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REVIEW
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Abstract
Preterm birth is the leading cause of mortality in children under the age of five worldwide. Despite major efforts, we still lack the
ability to accurately predict and effectively prevent preterm birth. While multiple factors contribute to preterm labor,
dysregulations of immunological adaptations required for the maintenance of a healthy pregnancy is at its pathophysiological
core. Consequently, a precise understanding of these chronologically paced immune adaptations and of the biological pace-
makers that synchronize the pregnancy “immune clock” is a critical first step towards identifying deviations that are hallmarks of
peterm birth. Here, we will review key elements of the fetal, placental, and maternal pacemakers that program the immune clock
of pregnancy. We will then emphasize multiomic studies that enable a more integrated view of pregnancy-related immune
adaptations. Such multiomic assessments can strengthen the biological plausibility of immunological findings and increase the
power of biological signatures predictive of preterm birth

Keywords Pregnancy . Preterm birth . Prematurity . parturition . multiomics . Immunology . Cytomics . Transcriptomics .

Proteomics . Metabolomics . Microbiome .Mass cytometry

Introduction

For the establishment, maintenance, and completion of mam-
malian pregnancy, the maternal immune system must adhere
to a precise schedule. During 9 months, dynamic local and

systemic immune changes occur that confer tolerance to the
semi-allogenic fetus while protecting the mother against in-
vading pathogens. The appropriate execution of these impor-
tant events requires a tightly regulated immunologic timeline
governed by a complex system of immune pacemakers.
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Severe pregnancy complications, such as preterm labor and
preeclampsia, can result when these immunological adapta-
tions are disrupted [41, 144].

Over six decades of research have contributed to our cur-
rent understanding of the chronology of feto-maternal im-
mune adaptations during pregnancy [107], and the mecha-
nisms of maternal immune tolerance to the developing fetus
have been extensively reviewed [8, 9, 79, 110–112, 181].
However, the feto-maternal immune system does not evolve
in isolation but rather as a component of a complex network of
endocrine, metabolic, and microbiome adaptations that inter-
act with signals from the fetus and the placenta in a timely,
coordinated manner [144]. Understanding this immune clock
is of paramount importance when addressing the problem of
prematurity, as a preponderance of evidence has linked im-
mune dysregulation with not only preterm labor but also dis-
eases of pregnancy such as intrauterine growth restriction and
preeclampsia, which are major indications for preterm deliv-
ery [21, 41, 63, 144]. An integrated examination of the factors
that influence the programming of immune adaptations during
gestation is thus essential to advance our knowledge of both
healthy and pathological pregnancies (Fig. 1).

The recent advent of high-content transcriptomic,
epigenomic, proteomic, and cytomic technologies has provided
powerful means to capture the complexity of multiomic adapta-
tions during pregnancy [2, 3, 18, 50, 54, 55, 179]. Specifically, a
network of interrelated immune features that are chronologically
regulated over the course of gestation has recently been demon-
strated [2]. In this review, we will focus on the fetal, placental,
and maternal pacemakers that program this immune clock of
pregnancy and highlight recent technological advances that allow
an integrated, multiomic assessment of immunological events
involved in the natural chronology of pregnancy.

Feto-placental pacemakers programming
the immune clock of pregnancy

Before promoting the concept of feto-placental pacemakers, a
few characteristics of human placentation and trophoblast dif-
ferentiation should be elucidated (Fig. 2a, b). Beginning with
adherence of the blastocyst to the uterine wall at days 7–8 after
fertilization, trophoblasts (cells of fetal origin that ultimately
comprise the placenta) proliferate and invade the uterus,

Fig. 1 Need for longitudinal,
multiomic profiling studies to
understand immunological
adaptations in healthy and
pathologic pregnancies. An
integrated examination of the
factors that influence the timing of
immune adaptations during
pregnancy will be key to allowing
determination of normal
immunological variations in
healthy pregnancies (lefthand,
blue) and identification of
deviations predictive of
pathological pregnancy outcomes
(righthand, orange)
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triggering the differentiation of local stromal cells into
glycogen-rich decidual cells and remodeling of the uterine
environment, including transformation of the uterine spiral
arteries into thin walled vessels that facilitate exchange of
nutrients and metabolites between mother and fetus [51].

