
studies to advance the field.

2. Sex Disparity in Cardiac Structure and Function

It has long been acknowledged that sex differences exist in cardiovascular structure
and function after adjusting for determining factors, such as height, weight, and body
composition. In general, women have smaller and lighter hearts, and likewise, their
coronary arteries are also smaller than their male counterparts [14,15]. Sex difference in the
cardiac structure becomes apparent at puberty, coinciding with the rise in sex hormones.
In the pubertal age group, left ventricular (LV) mass is greater in boys than that in girls
and chamber dimension, wall thickness, and myocyte hypertrophy likely contribute to the
higher LV mass in males beyond puberty [16,17].

As age advances, the male heart loses on an average, one gram of cardiomyocytes daily,
while the adequate heart mass is maintained. However, adult female hearts exhibit more
resistance to cardiac cell loss and hypertrophy compared to their male counterparts [17–19].
Female sex hormones in general and estrogen in particular are thought to contribute to
the prevention of cardiac hypertrophy in females. Several studies have demonstrated
that estrogen attenuates cardiomyocyte apoptosis and modulates both physiological and
pathological LV hypertrophy [20–24]. On the contrary, the loss of cardiomyocytes in males
may be secondary to elevated levels of testosterone and/or epinephrine. These hormones
have been associated with apoptosis and fibrosis [25–27].

Similarly, there are sex differences in cardiac function. For instance, the diastolic
function is greater in premenopausal women compared to age-matched men [17,28], but
this difference disappears in the postmenopausal years. Though the diastolic function de-
creases in both sexes with aging, reduction in systolic function occurs mainly in men [17,19].
Furthermore, studies show that the LV dimensions and functions also vary among men
and women. Women have smaller LV chambers and reduced stroke volume (SV) compared
to men [29]. Therefore, women rely on a higher heart rate compared to men to maintain
similar cardiac output.

Sex differences are also seen in cardiac metabolism. Cardiac function is dependent
on substrate oxidation (fatty acid, glucose, lactate, ketone, triglyceride, and glycogen) for
the production of ATP [30]. Sex hormones may play a role in energy metabolism in the
myocardium. For instance, a study performed in twenty-five young, healthy adults showed
that women’s hearts use less glucose and more oxygen compared to the age-matched
men [30]. Moreover, estrogen is known to increase endothelial NO synthase (eNOS), and
its upregulation causes a decrease in translocation of glucose transporter (GLUT)-4 to the
cell surface, thus inhibiting the glucose uptake and utilization in cardiomyocytes [11,31].
From these observations, it can be postulated that female hearts depend more on fatty-acid
oxidation for myocardial energetics. Successively, they require more oxygen consumption,
necessary for higher energy production, to meet the higher cardiac function compared
to males [31]. Therefore, the sex-specific cardioprotection seen in females may only be
limited to a well-perfused and oxygenated, healthy heart. In contrast, during cardiac
stress and disease, the female myocardium may be less likely to adapt to make a shift in
substrate metabolism.

3. Sex Disparity in Vascular Wall Structure and Function

There are several studies that show the protective role of estrogen in the vasculature,
with fewer studies focusing on the impact of androgens on vasculature.
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Male sex steroids have been linked to the enhancement of large artery stiffness [32].
During their reproductive years, female arteries exhibit lower arterial stiffness and preva-
lence of hypertension compared to age-matched males [33]. However, menopausal women
exhibit stiffer large arteries than their male counterparts [32,33], manifesting in elevated
prevalence of hypertension [34]. Berry et al. showed that elderly hypertensive women have
stiffer large arteries, greater central wave reflection, and higher pulse pressure than elderly
men [35]. Furthermore, in a longitudinal multiethnic cohort, Stern et al. reported that
carotid arterial stiffening associated with aging could lead to an increase in systolic blood
pressure in both sexes [36]; however, race and ethnicity (in men) and level of education (in
women) could be further contributed to the differences between the sexes.

Many of estrogen’s beneficial vascular effects are related to modifying the functional
state of the endothelium [37]. A number of studies indicate that estrogen promotes the re-
lease of endothelium-derived relaxing factors that confer resistance against atherosclerotic
events. It was previously reported that the administration of estrogen to ovariectomized
rats improves vascular function through its effects on vasodilators, such as nitric oxide
(NO) [38–40]. These findings have been confirmed in both human [20,41,42] and ani-
mal [43] studies.

The sex differences in vascular tone and hypertension may be also related to dif-
ferences in the production of or sensitivity to endothelium-derived contracting factors,
such as endothelin-1 (ET-1). The lower blood pressure in female compared with male
spontaneously hypertensive rats (SHR) has been attributed to the decreased level of ET-1 in
females [44]. Several studies have reported that the contraction to phenylephrine, an alpha
adrenergic agonist, is greater in the aorta of the male than in that of the female rats [45–48].

Overall, there are sex differences in cardiovascular structure, function, and metabolism.
Furthermore, sex-specific differences exist in CVD. Exercise has been shown to have
beneficial effects on the cardiovascular system [8,49]. Understanding of sex differences
in cardiovascular system provides important mechanistic information for sex-specific
impacts of exercise in healthy and pathological conditions. Next, we will highlight the
sex-specific impacts of exercise with relation to various types of exercise regimens on
cardiovascular remodeling.

4. Exercise-Induced Cardiovascular Remodeling and Functional Adaptation

Various types and intensities of exercise uniquely determine the outcomes on car-
diovascular remodeling, so it is important to define the different categories of exercise in
order to understand its impact on the cardiovascular system [9,50]. Exercise can be defined
as a form of physical activity involving planned, structured, and repetitive movements,
with the intention of maintaining or improving physical fitness [51]. Often, both intensity
and duration are calculated based on the body mass index and age of men and women.
Exercise intensity may be divided into three categories (low, moderate, and high intensity,
see Table 1) based on the metabolic equivalent of task value (MET). These categories are
as follows: low (<3 METs), moderate (3–5.9 METs), and high/vigorous (≥6 METs) [52].
Exercise intensity can also be quantified by the maximum oxygen consumption (VO2max)
or the maximum heart rate (HRmax) during the exercise. For low to moderate exercise,
this would be defined as approximately 45–70% of VO2max or 55–74% of HRmax respec-
tively [53,54]. For high-intensity exercise, this would be defined as greater than 70% of
VO2max or greater than 90% of HRmax [53–55]. Of interest to this review, women exhibit
a (5–15%) lower VO2max compared with men when controlled for age and weight or ac-
tivity [56]. A lower cardiac output is shown to contribute to a lower VO2max in women
in some studies [57,58]. Some pre-clinical and clinical studies have also characterized
exercise training by endurance and strength training. It has been shown that various forms
of exercise induce different types of EICR [59]. In this review, we will focus on exercise
regimens including aerobic exercise (low–moderate and high-intensity) and combined
exercise (aerobic and resistance training) (see Table 2).
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Table 1. Commonly accepted definitions of the different intensity levels of aerobic exercise.

Exercise Intensity MET * VO2max * HRmax *

Low <3 <45% <55%

Moderate 3–5.9 45–70% 55–74%

High ≥6 ≥70% ≥90%
MET, metabolic equivalent of task; VO2max, maximum oxygen consumption; HRmax, maximum heart rate.
* Approximate ranges.

Table 2. Definitions of the different types of exercise.

Types of Exercise

Aerobic Activity that increases the capacity of the cardiorespiratory system by increasing oxygen supply and improving
the oxygen utilization in muscles. Can be categorized further by intensity, such as low, moderate, and high.

Resistance Exercise that includes the use of a load, machinery, or your own body weight to increase muscle strength and
endurance. Strength and endurance training are subtypes of resistance training.

Combined An exercise routine that incorporates a combination of aerobic and resistance exercise.

In animal studies, unlike humans, exercise-training conditions are precisely defined
and include forced treadmill training protocols, swimming, and cage wheel running [60].
Several animal studies have shown sex-specific differences in physiological hypertrophy
with exercise. For instance, female rodents show greater physiological hypertrophy com-
pared to male rodents with both types of swim and treadmill training [60–63]. Interestingly,
female rodents can run faster and for greater duration compared to males when controlled
for age and strain [63]. Furthermore, key metabolic pathways, including phosphoinositide-
3 kinase (PI3K)/Protein Kinase B (AKT) pathway and calcium-calmodulin dependent
kinase (CaMK) pathways, are impacted by exercise and associated with physiological
hypertrophy in animal studies [8,49]. Exercised female groups also exhibit an increased
phosphorylation of a negative inhibitor of physiological hypertrophy, Glycogen Synthase
Kinase-3-beta (GSK-3-beta), an upstream mediator of AKT phosphorylation, that led to
increased hypertrophic growth in the hearts of this group [63]. Furthermore, exercise
selectively upregulates CaMK pathway in female rodents compared to exercised male
rodents [63]. In contrast, sedentary male rodents exhibit selective upregulation of CaMK
pathway compared to sedentary females [63].

Renin–angiotensin system (RAS) also plays an important role in the progression of
cardiac remodeling. A decrease in the angiotensin-converting enzyme (ACE)/angiotensin
(Ang) II/Ang II type 1 receptor (AT1) axis of RAS provides protection from pathological
cardiac hypertrophy and subsequent heart failure [64,65]. Activation of AT1 receptor by
Ang II has been shown to increase collagen and myocyte hypertrophy [64]. However, acti-
vation of angiotensin-converting enzyme 2 (ACE2) leads to the formation of Angiotensin
(1–7)/Mas, which exhibits vasodilatory, anti-proliferative, and anti-trophic effects [66–68].
One study showed that six weeks of swimming training in FVB/N mice lacking Mas
induced cardiac hypertrophy, which was associated to an increase in collagen I and III
mRNA expression [66]. The investigators suggested that the increase in collagen attributed
to an inversion of the balance between Ang II and Angiotensin (1–7) actions in the heart of
Mas-knockout mice, favoring a stronger and unopposed influence of Ang II. Their data
indicate that Angiotensin (1–7)/Mas axis is an important counter-regulatory mechanism in
physical training-mediated cardiac adaptations [66].

In human studies, concentric thickening of LV is observed in strength training, whereas
eccentric increase in cavity size of LV is more pronounced in endurance training [59,69].
There are structural and functional differences between the cardiovascular systems of
young, trained athletes and the untrained ones. The LV cavity dimension and maximal wall
thickness are greater in athletic females than the nonathletic females [70]. Moreover, the
remodeling is different in males and females. The LV cavity dimension and wall thickness
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are smaller in female athletes compared to the male athletes of the same age, race, and
sport disciplines [70]. Furthermore, women tend to develop eccentric hypertrophy, while
concentric hypertrophy may be a normal finding in male athletes [71]. Women also exhibit
improved endurance capacity and have increased catecholamine-induced fatty acid uptake
and oxidation with exercise training compared to males [72,73]. Sex differences are also
seen in SV with aging during submaximal and maximal exercise; older women have a
lower SV and a smaller increase in SV from rest compared to aging men. This difference in
SV is thought to in part be secondary to differences in LV remodeling with exercise and
differences in lean body mass between the sexes [56]. In contrast, there is no difference in
SV, cardiac index, LV end diastolic, and systolic volume indexes in younger (<40 years old)
men and women [56].

Interestingly, exercise has variable impact on different heart chambers. For instance,
intensive training-induced hemodynamic changes have been found to cause atrial enlarge-
ment in competitive athletes. A meta-analysis conducted by Iskandar et al. demonstrated
that elite athletes have larger left atrium (LA) diameter and volume compared to control
subjects [74]. The atrial enlargement, which is dynamic and reversible, is an adaptive
mechanism in response to the increased training-induced volume overload, and it may
vary by sex. In a study consisting of young elite rowers (46.5% women), LA enlargement
was found more frequently in men than in women [75]. Similar to the LA, greater right
atrium (RA) dimensions were observed in elite athletes compared to sedentary control
subjects [76]. In addition, sex differences in EICR were also found in a study conducted in
highly trained university athletes. While the male athletes showed LA and LV remodeling,
right ventricular (RV) remodeling was significantly more common in female athletes [77].
Overall, the impact of exercise on sex-specific cardiac remodeling is greater in untrained
men and women than in highly trained athletes [56].

Beneficial effects of exercise are also noted in the vascular endothelium [78]. For
instance, the levels of endothelial-derived ET-1 and NO are impacted by exercise [79,80].
Exercise-induced increased cardiac output and intermittent increase in laminar shear
stress contribute to vascular endothelial remodeling by activation of the PI3K/AKT path-
way, leading to eNOS phosphorylation and subsequent increase in NO production [80].
NO-mediated endothelium-dependent vasorelaxation is also improved with exercise train-
ing [78]. NO is a key mediator of angiogenesis [80,81]. Up-regulation of vascular endothe-
lial growth factor (VEGF) during exercise is required for angiogenesis associated with
exercise [80]. However, one study in the literature reported both the basal levels of VEGF
and response to exercise in the patients with cardiac failure was not different from the
controls [82]. In a study of healthy male subjects, strength training led to an increase in
ET-1, leading to increase in aortic pulse wave velocity (PWV), an established indicator of
vascular stiffness. On the other hand, the same study showed that endurance training down
regulated ET-1 and thereby reduced arterial stiffness [79]. Vascular endothelial dysfunction
is a hallmark of the vascular disease; it is defined as a reduced endothelium-dependent
vasodilation to vasodilators, such as acetylcholine (ACh) or flow-mediated dilation (FMD).
Thus, the responses of vessels to ACh or FMD are used as a reproducible parameter to
investigate endothelial function following exercise.

In a study of aging adults, twenty-four weeks of exercise led to improvement in
vascular FMD and function in women but not in men [83]. In contrast, eight weeks of
exercise led to the improvement of FMD in aging men but not women [84], suggesting that
the duration of exercise may play a role in its sex-specific outcome. Another study in the
literature demonstrated that exercise led to an increase in shear stress-mediated vasore-
laxation in the brachial artery; however, this study did not include female subjects [85].
Overall, sex-specific impacts of exercise have been studied in the vasculature; however,
data are sparse. Interestingly, beneficial roles of estrogen in combination with exercise are
reported in postmenopausal women. In a study by Moreau et al., endurance training for
twelve weeks in conjunction with estrogen treatment increased FMD in brachial arteries of
postmenopausal women [86].
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Beneficial impacts of exercise on cardiovascular structure and function are also seen in
CVD, such as ischemia-reperfusion injury (IRI) and chronic heart failure (CHF). Endurance
exercise has been reported to reduce oxidative stress and structural damage in IRI, thereby
preventing myocardial dysfunction in animal studies [87–92]. However, the role of biologi-
cal sex (if any) on the effects of exercise on myocardial oxidative stress is not clear. This
is simply because the majority of studies did not include both sexes. Endurance training
is also shown to reverse LV remodeling, with modest improvement in ejection fraction
(EF) and LV end diastolic volume in CHF patients [93,94]. These studies were, however,
performed only in males or the sex of the enrolled patients was not noted.

Animal studies provide further mechanistic insights into attenuation of adverse re-
modeling associated with heart failure. In a rodent model of dilated cardiomyopathy, swim
training activated PI3K and improved survival. However, this investigation was performed
only in males, and females were not studied [95]. Exercise has also been reported to
upregulate sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump in pathological
hypertrophy, thus improving calcium handling and contraction in animal models [96,97].
Moreover, it is shown that CHF-induced increased sympathetic activity is reduced with
exercise. For instance, eight weeks of exercise training reduced norepinephrine secretions
by 16% [98]. Braith et al. demonstrated that endurance exercise reduced neuroendocrine
activity by reducing the neuroendocrine hormones, including Ang II, vasopressin, and
atrial natriuretic peptide; sex differences were not addressed [99]. Cardiac-failure-related
increase in collagen deposition was also reduced in exercised animals; only males were
studied [100].

Exercise has also shown to have beneficial effects on vascular diseases. Hambrecht et al.
noted that four weeks of endurance exercise led to increase in phosphorylation of eNOS in
the vessels of patients with coronary artery disease (CAD), thereby improving vasodilatory
capacity [101]. Similarly, four weeks of exercise reduced Ang II in the vessels of male
patients with CAD leading to reduced vasoconstriction; females were not studied [102].