Local immune programming by the trophoblasts

Trophoblasts are key immune pacemakers. Early in pregnan-
cy, they promote an inflammatory niche that is necessary for
remodeling of the uterus to accommodate the placenta and
provide a rich blood supply for the growing fetus.
Approximately 2 weeks after conception, trophoblasts—
including cytotrophoblasts (those that remain connected to
the placental villi) and extravillous trophoblasts (those that
break away from the main body of the placenta)—invade
and remodel local tissues by secreting matrix metalloprotein-
ases and specialized extracellular matrix proteins (e.g., fetal
fibronectin) in order to promote placentation (Fig. 2b) [51].
These trophoblasts also secrete chemokines to recruit maternal
innate (monocytes, macrophages, and natural killer cells) and
adaptive immune cells (including a restricted subset of CD4+
and CD8+ T cells and regulatory T cells (Treg)) (Fig. 2b) [27,
51, 64, 139, 194, 200]. Simultaneously, there is proliferation
of resident tissue leukocytes, particularly decidual natural kill-
er (dNK) cells and decidual dendritic cells (dDCs) [9].

Given their location at the maternal-fetal interface, tropho-
blasts provide a sentinel line of defense that protects fetal
tissues from maternal cytotoxic immune cells, thereby
safeguarding against premature termination of pregnancy.
For example, human trophoblasts are known to express the
nonclassical type 1 human leukocyte antigens (HLA)-E and
HLA-G as well as a classical HLA-C antigen that inhibits
rather than activates cytotoxic NK and CD8+ T cells [30, 48,
82, 89]. Several in vitro studies using human and mouse cells
also suggest that trophoblasts impart an immature phenotype
to local dDCs that encourages differentiation of Tregs and a
tolerogenic Th2-polarized environment with high levels of
classically anti-inflammatory cytokines, such as IL-10 [97,
133, 156, 169, 170, 199].

Immune programming by circulating fetal material

In conjunction with local immune adaptations regulated by
trophoblasts, there is emerging evidence for the immunomod-
ulatory role of circulating cellular and noncellular material
derived from the feto-placental unit. We will briefly review
how circulating extracellular vesicles (EVs), cell-free fetal
DNA (cffDNA), and fetal microchimeric cells may serve as
immune pacemakers of pregnancy (Fig. 2c).

As the placenta grows, diverse membrane-derived EVs—
exosomes (~ 50–150 nm), microvesicles (200 nm–2 μm), and

Fig. 2 Contribution of the embryo, fetus, and trophoblasts to the
programming of immune adaptations during pregnancy. a The
blastocyst implants into the endometrium where it induces
decidualization and begins interacting with local immune cells, such as
DCs and NKs. b Trophoblasts invade the decidua and secrete cytokines,
chemokines (chemokine (C-X-C motif), ligands (CXCL), and matrix
metalloproteinases (MMPs) that recruit maternal immune cells and
allow for remodeling of decidua/uterus. Specialized HLA molecules on
trophoblasts inhibit CD8+ T cell and NK cell cytotoxicity. A tolerogenic
milieu is fostered with Th2-polarized cells, immature dendritic cells, and

Treg cells. c The fetus and placenta modulate the peripheral immune
system to enhance fetal tolerance. Fetal microchimerism, cell-free fetal
(cff)DNA, and placental extracellular vesicles enter maternal circulation
and either promote systemic tolerance (exosomes) via mechanisms such
as induction of fetal-specific regulatory T cells (Treg) or contribute to
pathologic inflammation in diseases of pregnancy (microparticles). d
Signals of fetal maturity, such as surfactant protein A production by
fetal lungs and stretch of the amniotic membranes, trigger
inflammation, leading to the common pathway of parturition
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apoptotic bodies—are released by feto-placental tissues, po-
tentially stemming from cytotrophoblasts, syncytiotrophoblasts,
and placental mesenchymal stem cells. Concentrations of EVs
increase linearly as pregnancy progresses, suggesting their role as
pacemakers of pregnancy [116, 137, 158, 160]. These EVs play a
role in intercellular communication by serving as vehicles for
transfer of membrane and cytosolic fetal proteins, lipids, and
micro (mi)RNA [108]. Recent studies have attributed immuno-
suppressive faculties to exosomes, such as induction of apoptosis
in activated lymphocytes, impairment of NK cytotoxicity, and
secretion of TGFβ and PDL-1, thereby encouraging Treg differ-
entiation [109].

Microparticles, on the other hand, are formed in the context of
physiological oxidative stress as a mild pro-inflammatory re-
sponse that might counterbalance the effect of the immunosup-
pressive exosomes in the placental environment [109, 178].
Variations in the concentration and bioactivity of EVs have been
implicated in pregnancy pathologies, including preeclampsia and
preterm birth [26, 84, 87, 94, 104, 158, 178]. A decrease in
immunosuppressive exosomes associated with preterm birth
and shifts of molecular cargo towards pro-coagulant and pro-
inflammatory factors in trophoblast-derived EVs in preeclampsia
are suggestive of their contribution to a modulated maternal im-
mune adaptation in complicated pregnancies, although causation
has not been demonstrated [114]. Shortcomings in resolution and
sensitivity of techniques to quantitatively and qualitatively assess
nano-scale EVs have so far been an obstacle to the understanding
of the biogenesis and activity of their various forms; however, a
number of new technologies, such as combined differential ul-
tracentrifugation, transmission electron microscopy, and nano-
particle tracking analysis have emerged that allow for their iso-
lation, examination of morphology, and analysis of size distribu-
tion and concentration [78, 113, 193].

Apoptotic trophoblasts are also an important source of cell-
free fetal DNA (cffDNA) released into the maternal circula-
tion. The plasma concentration of cffDNA increases exponen-
tially as the placenta ages and the number of apoptotic tropho-
blasts increases [47, 100]. cffDNA is hypomethylated com-
pared with adult cell-free DNA and is therefore an agonist of
Toll-like receptor (TLR)-9, which canonically responds to
hypomethylated bacterial and viral DNA [33, 187]. In preg-
nant mice, evidence suggests that injection of hypomethylated
DNA leads to TLR-9 agonism and can precipitate labor, while
blocking TLR-9 activation rescues these mice from preterm
delivery [180]. Although the immune-modulatory effect of
cffDNA has not been demonstrated in humans, these findings
suggest that cffDNA may participate in the programming of
TLR-dependent immune responses required for maternal im-
mune adaptations implicated in the onset of labor—both at
term when cffDNA levels peak, and potentially at preterm in
the setting of other derangements. However, this remains
speculative, and more human studies are needed to validate
the role of cffDNA in the immunology of human pregnancy.

In addition to noncellular fetal material shed into the ma-
ternal circulation, another phenomenon that likely contributes
to maternal immune modulation is the transfer and systemic
seeding of small numbers of intact fetal cells, termed fetal
microchimerism. The frequency of these cells, which originate
from an array of different fetal tissues, including hematopoi-
etic, progenitor, and tissue-specific cell types, increases in a
gestational-age-dependent manner, and they are likely immu-
nologically active. As early as the second trimester in humans
[70, 90, 141], nonhuman primates [74], and mice [77], fetal
cells are detectable in maternal blood and tissues. These cells
increase with advancing gestational age, peak at parturition,
and sharply decline postpartum [11, 53, 188]. Remarkably,
these cells have the capacity to persist long-term after preg-
nancy, and may influence a variety of disease states including
autoimmunity and graft-versus-host disease in transplant pa-
tients [16, 53, 141].

Despite agreement on the existence of fetal microchimeric
cells, less is known about their function during pregnancy, in
part due to the lack of an agreed-upon method to isolate these
extremely rare fetal cells [76]. The accumulation of these ge-
netically foreign cells in the maternal periphery, however, par-
allels the enhanced maternal immune tolerance of the fetus,
e.g., systemic expansion of maternal Tregs with specificity to
paternal-fetal antigens. As such, it is biologically plausible
that fetal cells contribute to tolerogenic environment neces-
sary to carry pregnancy to term.

Fetal material that is continuously shed into maternal cir-
culation and tissues is likely a potent contributor to one of the
pillars of maternal immune programming: the differentiation
and expansion of peripheral Tregs. These immunoregulatory
cells, which, at least inmice, have been shown to be specific to
fetal antigens, undergo gestational-age-dependent expansion
and contraction [6, 32, 37, 73, 159]. The trajectory of periph-
eral Tregs has been delineated by Somerset et al. who quanti-
fied levels of peripheral Tregs (CD4+CD25+) in human preg-
nancies via cross-sectional analysis of samples acquired from
nonpregnant women and women in each trimester. They
found that Tregs increased 1.5-fold over the nonpregnant state
in the first trimester, peaked at 2.5-fold in the second trimester,
and decreased slightly to 2-fold in the third trimester [167].
Since then, at least 14 different studies have confirmed an
increase in Tregs during human pregnancy [73]. The function
of these pregnancy-induced Tregs has been well studied in
mouse models. For instance, one group demonstrated that that
depletion of CD4+CD25+ Treg cells in pregnant mice led to
pregnancy loss with an impressive 100% penetrance [6], a
finding corroborated by a separate group that demonstrated
that even partial transient ablation of Forkhead Box P3
(FoxP3)+ Tregs in mice led to a 10-fold increase in fetal re-
sorption and 70% decrease in live-born pups [153]. Vice
versa, adoptive transfer of Tregs can rescue pregnancy failure
in mouse models of spontaneous abortion and infertility [190,
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191, 197]. In humans, women with lower levels of Tregs may
be more prone to spontaneous abortions and preterm labor
[161]. These studies support the concept that Tregs are essen-
tial in ensuring the appropriate duration of gestation and rep-
resent an important component of the pregnancy immune
clock.