5. Detrimental Impacts of Exercise

Despite the benefits of exercise on cardiovascular remodeling, there are also con-
cerns that athletes are predisposed to the pathological cardiac remodeling, cardiovascular
dysfunction, and arrhythmias.

5.1. Detrimental Impacts of Exercise on Cardiac Structure and Function

A meta-analysis reported that prolonged endurance exercise reduced RV function
without causing any alteration to LV function in healthy individuals over 18 years of
age [103]. A greater pulmonary artery pressure during exercise increases RV end-systolic
wall stress, causing greater reduction in RV function [103]. Because exercise can impose a
disproportionate physiological load on the RV compared to the LV, intense and prolonged
exercise may result in long-term cardiac fatigue and remodeling [104–106]. A previous
study suggests that some athletes suffer from serious arrhythmias emerging from patho-
logical RV remodeling caused by chronic endurance exercise [107]. In fact, arrhythmogenic
RV cardiomyopathy (ARVC) is an example of pathological remodeling and considered
as one of the leading causes of sudden death in athletes [69,108–110]. However, since
intense exercise may also lead to physiological adaptations of the heart, it could be diffi-
cult to differentiate between physiological RV remodeling and early-stage ARVC [69,110].
Cardiac magnetic resonance (CMR) has been utilized as a gold standard to assess RV struc-
ture and function and may help differentiate pathological remodeling from physiological
remodeling [111].

5.2. Detrimental Impacts of Exercise on Cardiac Electrical Conductivity

Studies have shown an increased risk for developing atrial fibrillation (AF) in en-
durance athletes than in non-athletes [111,112]. Although data on the cardiac impact of
endurance exercise in women athletes are scarce, studies have proposed that women are
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more protected from developing AF [112]. This sexual dimorphism could be explained by
the difference in electrophysiological changes that occur in men and women during exer-
cise. For instance, Wilhelm and co-workers observed significantly longer signal-averaged
electrocardiogram (ECG) P-wave duration and increased incidence of AF in male cyclists
compared to women cyclists [113]. The link between longer P-wave duration and increased
risk of AF is already well known [114]. Animal studies have also corroborated with in-
creased susceptibility to AF with chronic endurance exercise [115]. Moreover, underlying
cardiac conductivity defects, like prolonged QTc and Brugada syndrome, can also lead to
cardiac arrhythmias [116–120] and may have the potential to cause detrimental cardiac out-
come with aerobic activities. It is also important to note that there may be sex differences in
arrhythmogenic potentials secondary to underlying conditions, such as catecholaminergic
polymorphic ventricular tachycardia (CPVT) associated with cardiac ryanodine receptor 2
(RyR2) mutations and other cardiac pathologies [116–125].

5.3. Detrimental Impacts of Exercise on Vascular Structure and Function

Although there have been studies that showcase the positive outcomes of exercise on
vasculature, there are also reports on detrimental effects of high-intensity exercise [126].
For example, high-intensity exercise has been shown to decrease FMD in male partici-
pants [127,128]. However, there are also reports of increased FMD with high-intensity
exercise in both sexes [56,129]. Overall, studies have shown that the alteration in FMD is
dependent on exercise intensity [128,130]. In addition, there are reports on the exercise-
induced increase in markers of endothelial dysfunction including, Von Willebrand factor,
and thrombomodulin (in males) and microRNA-126 (in both sexes) [131,132]. Furthermore,
a study by Boos et al. found evidence of exercise-induced vascular damage with an increase
in circulating endothelial cells in men and women with CAD [133]. Contrasting effects
of exercise on vascular function are further summarized in reports by Sapp and Hagberg,
2018, and Adams, 2018 [126,134]. Additional studies are needed to document the impact of
exercise intensity on detrimental vascular outcomes.

6. Sex-Specific Impact of Low–Moderate Intensity Exercise on Cardiovascular
Remodeling

Low to moderate-intensity exercise includes any activity that uses equal or less than
5.9 METs. In humans, exercises such as walking (up to 6 km/h), dancing (3.3 METs), or
stationary cycling with light effort (at 100 Watts is equal to 5.5 METs) are considered as low–
moderate intensity exercises [52,135]. However, in animal models, the measure of intensity
is frequently based on minutes per day of activity. For instance, in rodents,≤90 min/day of
swimming or voluntary cage wheel running are considered low to moderate exercise [136].
Table 3 contains details of the low–moderate intensity training regimens and the studies
discussed below.

6.1. Sex Disparity in Cardiac Structure and Function with Low–Moderate Exercise

In this section, we will discuss both animal and human studies addressing sex dispari-
ties in cardiac structural and functional remodeling with low–moderate intensity exercise.

Animal studies have shown that moderate-intensity training (MIT) induces physi-
ological cardiac hypertrophy [54,137]. Asif et al., in a study only examining male rats,
showed that MIT led to an increase in cardiac mass. This study also showed an age-specific
impact on EICR by demonstrating that exercise led to increased LV mass in both adult
and adolescent rats, but an increase in the number of cardiomyocytes was only seen in
adolescents [137]. Apart from the induction of physiological hypertrophy, MIT can also
reduce age-induced pathological cardiac hypertrophy. A study looking at only aged male
rats exhibited a reduction in their pathological cardiac hypertrophy when they underwent
MIT [138]. Furthermore, the same study showed that MIT training led to reduction in
cardiac inflammation and cardiac fibrosis in aged male rats [138].

Molecular mechanisms underlying the beneficial effects of MIT on physiological
cardiac remodeling have been also described. Dworatzek et al. demonstrated that mice
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undergoing MIT exhibited the activation of PI3K/AKT signaling pathway in the LV, thereby
leading to cardiac hypertrophy. However, when compared to males, female mice exhibited
greater cardiac hypertrophy following MIT [139]. Furthermore, in the same study, estrogen
beta receptor knockout female mice had comparable cardiac structural change to the
males, suggesting that sex differences observed in EICR are, in part, mediated via estrogen
receptor signaling [139]. Beneficial effects of low–moderate exercise on cardiac function
can be also mediated by other molecular mechanisms. For instance, rats undergoing MIT
exhibited a decrease in collagen and an increase in citrate synthase levels in the LV [140].
Citrate synthase is necessary for aerobic capacity and mitochondrial mass, while increased
collagen levels are associated with increased myocardial stiffness and heart failure [140,141].
Similarly, oxidative stress is known to contribute to pathological cardiac remodeling, and it
is known that exercise training reduces oxidative stress in the heart [8].

Low to moderate-intensity exercise is shown to have several beneficial effects on
cardiac function in animal studies. For instance, Hafstad et al. demonstrated that diet-
induced obesity resulted in diastolic and systolic dysfunction in mice, and that could be
prevented with MIT. However, females were not included in this study [142]. In another
study, MIT resulted in decreased end systolic volume, increased SV, increased EF, and
decreased LV pressure in male rats [140].

The effects of low–moderate intensity exercise on the cardiovascular system are not
limited to animal models, as similar effects have also been demonstrated in human stud-
ies. In Dawes et al.’s study, moderate intensity, defined as exercise between three to five
hours per week (assessed by a questionnaire), was associated with increased LV mass and
increased LV and RV volume in healthy adult men and women; however, sex differences
were not addressed, as patient data were grouped [143]. Another study found that in a
community setting, intentional exercise, defined as the sum of activities that were con-
sciously done for exercising, such as sports/dancing, conditioning activities, and walking
regardless of the intensity level, was associated with increased LV mass, increased SV, and
increased end diastolic volume in both men and women. Furthermore, the rate of increase
in LV mass, SV, and end diastolic volume were more pronounced during lower intensity
training in both sexes; however, the magnitude of changes was smaller in women than in
men [9]. The underlying reason(s) for the sex differences in the beneficial impact of lower-
intensity training in this study were unknown. However, the investigators made several
speculations, including that the increased ventricular mass in men may be attributed to
the larger hearts in males (despite accounting for baseline heart mass). Moreover, they
suggested that the augmented changes in ventricular mass in men may have also involved
participating in higher intensity of exercise compared to females [9].