The feto-placental unit in the timing of parturition

As pregnancy approaches term at 37 to 40 weeks’ gestation,
the immune function of the feto-placental unit evolves to en-
able inflammatory changes that facilitate the onset of labor
and parturition (Fig. 2d). Evidence suggests that local indica-
tors of fetal maturity trigger the maternal immune system to
undergo a shift towards a pro-inflammatory state. For in-
stance, surfactant protein A, produced by mature fetal lung
tissue, is a TLR-4 agonist and stimulator of cyclooxygenase
(COX)-2 activity and prostaglandin (PG)E2 production [34].
Mechanical stretch of the amnion and myometrium by the
growing fetus may also induce pro-inflammatory signals that
can precipitate labor. In nonhuman primates, inflation of a
balloon within the amniotic cavity increased maternal plasma
interleukin (IL)-1β, tumor necrosis factor (TNF)α, IL-8, and
IL-6 and prompted uterine contractions [188]. It is well known
that these pro-inflammatory cytokines TNFα and IL-1β and
production of prostaglandins are strongly associated with ac-
tive labor in both mice and humans [65, 67, 106, 151].

The switch in immune phenotype of the feto-placental unit
from predominantly tolerogenic to pro-inflammatory works in
synchrony and synergistically with other immune, develop-
mental, and environmental inputs to initiate a cascade of
events characterized by recruitment of maternal and fetal-
derived pro-inflammatory immune cells to the uterine
myometrium, maternal cervix, and fetal chorioamniotic mem-
branes [52, 103, 105, 120, 183]. Although the complex inter-
play between these signals and cells is incompletely under-
stood, the end result is the common pathway of parturition:
rupture of membranes, cervical ripening, and uterine contrac-
tions [150].

Maternal pacemakers programming
the immune clock of pregnancy

On the maternal side of the maternal-fetal interface, the local
stromal environment, known as the decidua, is an immuno-
logically active site where decidual stromal cells co-exist with
maternal immune cells in a tightly regulated relationship that
evolves as pregnancy progresses. The importance of the de-
cidua in regulating the chronology of immune adaptations
during pregnancy has been extensively reviewed elsewhere
[9, 66, 81, 91, 98, 118] and is summarized in Fig. 3. Here,
we will focus on maternally derived endocrine, metabolic and

microbial immunological pacemakers—elements that can be
readily assessed during pregnancy in the peripheral blood.

Endocrine regulation of immune responses
in pregnancy

The discovery that sex hormones have the capacity to regulate
the immune system can be traced as far back as the nineteenth
century when Italian biologists noted that castration caused
thymic atrophy [24]. The plasma levels of sex hormones such
as progesterone, estrogen, and human chorionic gonadotropin
(hCG) follow a well-defined timetable during gestation and
are perhaps the best studied pacemakers of pregnancy
(reviewed [7, 44, 58, 125, 131, 171]). Here, we will examine
the immunomodulatory roles of these hormonal pacemakers.
Other hormones, including prolactin and corticotrophin re-
leasing hormone, likely contribute to the regulation of the
immune system of pregnancy; however their immunomodu-
latory role is less well established.

Progesterone—which rises throughout human pregnancy
before dipping slightly prior to parturition—is a keystone
pacemaker for pregnancy [51, 125, 185]. Progesterone influ-
ences the pregnancy timeline through its immunomodulatory
activity, which is mediated via four main mechanisms: (1)
direct communication with immune cells via its nuclear recep-
tors, progesterone receptor (PR)-B and PR-A, (2) signaling
through its membrane progesterone receptors (mPR), (3) pro-
miscuous binding to the glucocorticoid receptor, and/or (4)
inducing transcript ion of the paracrine hormone
Progesterone Induced Blocking Factor (PIBF) [10, 12, 14,
15, 92, 122, 132, 172]. Although progesterone’s role in the
immune system remains an area of investigation, the general
consensus is that, at least up until the time of parturition,
progesterone is a critical factor in the maintenance of an
immunotolerant state and of myometrial quiescence. Several
mechanisms have been proposed as to how these important
tasks are accomplished, and are detailed Fig. 4b. Immediately
preceding the onset of labor, there is a decrease in progester-
one’s pro-tolerant influence. Plasma progesterone levels in
mice and other sub-primate mammals drop precipitously prior
to labor, and this drop can trigger labor [195]. In humans,
although circulating progesterone does not decline significant-
ly, there is evidence of a functional progesterone withdrawal
preceding labor; for instance, there is a change in expression
of nuclear progesterone receptor isoform PR-B (anti-
inflammatory) to PR-A (pro-inflammatory) in myometrial
cells and production of inhibitory microRNAs (e.g., miR-
200) [46, 69, 140] (Fig. 4c).

Estrogen is also immunomodulatory, and its levels undergo
gestational-age-dependent changes. The effects of estrogen
are predominantly mediated by three active forms: estrone
(E1), estradiol (E2), and estriol (E3)—the latter of which is
produced exclusively by the placenta (Fig. 4a, b) [46]. The
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nuclear receptors for E2 and E3 have been found in most
immune cells, and the existing evidence suggests that estrogen
has immunosuppressive and immunotolerant qualities [1, 31,
68, 72, 129–131, 134, 176, 186] (Fig. 4b). For instance, while
consistent evidence in humans and in the context of pregnancy
is lacking, animal and in vitro models show that E2 inhibits
the proliferation and cytotoxicity of NK cells [68, 92], inhibits
Th17 differentiation [129, 130, 134, 176, 186], and promotes
the differentiation of peripheral Tregs [1, 31, 72]. Some stud-
ies have suggested that E3—which exists only during
pregnancy—is capable of inhibiting nuclear factor kappa-
light-chain enhancer of activated B cells (NF-κB)-mediated
transcription, although cell specificity has not been studied
[4, 196].

Human chorionic gonadotropin (hCG), which is pro-
duced at the 8-cell stage of the embryo and peaks early
in pregnancy, is the first hormonal signal of a successful
conception and an inherent pacemaker of pregnancy
[125]. Although its immunomodulatory role is less well

studied than that of progesterone or estrogen, evidence
suggests that hCG may interact with immune cells in or-
der to foster placentation (e.g., by stimulating prolifera-
tion of dNK cells) [75, 184] and to establish a local im-
mune tolerant state (e.g., by inducing a tolerogenic phe-
notype in DCs in mice) [38, 162–164] (Fig. 4a). However,
not all studies have produced consistent results, and evi-
dence for the immunomodulatory role of hCG in humans
is still lacking.

One important hurdle in studying endocrine-immune
crosstalk is the difficulty in determining whether a hor-
mone acts on all cells or only on one subset, which sub-
sequently interacts with others. Thiele et al. recently
attempted to address this in murine pregnancy by studying
targeted knock-outs of the nuclear progesterone receptor
PR-B in DCs [182]. They found decreased frequency of
uterine Tregs during pregnancy and mild fetal growth re-
striction, but there was no change in rates of pregnancy or
timing of parturition, suggesting that nuclear progesterone

Fig. 3 Contribution of maternal decidua to the programming of immune
adaptations during pregnancy. aDecidual stromal cells condition the local
immune environment by secreting chemokines and cytokines that recruit
and activate specialized maternal immune cells (Tregs, Th2 cells, NK
cells, restricted subsets of T cells) and chemoattract invading
trophoblasts. Several studies support that this decidual chemokine/
cytokine profile is under gestational-age-dependent control and that
disruption of the normal profile affects pregnancy outcomes and the

timing of parturition [115, 139, 192, 200]. b The decidua prompts
inflammatory changes that contribute to the onset of labor by
expressing chemokines and cytokines that contribute to inflammatory
cell infiltration, prompting myometrial contractions via production of
prostaglandins and inflammatory cytokines (particularly, IL-1β and
TNFα) and promoting cervical ripening and rupture of chorioamniotic
membranes via release of MMPs [45, 57, 62, 118, 120, 142, 151, 183,
189]
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signaling in DCs is involved in the induction of immune
tolerance during pregnancy but that this signal alone does
not necessarily affect the timeline of pregnancy [182].
Further studies on the timing and cell specificity of the
effect of hormones on the maternal immune system are
needed in order to adequately decipher their complex role
in the immune clock of pregnancy.

Metabolic regulation of immune responses
in pregnancy

The interplay between metabolism and immunity is well
established [86, 119, 123, 124, 155]. Perhaps relatedly, a
healthy maternal metabolic status and energy balance are es-
sential for the development and maintenance of pregnancy. In
healthy pregnancies, there is a natural shift in metabolic status
from an energy-storing anabolic state in the first two trimesters
to a catabolic state in the third trimester, thereby providing
substrate for the rapidly developing fetus near term and
allowing for the accretion of fetal energy stores in preparation
for extrauterine life [198]. Metabolic dysfunction, as seen in
malnutrition or obesity, is associated with adverse pregnancy
outcomes, including infertility, pregnancy loss, preeclampsia,
preterm labor, and fetal growth abnormalities [5]. Because
significant crosstalk exists between metabolic and immune

systems, a comprehensive characterization of a gestational
immune clock therefore requires a careful study of maternal
metabolism [181].