6.2. Sex Disparity in Vascular Structure and Function with Low–Moderate Exercise

Similar to the beneficial impacts of low–moderate exercise on the heart, the beneficial
impacts of exercise have been shown on vasculature. For instance, in a study only looking
at male rats, Potora et al. demonstrated that that MIT resulted in hypertrophy and morpho-
logic changes in aortic smooth muscle cells as well as an increase in the thickness of aortic
elastic fibers. This increase in elastic fiber thickness was thought to lead to an increase in
vascular distensibility, making the vessels better at handling mechanical stress [144].

Functional changes in the vasculature have also been observed with low–moderate
intensity exercise. There has been increasing evidence suggesting a link between exercise
and vascular ion channels [145–147]. Zhang et al. noted that aerobic exercise lowered sys-
temic blood pressure and normalized hypertension-associated large-conductance calcium-
activated potassium channels (BKCa) upregulation to normotensive control levels in male
SHR, and these effects were more pronounced in the moderate-intensity group than in the
low-intensity group [148].
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Table 3. The described studies associated with the low–moderate intensity training regimens.

Study Participant
Characteristics Exercise Regimen Cardiovascular Structural

and Functional Findings
Sex-Specific

Impact
Proposed Molecular

Mechanisms

Asif et al. [137] Male Wistar Kyoto rats
Running: treadmill

Duration: up to 1 h/day,
5 days/week for 4 weeks

↑LV diameter N/A
↓Cardiac microRNA-208b in LV

(authors believe this change to be
insignificant)

Liao et al. [54] Aged male
Sprague-Dawley rats

Swimming
Duration: gradually increased from
20 to 60 min/day, 5 days/week for

12 weeks

↓Pathological cardiac
hypertrophy N/A Down regulation of

ERK1/2/JNK and NFATc3

Dworatzek et al. [139] Male and female
C57BL/6J mice

Running: voluntary cage wheel
Duration: 8 weeks ↑LV mass Greater cardiac hypertrophy

in females compared to males

Activation of PI3K/AKT
signaling pathway by

upregulating AKT/mTOR
signaling leading to cardiac

hypertrophy

Verboven et al. [140] Male Sprague-Dawley
rats

Running: treadmill
Duration: 1 h/day, 5 days/week

for 13 weeks

↓End systolic volume, ↑SV,
↑EF, and ↓LV pressure N/A N/A

Hafstad et al. [142] Male C57BL/6J mice
Running: treadmill

Duration: ~120 min/day,
5 days/week for 10 weeks

Prevention of diet induced
diastolic and systolic

dysfunction
N/A N/A

Potora et al. [144] Male Wistar rats Swimming
Duration: 15 min/day for 14 days

Aortic smooth muscle cells
hypertrophy and

morphological changes,
↑thickness of elastic fibers

N/A N/A

Zhang et al. [148] Male SHR
Running: treadmill

Duration: 60 min/day,
5 days/week for 8 weeks

↓Systemic BP N/A

Correcting the
hypertension-associated BKCa

channel remodeling and
suppressing the pathological
adaptations of BKCa channels

that result from high BP
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Table 3. Cont.

Study Participant
Characteristics Exercise Regimen Cardiovascular Structural

and Functional Findings
Sex-Specific

Impact
Proposed Molecular

Mechanisms

Dawes et al. [143] Males and females
MIT as defined by the Copenhagen

City Heart Study Leisure Time
Physical Activity Questionnaire

↑LV mass and ↑LV and RV
volume in males and females

Data were not analyzed for
sex differences N/A

Turkbey et al. [9] Males and females
MIT as defined by the MESA

Typical Week Physical Activity
Survey

↑LV mass, ↑SV, and ↑end
diastolic volume in both sexes

Males showed a greater
increase in LV mass, SV, and
end diastolic volume as the
levels of physical activity

increased when compared to
females

N/A

Shenouda et al. [149] Healthy males Stationary cycling
Duration: 45 min/day for 12 weeks

↑Brachial artery FMD but no
change in PWV N/A N/A

Sawyer et al. [150] Healthy males
Stationary cycling

Duration: 40 min/day,
3 days/week for 8 weeks

↑Brachial artery diameter but
no significant change in FMD N/A N/A

Rakobowchuk et al. [151] Males and females
Stationary cycling

Duration: 40–60 min/day,
5 days/week for 6 weeks

↑Relative FMD and improved
distensibility in popliteal

artery
No sex differences were seen N/A

Goto et al. [152] Healthy males
Stationary cycling

Duration: 30 min/day,
5–7 days/week for 12 weeks

↑Endothelium-dependent
vasodilation N/A ↑Production of NO

Sugawara et al. [153] Post-menopausal
females

Stationary cycling
Duration: 3–5 days/week for

12 weeks

↑Arterial compliance and ↓
LDL N/A N/A

↓decrease, ↑increase, left ventricular (LV), stroke volume (SV), ejection fraction (EF), spontaneously hypertensive rats (SHR), blood pressure (BP), large-conductance Ca2+-activated K+ channel (BKCa),
moderate-intensity training (MIT), right ventricular (RV), flow-mediated dilation (FMD), pulse wave velocity (PWV), nitric oxide (NO), low-density lipoprotein (LDL).
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It has also been shown that low–moderate intensity exercise has beneficial effects on
the peripheral vasculature in humans. One study in males demonstrated that moderate
intensity exercise in the form of stationary cycling increases resting brachial artery diameter
by 8%. Of note, brachial artery diameter is a measure of peripheral vessel function [149].
However, MIT did not result in changes in any of the other recorded cardiovascular mea-
sures, such as arterial stiffness, resting blood pressure, and heart rate; females were not
studied, though [149]. The increase in brachial artery diameter noted with MIT is sugges-
tive of structural remodeling that may be an adaptation to meet the blood-flow demands of
exercise [149]. A similar study by Sawyer et al. also found that MIT resulted in increased
brachial artery diameter. This study used both male and female subjects, but the investiga-
tors did not analyze them in separate groups; thus, no sex differences were elicited [150].
Another study that looked at the effects of high-volume endurance training (at 65% of
VO2max) showed that popliteal artery distensibility and popliteal endothelial function were
both improved [151]. However, no sex differences were observed in either popliteal artery
distensibility or popliteal endothelial function with this mode of exercise [151]. In another
study by Goto et al., MIT resulted in increased forearm blood flow in response to ACh
through the increased production of NO. However, this study looked only at men [152].
Similarly, Sugawara and coworkers demonstrated that in post-menopausal women, both
low and moderate-intensity exercise resulted in increased carotid arterial compliance.
However, resting heart rate, blood pressure, and pulse pressure were not significantly
changed in either low or moderate-intensity groups [153]. Furthermore, Sugawara and
coworkers reported that both low and moderate-intensity exercise decreased low-density
lipoprotein (LDL) but not high-density lipoprotein (HDL) cholesterol in post-menopausal
women [153].

6.3. Limitations

The data detailing the impacts of low-moderate exercise on cardiovascular remodeling
are limited. In particular, fewer studies address the effects of MIT in humans as compared
to small animal models. Therefore, there is a need to translate some of the preclinical
findings to humans and design prospective studies to address this gap. Another challenge
in evaluating the effects of exercise on the cardiovascular system is the failure to uniformly
define exercise intensity. In this review of the literature, we noted that some authors failed
to report the VO2max or METs used during training. Preclinical and clinical research should
consider utilizing METs and VO2 max to uniformly and accurately define low-moderate
intensity exercise to assess its impact on cardiovascular remodeling. Furthermore, there
is also need for more prospective studies on low-moderate exercise that include both
male and female subjects and assess sex-specific impact of exercise on EICR. The sparse
data currently available suggest that there are sex differences with low-moderate intensity
exercise in cardiac remodeling; however, we are not able to ascertain similar differences in
vascular remodeling [9,139].

7. Sex-Specific Impact of High-Intensity Training (HIT) on Cardiovascular
Remodeling

HIT or vigorous exercise involves physical activity that requires ≥6 METs or greater
than 70% of VO2max or over 90% of maximal heart rate [52–55]. World Health Organiza-
tion’s definition of vigorous exercise includes running, fast cycling, fast swimming, sports,
or weightlifting that require greater effort and increased breathing and heart rate [154].
According to the U.S. Department of Health and Human Services 2018, 75–150 min/week
of HIT is sufficient for substantial health benefit outcomes [155]. HIT has recently gained
popularity in the form of high-intensity interval or intermittent training (HIIT). HIIT is
defined as an exercise that combines relatively short to long bursts of intense exercise with
periods of rest or lower intensity exercise [156,157]. Though the workout period is rela-
tively short, studies showed that HIIT produces health benefits similar to or greater than
MIT [157–160]. HIT is a well-known therapeutic intervention that results in physiological
cardiovascular remodeling and has proven therapeutic benefits in pathological cardio-
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vascular remodeling in both animal models and human subjects [129,140,156,161–163].
However, controversies exist, as both beneficial and detrimental effects on cardiovascular
system have been reported with HIT. Table 4 contains details of the HIT regimens and the
studies discussed below.