Gestational-age-dependent changes in adipose tissue have
important immunological implications. Adipokines produced
by adipose tissue, such as leptin, adiponectin, resistin, and
vasfatin, are immunologically active [96]. Leptin is particular-
ly well studied in the context of pregnancy. This hormone,
produced by both adipocytes and the placenta, increases line-
arly throughout gestation, and abnormally elevated leptin
levels have been consistently associated with pathologic preg-
nancies, including gestational diabetes mellitus and pre-
eclampsia [36, 157]. The leptin receptor is found on both
innate and adaptive immune cells, and a variety of early ob-
servational in vitro studies have linked it with pathologic in-
flammation (such as that seen in autoimmune diseases and
chronic obesity), differentiation of pro-inflammatory Th17
cells, and inhibition of the differentiation of Tregs [40, 127,
138]. These studies suggest a possible role for leptin at the
interface of metabolic and immunologic disturbances impli-
cated in pregnancy. Given that leptin levels increase with ad-
vancing gestation, it is tempting to hypothesize that accumu-
lation of this hormone may contribute to the timely shift to-
wards a pro-inflammatory state in late gestation. However, the
role of leptin in immune regulation and temporal dynamics

Fig. 4 Endocrine regulation of immune adaptations during pregnancy. a
In the first 8 weeks of human pregnancy, progesterone is produced
predominantly by the corpus luteum; hCG is produced by the early
embryo; and the placenta is the major source of estrogen (as it is for the
duration of pregnancy) [125]. Early in pregnancy, hCG may interact with
the immune system to promote vascular remodeling via dNK cells and to
promote an immature DC phenotype that encourages Th2 and Treg
differentiation. b Nuclear progesterone receptors (PR-B or PR-A) are
found in decidual cells, myometrial cells, and a subset of immune cells
(e.g., CD4 and CD8 Tcells) [12, 28, 69, 83, 128, 172, 177]. Progesterone
binding to PR-B induces transcription of PIBF. In humans and mice,
progesterone (either directly or via PIBF) contributes to the arrest of
dDC maturation in vitro, which fosters a Th2 environment and
encourages differentiation and expansion of Tregs [22, 95, 131, 165,
181]. In vitro studies in humans have suggested that progesterone

decreases NK cell cytotoxicity and renders NK cells more susceptible
to apoptosis [12, 44, 171, 173]. Estrogen may impair NK cell
cytotoxicity, discourage Th17 differentiation, encourage peripheral Treg
differentiation, and inhibit NF-kB-mediated transcription [1, 31, 68, 72,
129–131, 134, 176, 186]. c At parturition, progesterone’s effects on
human myometrial cells shifts from anti-inflammatory/pro-quiescent to
pro-inflammatory/pro-contractile. PR-B inhibits the pro-inflammatory
transcription factor NF-κB in human myometrial cells, thereby
decreasing production of pro-inflammatory cytokines such as IL-1β
and IL-8, which are implicated on the onset of labor. Immediately
preceding labor, decreased myometrial expression of PR-B and
increased expression of PR-A are associated with production of IL-1β
and IL-8 by myometrial cells [177]. This change in nuclear progesterone
receptor profile may represent a functional progesterone withdrawal in
humans. IDO, indoleamine 2,3-dioxygenase
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during pregnancy is predominantly supported by correlative
studies and speculation, and future studies are needed.

Microbiome regulation of immune responses
in pregnancy

The vast repertoire of commensal organisms that colonize our
bodies play a critical role in modulating human physiology by
affecting the endocrine, metabolic, nutritional, and immune sys-
tems [29, 35]. While relatively few studies have examined this
question in the context of pregnancy, evidence from studies in
the nonpregnant state suggest that commensal organisms are
involved in the programming of peripheral and local immune
tolerance via a plethora of mechanisms, including endotoxin
tolerance [17, 168] and induction of Tregs by bacterial metab-
olites [93, 166]. Several longitudinal studies have recently in-
vestigated the changes in maternal vaginal and gut microbiota
during pregnancy, which are potential contributors to the im-
mune clock of pregnancy [42, 88, 102, 147, 175]. These studies
have yielded incongruous results, which likely reflect differ-
ences in demographic and/or genetic factors between studies.
However, in general, studies have identified increased constan-
cy (i.e., decreased beta diversity) of site-specific microbiomes
in the pregnant vs nonpregnant state [42, 88, 102, 135, 136,
175]. Overall , the role of the microbiome in the
immunomodulation of pregnancy is therefore likely one of pro-
viding immunologic stability. As such, disruption of these mi-
crobial profiles may be associated with abnormal immune ad-
aptations during pregnancy that could affect the normal im-
mune clock. Indeed, local infections such as chorioamnionitis
and bacterial vaginosis are strongly associated with preterm
birth [19, 49, 56, 71]. Attempts to identify a vaginal microbial
signature predictive of preterm birth have yielded conflicting
results: some groups have identified differences in the vaginal
microbiome [23, 80, 174], while other groups have not [148].
Novel approaches to analyze the microbiome may be helpful in
reconciling some of the incongruencies between studies [59].
Of note, a placental microbiome has also been postulated, but
its existence has been called into question recently and will not
be discussed here [13, 126].