7.1. Sex Disparity in Cardiac Structure and Function with HIT

Cardiac structural and functional benefits have been noted in the literature with
both HIT and HIIT. Preclinical studies are suggestive of the beneficial impacts of HIT on
physiological cardiac remodeling in a healthy state. One study in the literature found
that high-intensity swimming resulted in increased phosphorylation of AKT in the my-
ocardium in both male and female rats but to a greater degree in females, thus leading to
more pronounced LV hypertrophy in females [164]. HIT also increased SV and improved
contractility and stroke work in both sexes; however, improvement in diastolic function
was only seen in male rats [164]. Similarly, in a study of healthy male rats (females were
not included), high-intensity treadmill running induced physiological LV hypertrophy.
Moreover, improved cardiac performance (including enhanced EF, cardiac output, and
volume), reduced myocardial collagen content, and increased cardiac capillary density
were observed [140]. In addition, de Oliveira et al. demonstrated that, in a study of
only male mice overfed a diet high in fat or fructose, HIIT reduced LV mass and LV wall
thickness. These beneficial effects of HIIT were attributed to elevation in the components
of the cardiac RAS, ACE2/Angiotensin (1–7)/Mas receptor [156]. As previously stated,
activation of Angiotensin (1–7) in the myocardium is associated with vasodilation and an-
tifibrotic, anti-hypertrophic, and antiarrhythmic actions [165,166]. RAS further modulates
ACE2/Angiotensin (1–7)/Mas receptor axis, thereby exerting an anti-inflammatory effect
in the myocardium, leading to beneficial impact on cardiac remodeling [167,168].

HIT has also been reported to have favorable effects in the disease states. Exclusively
in a male rat model of pulmonary hypertension, high-intensity treadmill training enhanced
RV apelin (a potent vasodilator) expression [169], leading to decreased RV systolic pressure,
RV hypertrophy, fibrosis, and improved cardiac output [161]. HIIT training was also
reported to have cardioprotective effects in male rats with IRI [170]. Rahimi and coworkers
showed that the infarct size in the exercised male groups reduced by 50% and 35% after
one and seven days post exercise, respectively, compared to the sedentary group [170];
females were not included. However, the beneficial effects of HIT on ischemic heart were
lost after fourteen days following detraining. These investigators, therefore, proposed
that the beneficial impacts of short-term HIIT may persist for a short period following
exercise [170]. Of note, detraining is a state of decline in exercise-induced physiological
conditioning due to insufficient training or pause in training.

In a study performed in healthy, middle-aged male individuals, HIIT induced benefi-
cial RV hypertrophy, improved RV end systolic and end diastolic volumes, and decreased
right ventricular ejection fraction (RVEF) and RV glucose uptake. However, RV mass, SV,
and RV free fatty acid uptake remained unchanged in this cohort [171]. In another study
that included both men and women participants, HIIT reversed pathological LV remod-
eling, reduced LV end-diastolic and end-systolic volumes, and improved left ventricular
ejection fraction (LVEF) in stable post-infarction heart failure patients; sex differences were
not addressed [55]. Furthermore, Wisløff and coworkers postulated that the beneficial im-
pact of HIIT on post-infarction cardiac remodeling may have involved reduction in plasma
pro-natriuretic peptide (B-type natriuretic peptide (BNP)) level, a marker of hypertrophy
and severity of heart failure [55]. Beneficial cardiovascular effects of HIIT were also seen
in aging men. In a study of sedentary aging men and aging male athletes that underwent
aerobic preconditioning exercise or regular exercise regimen, respectively, this particular
regimen of HIIT training resulted in improved resting blood pressure in both groups
without the development of pathological cardiac remodeling [172]. The underlying mech-
anism(s) of improved cardiac structure and function with HIIT is not clear [156,162,173].
The beneficial effects of HIIT regimen may be attributed to the intermittent periods of rest
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that allows recovery, thereby enabling patients to complete the activity while also building
their aerobic and anaerobic capacity [55].

Although HIIT is shown to have beneficial effects on cardiac structure and function,
reduced ventricular function has also been reported with HIT. In healthy males, high-
intensity endurance training caused a greater reduction in global RV strain, which was
more pronounced in the RV free wall. Interestingly, a decrease in global LV strain was also
observed, which was more pronounced in the LV septum [174]. This observation indicates
that HIT may induce segment-specific cardiac dysfunction as well. Detrimental effects
of HIT are also seen in the form of cardiac fatigue [8,175,176]. Data are not clear on sex
differences in cardiac fatigue with HIT. Cote et al. noted that cardiac fatigue was more
pronounced in males compared to females during a HIT (triathlon lasting six hours) [175].
However, sex differences were not noted in cardiac fatigue with prolonged HIT consisting of
ultramarathon [175]. Further studies are warranted addressing the sex-specific detrimental
effects of HIT.

7.2. Sex Disparity in Vascular Wall Structure and Function with HIT

The beneficial effects of HIIT are also reported on the vasculature. A study by Batacan
Jr et al. reported that in adult male rats overfed with a high-fat high carbohydrate (HFHC)
diet, HIIT decreased the contractile responses of mesenteric arteries to α-adrenergic stimuli
and improved endothelium-dependent vasorelaxation to ACh [177]. These data were
promising, as the investigators of this study demonstrated that HIIT was capable of al-
leviating mesenteric arterial contraction in these male rats despite being on HFHC diet.
Females were not included in this study [177]. HIIT also improved vascular wall structure
and function in human subjects. HIIT decreased systolic blood pressure in postmenopausal
women; males were not studied [178]. In sedentary healthy adults (the sex of the subjects
was not indicated), HIIT improved vascular function by increasing FMD of brachial arteries
and decreasing aortic PWV, as indicators of endothelial function and arterial wall stiff-
ness, respectively. These results suggest that HIIT alters vascular hemodynamic, thereby
decreasing arterial wall thickness and enhancing endothelial function [129]. Similarly,
improved FMD of brachial arteries and decreased oxidative stress were reported in the
heart failure patients who underwent HIIT. The researchers postulated that the augmented
NO bioavailability and plasma antioxidant level might have contributed to the beneficial
impacts of HIIT on the vasculature of cardiac failure patients. Both males and females were
included in this study, but the investigators did not analyze the sex differences in vascular
remodeling [55]. In addition, Rognmo et al. [179] and Freyssin et al. [180] reported that
HIIT intervention in both male and female patients with CAD and heart failure was safe
and was not associated with adverse cardiac outcomes.

Overall, the data are sparse on the beneficial impacts of HIT on the vasculature, which
has been mostly shown to have either detrimental or no effect on the vasculature. For
instance, a clinical study conducted only in healthy males showed that HIT did not change
the resting brachial artery diameter (a measure of peripheral vessel function) [149]. Fur-
thermore, exclusively in male SHR, HIT adversely altered mesenteric arterial endothelial
ultrastructure and function. In the same study, HIT increased oxidative stress and reduced
NO bioavailability [181]. Similarly, Chen et al. reported that HIT worsened hypertension
and intensified adverse remodeling of L-type voltage-gated Ca2+ (Cav1.2) channels (up-
regulation of Cav1.2 channels is a hallmark feature of hypertension) in mesenteric arteries
of male SHR; females were not studied [182]. Investigators postulate that the detrimental
effects of HIT may be reversed by incorporating HIIT since it exerts potentially greater ef-
fects compared to traditional endurance exercise [158]. Overall, HIIT has a more beneficial
impact on the cardiovascular system compared to HIT.
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Table 4. The described studies associated with the high-intensity training (HIT) regimens.

Study Participant Characteristics Exercise Regimen Cardiovascular Structural and
Functional Findings Sex-Specific Impact Proposed Molecular

Mechanisms

Oláh et al. [164] Healthy male and female Wistar
rats

Swimming
Duration: 200 min/day, 5 days/week

for 12 weeks

↑SV and ↑contractility and stroke
work in both sexes

More pronounced LV
hypertrophy in females than

males, ↑diastolic function only in
males

↑Phosphorylation of AKT in the
myocardium in both sexes but to
a greater degree in females, thus
leading to more pronounced LV

hypertrophy in females

Verboven et al. [140] Healthy male Sprague-Dawley
rats

Running: Treadmill
Duration: 10 bouts, 5 days/week for

13 weeks
Speed: 18 m/min at 30◦ inclination

Beneficial LV hypertrophy, ↑EF,
↑cardiac output and volume,
↓myocardial collagen content,
↑cardiac capillary density

N/A

↑Cardiac metabolism due to
increased oxygen supplied by

enhanced capillary density and
↑citrate synthase and complex II

enzyme activity (measure of
mitochondrial mass)

de Oliveira Sá et al. [156] Male C57BL/6 mice, overfed a
diet high in fat or fructose

Running: Treadmill
Duration: 3 days/week for 12 weeks

Speed: 45 m/min
↓LV mass and LV wall thickness N/A

Modulated components of the
cardiac RAS, ACE2/Angiotensin

(1–7)/Mas receptor axis

Brown et al. [161] Male Sprague Dawley rats with
pulmonary arterial hypertension

Running: Treadmill
Duration: 30 min/day, 5 times/week

for 6 weeks

↓RV systolic pressure, ↓RV
hypertrophy, ↓fibrosis, ↑cardiac

output
N/A ↑RV apelin expression

Rahimi et al. [170] Male Wistar rats with IRI
Running: Treadmill

Duration: 76–85 min/day,
5 consecutive days

↓Infarct size by 50% and 35% after 1
and 7 days post exercise N/A N/A

Batacan Jr et al. [177]
Wistar adult male rats overfed

with a high-fat high carbohydrate
(HFHC) diet

Running: Treadmill
Duration: 4 bouts, 5 days/week for

12 weeks
Speed: 50 m/min at 10% inclination

No significant difference for SBP or
HR before and after exercise,

↑endothelium-dependent relaxation
to acetylcholine, ↓contractile

responses of mesenteric arteries to
α-adrenergic stimuli

N/A N/A

Fang et al. [181] Male SHR

Running: Treadmill
Duration: 60 min/day, 5 days/week

for 8 weeks
Speed: 26–28 m/min (~75–85% of the

maximal aerobic velocity)

↑SBP and ↑DBP N/A ↑Oxidative stress, ↓NO
bioavailability

Chen et al. [182] Male SHR

Running: Treadmill
Duration: 60 min/day, 5 days/week

for 8 weeks
Speed: 26–28 m/min (~75–85% of the

maximal aerobic velocity)

Worsened hypertension N/A
↑Adverse remodeling of L-type

voltage-gated Ca2+ (Cav1.2)
channels
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Table 4. Cont.

Study Participant Characteristics Exercise Regimen Cardiovascular Structural and
Functional Findings Sex-Specific Impact Proposed Molecular

Mechanisms

Heiskanen et al. [171] Healthy, middle-aged males

Cycle ergometer
Duration: 6 sessions in 2 weeks
HIIT session: 4–6 × 30 s all-out

cycling/4 min recovery

Beneficial RV hypertrophy, ↑RV end
systolic and end diastolic volumes,
↓RVEF, ↓RV glucose uptake, but RV

mass, SV, and RV free fatty acid
uptake remained unchanged

N/A N/A

Stewart et al. [174]
Recreationally active, healthy

males who were training
>5 h/week

Cycle ergometer
Duration: only one 90 min exercise

session at 110% of gas exchange
threshold (GET)

More pronounced decrements in RV
function, ↓LV function only to the

sites of septal myocardium
N/A N/A

Wisløff et al. [55] Male and female heart failure
patients

Walking: Treadmill
Duration: 38 min/day, 3 times/week

for 12 weeks

Reversed pathological LV remodeling,
↓LV end-diastolic and end-systolic
volumes, ↑LVEF, ↑brachial artery

FMD

Sex differences were not studied
↓Plasma pro-BNP level, ↑NO

bioavailability, ↑Plasma
antioxidant level

Grace et al. [172] Aging male non-athletes and
aging male athletes

Sprints, cycle ergometers
Duration: Once/5 days for 6 weeks

↑Resting BP in both groups without
causing pathological remodeling,
↑diastolic septal thickness, and
↓chamber diameter only in athletes

N/A N/A

Klonizakis et al. [178] Postmenopausal females

Cycling
Duration: 10 × 1-min intervals at

100% of peak power output,
6 sessions in 2 weeks

↓SBP, no improvement in brachial
artery FMD N/A N/A

Ramírez-Vélez et al.
[129]

Healthy adults (study did not
mention the sex of the subjects)

Fast walking and running: Treadmill
Duration: 4 × 4 min intervals at

85–95% of HRR, 3 days/week for
12 weeks

↑Brachial artery FMD, ↓aortic PWV N/A N/A

Shenouda et al. [149] Healthy males
Cycling sprints

Duration: 3 × 20 s sprint interval
training for 10 min for 12 weeks

No change in brachial artery diameter N/A N/A

↓decrease, ↑increase, stroke volume (SV), left ventricular (LV), ejection fraction (EF), renin–angiotensin system (RAS), right ventricular (RV), ischemia-reperfusion injury (IRI), systolic blood pressure (SBP), heart
rate (HR), spontaneously hypertensive rats (SHR), right ventricular ejection fraction (RVEF), diastolic blood pressure (DBP), nitric oxide (NO), left ventricular ejection fraction (LVEF), flow-mediated dilation
(FMD), pro brain natriuretic peptide (pro-BNP), blood pressure (BP), heart rate reserve (HRR), pulse wave velocity (PWV).
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7.3. Limitations

The sex-specific impacts of HIT and HIIT on cardiovascular remodeling is not well
documented in either animal or human studies. Traditionally, the majority of studies on the
impacts of HIT or HIIT have excluded females. Furthermore, those studies that did assess
the impacts of HIT on cardiovascular remodeling using both male and female subjects did
not attempt to address sex differences in their findings [55,162,179,180], thus preventing the
assessment of sex-specific impacts of HIT or HIIT on cardiovascular remodeling. Therefore,
the relatively small number of studies that addressed sex differences in the impacts of HIT
or HIIT on cardiovascular remodeling limits us from drawing any significant conclusion.
Though some studies have shown benefits of HIT on cardiovascular remodeling in CVD,
there is a lack of HIT or HIIT studies in healthy subjects. Furthermore, variables, such as
strain of animals, human race, age, fluctuations in sex hormones in menstruating females,
menopause, diet, and varying HIIT programs (duration, intensity, and frequency) in different
studies hamper our ability to assess the impacts of HIT or HIIT on the underlying mechanisms
leading to cardiovascular remodeling. Moreover, differences between animal models and
humans make it difficult to translate the findings in small-animal models to human studies.

8. Sex-Specific Impact of Combined Exercise on Cardiovascular Remodeling

Combined exercise trains more muscle groups at once in a relatively short period of
time. Combined exercise has been demonstrated to offer more cardiovascular benefits in
patients with CVD compared to any single exercise modality in several randomized control
trials [183–185]. There are different types of combined exercise training, such as aerobic-
resistance, aerobic-strength, and endurance-resistance, amongst others. The combination
of aerobic and resistance training is frequently used as a combined form of exercise in
humans. According to the American College of Sports Medicine (ACSM), aerobic exercise
is any activity that increases the capacity of the cardiorespiratory system by increasing
oxygen supply and improving the oxygen utilization in the muscles [186]. Examples of
aerobic exercise include walking, swimming, dancing, cycling, jogging, and hiking [187].
Resistance training is a type of exercise that includes the use of load, machinery, or your own
body weight while exercising the muscles [188]. Strength training and endurance training,
however, are subtypes of resistance training. Strength training usually involves a load of
85% or more of one repetition maximum (1RM) for six or less repetitions of two to six sets
with rest periods of two to five minutes. Muscular endurance training, on the other hand,
requires resistance training at a load of 67% or less of 1RM for twelve or more repetitions
of two to three sets with rest periods of thirty seconds or less [189]. We will discuss both
animal and human studies addressing the sex disparities in cardiac structure and function
with combined exercise below (please refer to Table 5 for details of the exercise regimens).