Towards an integrated, multiomic modeling
of immune adaptations during pregnancy

The studies highlighted thus far emphasize that immune sys-
tem adaptations during pregnancy occur within larger regula-
tory networks that integrate inputs from the fetus, the mother,
and their environment (Fig. 5). It has heretofore been difficult
to synthesize what we know about these diverse inputs in
order to gain a holistic understanding of the factors governing
the progression of both healthy and pathologic pregnancies. In
the past decade, the exponential development of high-content

-omic technologies has allowed the simultaneous assessment
of the cellular (cytomic), transcriptomic (encompassing the
assessment of RNA as well as changes in the microbiome),
proteomic, and metabolomic components of regulatory net-
works in a variety ofmedical conditions ranging from diabetes
to pregnancy [39, 55, 152, 179]. A strength of these multiomic
integrative approaches is the potential to incorporate large and
complex bodies of information into a universal view of the
biological states being studied, and they carry substantial clin-
ical potential. For instance, Rose et al. recently demonstrated
the ability of a multiomic (including transcriptomic, proteo-
mic, immunomic, and metabolomic) approach in combination
with clinical data to accurately predict the development of
certain diseases such as type 2 diabetes and atherosclerotic
cardiovascular disease across an 8-year period [152]. Similar
studies in the field of pregnancy and its complications, such as
preeclampsia, have yielded exciting early results, and many
more such studies are underway [63].

Mass cytometry, or cytometry by time of flight mass spec-
trometry (CyTOF), has emerged as a powerful tool for the
high-dimensional analysis of immune cell adaptations during
pregnancy. CyTOF is a high-parameter flow cytometry tech-
nique which uses antibodies conjugated to metal isotopes rath-
er than fluorescent reporters to quantify over 50 parameters on
a cell-by-cell basis. In a recent study, a mass cytometry
immune-assay was applied to simultaneously quantify over
900 immune cell frequencies and their functional states in
longitudinal blood samples collected during pregnancy [2].
The analysis identified communities of immune features that
tracked gestational age with remarkable accuracy, providing a
single cell assessment of the peripheral immune clock of preg-
nancy. Among the key components of the multivariate im-
mune clock model was a progressive increase in Signal
Transducer and Activator of Transcription (STAT)5 signaling
in several subsets of CD4+ Tcells. In a subsequent study of 22
healthy and preeclamptic pregnancies, disruption in Signal
Transucer and Activator of Transcription (STAT)5 signaling
dynamics in CD4+ T cells was highly associated with the later
development of preeclampsia (AUC = 0.92) [63]. Although
larger cohorts are needed to test the boundaries of generaliz-
ability of the findings, these observations create a series of
hypotheses regarding the requirement of STAT5 signaling in
CD4+ T cells for the maintenance of a healthy human preg-
nancy, which dovetails with a large body of evidence from
animal studies [121, 153, 154].

Circulating proteins released from immune and nonim-
mune cells (e.g., endothelial, trophoblast, decidual, or fetal
cells) are components of the regulatory network connecting
immune cells and their environment. Therefore, examination
of the plasma proteome is an essential element of the
multiomic analysis of maternal immune responses during nor-
mal and pathological pregnancies. The proteome is particular-
ly advantageous as it captures information from the whole

404 Semin Immunopathol (2020) 42:397–412



body, while a considerable limitation is the inability to extrap-
olate the findings to the origin of the captured proteins. A
significant constraint of past proteomic efforts was the limita-
tion in the number of proteins that could simultaneously be
measured in patient plasma. Recent advances in highly multi-
plex proteomic platforms now allow for the sensitive and si-
multaneous measurement of more than one thousand proteins
in small biological samples (< 100 μL) [101, 143]. For exam-
ple, two recent studies examining over 1,300 plasma proteins
in women with normal term pregnancies revealed proteomic
signatures that predicted gestational age at the time of sam-
pling with remarkable accuracy (R > 0.9, p value < 10−14) [3,
145]. In both studies, components of the proteomic signatures
of gestation were biologically plausible and pointed at factors

implicated in immune regulation, such as IL-1 receptor and
modulators of the JAK/STAT pathways in Tcells, for example
chorionic somatomammotropin [3, 145].

While most proteomic studies of pregnancy have focused
on the analysis of circulating plasma proteins, analyses of
other physiological compartments, such as the amniotic fluid,
have also been reported [43, 60, 61, 99, 146, 149]. Although
mostly small, these studies have identified biomarkers for pre-
term birth in the setting of preterm labor [20, 149], preterm
premature rupture of membranes [43], and cervical insuffi-
ciency [60]. In complementary proteomic studies,
Cantonwine et al. assessed the proteomic content of fetal-
derived microparticles in the circulation [25]. This study was
particularly interesting as it effectively provided a “biopsy” of

Fig. 5 Summary of the immunological timeline during pregnancy and putative immune pacemakers
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the feto-maternal interface and a rare real time in vivo glimpse
of human fetal physiology. These authors isolated microparti-
cles from samples collected at 10 to 12 weeks’ gestation and
examined 132 proteins, of which a signature of 62 proteins
predicted preterm birth (AUC = 0.857). Proteins involved in
inflammation, particularly the adaptive immune system and
the complement system, were highly overrepresented. This
work is remarkable for its ability to predict preterm birth as
early as the first trimester.