8.1. Sex Disparity in Cardiac Structure and Function with Combined Exercise

Combined exercise has been shown to improve adverse cardiac remodeling associated
with hypertension and aging [190]. In a study conducted only in menopausal female
SHR, aerobic-resistance training has been shown to improve cardiac function and decrease
heart rates of experimental subjects [191]. Furthermore, Shimojo and coworkers showed
that these improvements in the cardiac functions resulted from exercise-augmented car-
diovascular autonomic modulation, decreased levels of tumor necrosis factor (TNF) and
interleukin-6 (IL-6), reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxi-
dase (one of the major sources of superoxide in the cardiovascular system), and elevated
levels of enzymatic or non-enzymatic antioxidants [191].

Clinical studies also concur with the beneficial effects of combined training on car-
diac health. A randomized phase III clinical trial that included both male and female
patients with heart failure showed that aerobic-strength training improved the LV diastolic
function. However, this study did not analyze potential sex-specific impacts of combined
exercise [192]. Similarly, in a randomized control trial of post-myocardial infarction (MI)
male patients, combined aerobic resistance training showed improvements in LVEF and
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diastolic function. Females, however, were not included in this clinical trial [184]. Further-
more, Beckers and coworkers showed that combined endurance-resistance improved the
LVEF in male and female patients with CHF, but sex differences were not addressed [183].
In contrast, a meta-analysis conducted in clinically stable male and female CHF patients
noted that though aerobic training reversed LV remodeling, this favorable effect was not
confirmed when aerobic training was combined with strength training [193]. In the above
study, Haykowsky et al. reasoned that lack of improvement in cardiac function when
aerobic exercise was combined with strength training could be due to the unfavorable
outcome of strength training in cardiac failure patients [193]. Of note, strength training
is shown to adversely alter cardiovascular function by increasing systolic and diastolic
pressure loading and increasing LV wall stress [193].

8.2. Sex Disparity in Vascular Wall Structure and Function with Combined Exercise

Several studies have demonstrated the beneficial effects of combined exercise on vascu-
lar wall structure and function. One study found that combined aerobic-resistance training
enhanced the expression of VEGF, an important angiogenic factor, in the skeletal muscle
of the fifty-week-old obese male rats. This study did not include female subjects [194]. A
study that was conducted exclusively in menopausal SHR showed that aerobic-resistance
training decreased mean arterial blood pressure [191]. In this study, Shimojo et al. reported
that exercise improved baroreflex sensitivity to increased blood pressure, leading to de-
creased sympathetic activation of peripheral vessels and reduced arterial blood pressure
in those menopausal SHR [191]. Impaired baroreflex sensitivity is common and a strong
predictor of arterial hypertension and cardiac mortality [195,196].

Beneficial effects of combined training on vascular function were also noted in human
studies. Combined aerobic-resistance training decreased arterial stiffness and blood pressure
in hypertensive postmenopausal women [197]. Son et al. reported that the decreased arterial
stiffness in hypertensive postmenopausal women may have involved reduced ET-1 and
increased NO (as measured by the level of nitrite/nitrate in blood) [197]. Thus, the potential
underlying mechanisms for the combined training-mediated improvements in regulation of
blood pressure in those subjects were attributed to the enhancement of vascular endothelial
function or increased endothelium-dependent vasodilation [197,198]. However, the male
subjects were not included in Son et al.’s study. In another study performed in premenopausal
sedentary hypertensive women, aerobic-resistance training resulted in significant reduction
in blood pressure and heart rate. The investigators of this study suggested that the reduction
of vasomotor tone or increased vagal tone may have contributed to beneficial effects on
blood pressure and heart rate that occurred after this exercise program [199]. Along the
similar lines, Figueroa and coworkers reported that endurance-resistance training decreases
blood pressure and arterial stiffness in postmenopausal women; men were not included in
this study. These investigators attributed the beneficial effects of combined training on blood
pressure to the enhanced endothelium-dependent vasodilation [200].

Studies in the literature showed that high-intensity resistance training might decrease
arterial compliance in healthy men. Specifically, resistance training resulted in lowered
carotid artery compliance in healthy young men [201]. In healthy middle-aged men (aver-
age years of resistance training was 21.3± 2.8 years), the carotid artery compliance was also
decreased by 30% compared to their sedentary peers [202]. These studies did not include
women. However, Kawano et al. demonstrated that resistance training in conjunction with
aerobic training improves arterial compliance by decreasing arterial stiffness in healthy
men (women were not included) [203]. These findings suggest that combined exercise may
ameliorate vascular functions of men and women both in healthy and disease states. How-
ever, some controversies exist regarding the beneficial effects of combined exercise. In a
previous meta-analysis, combined aerobic-resistance training and isolated aerobic training
were reported to have nearly similar effects on arterial stiffness [204]. In contrast, a study
performed in hypertensive older adults including both men and women demonstrated that
aerobic-resistance training did not show any additional benefits in reducing blood pressure
compared to resistance or aerobic training alone [205].
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Table 5. The described studies associated with the combined exercise regimens.

Study Participant
Characteristics Exercise Regimen

Cardiovascular
Structural and

Functional Findings

Sex-Specific
Impact

Proposed Molecular
Mechanism

Shimojo et al. [191] Menopausal female SHR

Aerobic: Running on treadmill, 1 h/day at ∼50–60%
of maximal running speed

Resistance: Ladder climbing, 15 climbs/session at
1st–2nd week: 30–40%; 3rd–5th week: 40–50%; and

6th–8th week: 40–60% of the maximal load
Duration: 5 days/week for 8 weeks

↓HR, ↓mean arterial BP,
↑baroreflex sensitivity N/A

↓TNF and IL-6, ↓NADPH
oxidase, ↑level of

enzymatic or
non-enzymatic antioxidants

Chrysohoou et al. [192] Male and female heart
failure patients

Aerobic: Cycle ergometers for 45 min/day
Resistance: 4 exercises (knee extension, seated chest

press, peck deck and lateral pull-down) with a fitness
equipment

Duration: 3 days/week for 12 weeks

↓PWV, ↑SBP, ↑LV
diastolic function

Sex differences were
not studied N/A

Dor-Haim et al. [184] Male MI patients

Aerobic-resistance: 20 min of treadmill walking,
15 min of cycling and 10 min of hand cycle paddling,

total 45 min/day
Duration: Twice/week for 12 weeks

↑LVEF, ↑diastolic
function N/A N/A

Beckers et al. [183] Male and female CHF
patients

1st–2nd month: 10 min endurance, 40 min resistance
3rd–4th month: 16 min endurance, 30 min resistance
5th–6th month: 10, 12 and 15 min of endurance, the

reminder of exercise session spent on resistance
training

Duration: 70 sessions in 6 months

↑LVEF Sex differences were
not studied

NT-proBNP levels
remained unchanged

Son et al. [197] Postmenopausal
hypertensive females

Aerobic-resistance: Exercise intensity was increased
gradually from 40% to 70% of HRR/4 weeks

Duration: 3 times/week for 12 weeks

↓Brachial-ankle PWV,
↓BP N/A

↓Endothelin-1, ↑ NO (as
measured by the level of
nitrite/nitrate in blood)

Masroor et al. [199] Premenopausal
hypertensive females

Aerobic: Running on treadmill for 20 min/day at
50–80% of HRmax

Resistance: 3 sets of 10 repetitions of 5 exercises at an
intensity of 50–80% of 1RM

Duration: 5 days/week for 4 weeks

↓BP, ↓HR N/A N/A
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Table 5. Cont.