While mass cytometry and proteomic approaches require
the a priori selection of a restricted set of analytes (i.e., are
limited by which antibodies are used for staining markers of
interest or which proteins are queried), transcriptomic and
metabolomic platforms can offer untargeted analyses.
RNAseq technologies in particular allow the unparalleled as-
sessment of over 20,000 gene transcripts simultaneously.With
the advent of cell-free-RNA sequencing (cf-RNAseq), tran-
scripts derived from the maternal and fetal genomes can be
measured inmaternal plasma, providing a tool for noninvasive
monitoring of the mother and her fetus during pregnancy [85,
117]. In a hallmark study of healthy and preterm pregnancy,
Ngo et al. used cf-RNAseq to define a transcriptomic clock of
human pregnancy using peripheral plasma. They were able to
develop a model that predicted time to delivery from plasma
sample collection (AUC = 0.91) and a second model capable
of predicting preterm birth (AUC = 0.86) [117]. Interestingly,
gene transcripts involved in the regulation of the immune
system were among those most highly correlated with gesta-
tional age and time to delivery, even though many of these
transcripts were not previously known to play a role in human
pregnancy.

The gap between the discrete knowledge gleaned from
each individual -omic technology and a holistic understanding
of the many complexities and variables in the immune system
leaves numerous fundamental challenges in the bioinformatics
field. An integrative viewpoint that uses novel statistical
modeling and computational techniques to study multiple bi-
ological technologies has yielded interesting insights that have
the promise to enable inference of significant interactions
across biological features. To interpret the large amount of
data generated by modern multiomic tools, new computation-
al methods in the field of machine learning have arisen to
address this difficulty in the analysis of relevant modalities
including cell types, signaling pathways, and protein abun-
dance as well as gene expression profiles that contribute to
the development and maintenance of both healthy and patho-
logic pregnancies. In a recent publication by Ghaemi et al., the
authors have utilized these machine learning techniques to
address human pregnancy. The approach is based on stacked
generalization, a technique developed to combine multiple
sets of predictions and the use of elastic net (EN) analysis
[55]. EN models extend standard linear regression to high-
dimensional data, where there are many more features than

observations (or samples) with complex inter-correlations.
Among sets of features that are highly correlated, EN will
choose representative features to include in the model. The
result is a simplified model, which includes important predic-
tive features. These features are represented via a rich visual
network. In this particular example, EN regressionwas used to
measure the ability of each of the seven -omic technologies
investigated (cell-free transcriptomics; antibody-based cyto-
kine measurements in plasma and serum; microbiomic analy-
ses of vaginal swabs, stool, saliva, and tooth/gum; mass cyto-
metric analyses of whole blood; untargeted metabolomics;
and targeted proteomics analysis of plasma) to predict gesta-
tional age. Stacked generalization increased the predictive
power of the combined model by accounting for the intrinsic
internal correlation structure and size of each modality.
Notably, strong correlations between metabolomic, proteo-
mic, and transcriptomic features and specific immune cell sig-
naling responses pointed at biologically plausible interactions.
For example, the model identified a strong relationship be-
tween the steroid hormone pregnanolone sulfate—a derivative
of progesterone—and the signaling behavior of myeloid DCs
and Tregs, which begins to shed light on the mechanisms by
which progesterone modulates the immune system during
pregnancy. A role for IL-2 signaling and STAT5 was again
highlighted, in concordance with the cytomic, proteomic, and
traditional science studies noted above [2, 3].

Conclusion

Results of recent longitudinal and multiomic studies provide a
solid basis to ultimately build a comprehensive atlas
representing all biological and interlinked elements contribut-
ing to the paced immune programming during pregnancy. The
integrative approach of multiomic studies holds particular
promise for deriving highly predictive and biologically plau-
sible signatures of preterm birth (Fig. 1). Importantly, such
biosignatures are derived in accessible biological compart-
ments (i.e., peripheral blood) and with technologies that can
be transferred into clinical laboratories. Finally, biologically
plausible signatures are most promising among all types of
biomarkers to identify novel therapeutic targets. Significant
investment in resource-intense and large-scale multiomic
studies in diverse patient populations is an essential next step
to identify and validate predictive biological signatures and
novel therapeutic targets.
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