Study Participant
Characteristics Exercise Regimen

Cardiovascular
Structural and

Functional Findings

Sex-Specific
Impact

Proposed Molecular
Mechanism

Figueroa et al. [200] Postmenopausal females

Endurance: Walking on treadmill for 20 min at 60% of
HRmax

Resistance: 12 repetitions for 9 exercises for 20 min at
60% of HRmax

Duration: 3 times/week for 12 weeks

↓Brachial-ankle PWV,
↓SBP and DBP, ↓HR N/A N/A

Kawano et al. [203] Healthy males
Aerobic: Cycling for 30 min at 60% of HRmax

Resistance: 3 sets of 8–12 exercises at 80% of 1RM
Duration: 3 sessions/week for 4 months

↑Arterial compliance N/A N/A

Lima et al. [205] Hypertensive older males
and females

Aerobic: Treadmill ergometer, 1st–4th week for
25 min, 5th–10th week for 35 min

Resistance: 1st–4th week: 9 exercises, 5th–10th week:
15 repetitions for the upper limbs and 20 repetitions

for the trunk and lower limbs at 50 to 60% 1RM
Duration: 3 training sessions/week for 10 weeks

Did not show any
additional benefits in

reducing BP compared
to resistance or aerobic

training alone

Sex differences were
not studied N/A

Shiotsu et al. [206] Older males

Aerobic: Cycling for 20 min at 60% of HRR
Resistance: 3 sets of 8–12 repetitions for 5 different

exercises at 70–80% of 1RM
Duration: Twice/week for 10 weeks

↓Carotid-femoral PWV N/A N/A

Okamoto et al. [207] Healthy males and
females

Aerobic: Running for 20 min at 60% of the targeted
HR

Resistance: 5 sets of 8–10 repetitions at 80% of 1RM,
Duration: Twice/week for 8 weeks

↓Brachial-ankle PWV,
↑brachial artery FMD

Sex differences were
not studied N/A

↓decrease, ↑increase, spontaneously hypertensive rats (SHR), heart rate (HR), blood pressure (BP), tumor necrosis factor (TNF), interleukin-6 (IL-6), nicotinamide adenine dinucleotide phosphate (NADPH), pulse
wave velocity (PWV), systolic blood pressure (SBP), left ventricular (LV), myocardial infarction (MI), left ventricular ejection fraction (LVEF), chronic heart failure (CHF), N-terminal pro b-type natriuretic peptide
(NT-proBNP), nitric oxide (NO), maximum heart rate (HRmax), diastolic blood pressure (DBP), heart rate reserve (HRR), 1 repetition maximum (1RM), flow-mediated dilation (FMD).



J. Clin. Med. 2021, 10, 3833 20 of 30

The order of exercise may play an important role on the outcomes of combined
exercise. For instance, a study conducted only in older men [206] and another study done
in healthy men and women [207] both showed that arterial stiffness was improved when
aerobic exercise was performed after high-intensity resistance training, but no benefit was
observed when the opposite order was followed. Another study on male and female
normotensive and hypertensive adults also showed that aerobic exercise after resistance
training exerted either no effects or some beneficial effects on arterial compliance [208].
Shiotsu et al. proposed that aerobic exercise after resistance training promoted arterial
flexibility in older men by increasing the production of NO [206]. Moreover, Kawano et al.
suggested that when aerobic exercise follows resistance training, it may prevent arterial
stiffness associated with resistance training, but this benefit is lost when the exercise order
is reversed [203]. None of above studies assessed the potential role of biological sex in
relation to the order of exercise on the vascular structure or function.

8.3. Limitations

Sex differences in combined exercise on the cardiovascular remodeling have not
been fully explored, as the majority of studies were performed either in males or females.
Although some studies included both sexes, they did not isolate or compare the specific
role of sex on the outcome of combined exercise. Furthermore, majority of studies were
conducted in humans, with a relatively small sample size. Animal studies assessing the
benefits of combined exercise on cardiovascular remodeling and functional adaptation are
lacking. Moreover, the current literature has focused mainly on the impact of combined
exercise on disease state rather than healthy state. With existence of various combinations of
aerobic-strength training regimens, it is important to discern which combination is the most
beneficial for cardiovascular health based on sex, age, and underlying conditions. Finally,
although there are a number of studies that suggest beneficial roles of combined exercise,
it should be noted that some studies reported no significant effects on the cardiovascular
system [204,205].

9. Conclusion and Future Direction

Given that sex differences play an important role in cardiovascular physiology, the
aim of this review was to highlight the studies in the literature that investigated sex-specific
benefits of exercise on cardiovascular remodeling. The knowledge gained from current and
future studies will ultimately (1) enhance our understanding of the mechanisms underlying
the beneficial effects of exercise on cardiovascular function in healthy and disease states,
(2) identify the role that biological sex may play in the impact of exercise on restoring
cardiovascular function, and (3) provide insight into potential pathways for promoting
healthy cardiovascular function and novel therapeutic targets for treating CVD.

Exercise training has emerged as a valuable modality in the prevention of CVD.
Since cardiovascular physiology and CVD onset and progression vary between males and
females, it is important to assess sex-specific roles of exercise training on the cardiovascular
system. Throughout our review, we have underlined several (but not all) studies on the
impacts of different types of exercise intensity and their relation to sex on the cardiovascular
system. However, the data on sex differences in EICR are limited. Traditionally, studies on
the effects of exercise have excluded females. Nevertheless, there has been an increasing
number of investigations that have sought to include both sexes. On the other hand,
regardless of several studies on EICR in males, there is still lack of consensus in the
cardiovascular impacts of androgen in general. Androgens may simultaneously benefit
and detriment the cardiovascular system by different mechanisms. Furthermore, most
of the literature are focused on the outcomes of exercise in diseased models rather than
healthy individuals. Therefore, future studies should be more inclusive of male and female
subjects in both healthy and disease states.

In the study of sex-specific impacts of EICR and functional adaptation, it is important
to note that there are numerous physiological variables, including age, weight, race, and
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body composition (including fat and lean muscle mass), that play roles in EICR. Underlying
genetic and molecular differences may also influence the structural remodeling pathways
involved in cardiac hypertrophy, inflammation, fibrosis, and apoptosis. Moreover, the fluc-
tuations in the levels of female sex hormone during different phases of the menstrual cycle
may impact cardiovascular metabolism and function during exercise. Besides, a majority of
the studies on the sex-specific impacts of EICR have not compared the effects of sex steroid
hormones (e.g., estrogen vs. progesterone or testosterone vs. dihydrotestosterone (DHT))
on the cardiovascular system. In addition, the effects of female sex hormones signaling
in cardiovascular physiology in men or the effects of androgen signaling in women are
even less understood. Future investigations should examine the impacts of exercise on the
cardiovascular system of the transgender population.

Another possible factor that may impact cardiovascular remodeling is the form of
exercise training undertaken; participation in varying types of exercise programs (modality,
duration, intensity, and frequency). Future studies should utilize standardized, well-
established exercise protocols to assess cardiovascular outcomes in both animal models
and human subjects. They also need to assess the long-term effects of EICR and functional
adaptation, as most of the studies only focus on short-term outcomes.

In conclusion, exercise has beneficial effects on the cardiovascular system, and it is an
important component of health related to the immune system. To date, not many studies
have directly addressed the sex-specific roles of different types of exercise on cardiovascular
systems in both healthy and disease states. Therefore, it is essential to answer the following
questions: (1) Are the cardiovascular protective effects of exercise sex specific? If so, what
mechanisms are responsible for the sex-specific impacts of exercise on cardiovascular
remodeling? And (2) does biological sex influence the outcome of EICR in disease states?

Overall, the interest in more personalized approaches to the development of selective
therapeutic strategies, including exercise, should further advance the studies of sex differ-
ences in cardiovascular physiology and pathophysiology. Figure 1 depicts the impacts of
exercise and its sex-specific influences on cardiac and vascular remodeling in humans and
animals based on studies presented in this review article.

Structural: ↑LV volume [143], ↑LV mass and 
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Figure 1. Impacts of exercise and its sex-specific influences on cardiac (A) and vascular (B) re-
modeling in humans and animals. ↓decrease, ↑increase, left ventricular (LV), stroke volume (SV),
left ventricular ejection fraction (LVEF), flow-mediated dilation (FMD), pulse wave velocity (PWV),
blood pressure (BP), nitric oxide (NO), right ventricular (RV), ejection fraction (EF), tumor necrosis
factor (TNF), interleukin (IL), nicotinamide adenine dinucleotide phosphate (NADPH), angiotensin
converting enzyme 2 (ACE2), vascular endothelial growth factor (VEGF).
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